The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: kern_proc.c,v 1.144 2008/10/15 06:51:20 wrstuden Exp $ */
    2 
    3 /*-
    4  * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to The NetBSD Foundation
    8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
    9  * NASA Ames Research Center, and by Andrew Doran.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30  * POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 /*
   34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
   35  *      The Regents of the University of California.  All rights reserved.
   36  *
   37  * Redistribution and use in source and binary forms, with or without
   38  * modification, are permitted provided that the following conditions
   39  * are met:
   40  * 1. Redistributions of source code must retain the above copyright
   41  *    notice, this list of conditions and the following disclaimer.
   42  * 2. Redistributions in binary form must reproduce the above copyright
   43  *    notice, this list of conditions and the following disclaimer in the
   44  *    documentation and/or other materials provided with the distribution.
   45  * 3. Neither the name of the University nor the names of its contributors
   46  *    may be used to endorse or promote products derived from this software
   47  *    without specific prior written permission.
   48  *
   49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   59  * SUCH DAMAGE.
   60  *
   61  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   62  */
   63 
   64 #include <sys/cdefs.h>
   65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.144 2008/10/15 06:51:20 wrstuden Exp $");
   66 
   67 #include "opt_kstack.h"
   68 #include "opt_maxuprc.h"
   69 
   70 #include <sys/param.h>
   71 #include <sys/systm.h>
   72 #include <sys/kernel.h>
   73 #include <sys/proc.h>
   74 #include <sys/resourcevar.h>
   75 #include <sys/buf.h>
   76 #include <sys/acct.h>
   77 #include <sys/wait.h>
   78 #include <sys/file.h>
   79 #include <ufs/ufs/quota.h>
   80 #include <sys/uio.h>
   81 #include <sys/malloc.h>
   82 #include <sys/pool.h>
   83 #include <sys/mbuf.h>
   84 #include <sys/ioctl.h>
   85 #include <sys/tty.h>
   86 #include <sys/signalvar.h>
   87 #include <sys/ras.h>
   88 #include <sys/sa.h>
   89 #include <sys/savar.h>
   90 #include <sys/filedesc.h>
   91 #include "sys/syscall_stats.h"
   92 #include <sys/kauth.h>
   93 #include <sys/sleepq.h>
   94 #include <sys/atomic.h>
   95 #include <sys/kmem.h>
   96 
   97 #include <uvm/uvm.h>
   98 #include <uvm/uvm_extern.h>
   99 
  100 /*
  101  * Other process lists
  102  */
  103 
  104 struct proclist allproc;
  105 struct proclist zombproc;       /* resources have been freed */
  106 
  107 kmutex_t        *proc_lock;
  108 
  109 /*
  110  * pid to proc lookup is done by indexing the pid_table array.
  111  * Since pid numbers are only allocated when an empty slot
  112  * has been found, there is no need to search any lists ever.
  113  * (an orphaned pgrp will lock the slot, a session will lock
  114  * the pgrp with the same number.)
  115  * If the table is too small it is reallocated with twice the
  116  * previous size and the entries 'unzipped' into the two halves.
  117  * A linked list of free entries is passed through the pt_proc
  118  * field of 'free' items - set odd to be an invalid ptr.
  119  */
  120 
  121 struct pid_table {
  122         struct proc     *pt_proc;
  123         struct pgrp     *pt_pgrp;
  124 };
  125 #if 1   /* strongly typed cast - should be a noop */
  126 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
  127 #else
  128 #define p2u(p) ((uint)p)
  129 #endif
  130 #define P_VALID(p) (!(p2u(p) & 1))
  131 #define P_NEXT(p) (p2u(p) >> 1)
  132 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
  133 
  134 #define INITIAL_PID_TABLE_SIZE  (1 << 5)
  135 static struct pid_table *pid_table;
  136 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
  137 static uint pid_alloc_lim;      /* max we allocate before growing table */
  138 static uint pid_alloc_cnt;      /* number of allocated pids */
  139 
  140 /* links through free slots - never empty! */
  141 static uint next_free_pt, last_free_pt;
  142 static pid_t pid_max = PID_MAX;         /* largest value we allocate */
  143 
  144 /* Components of the first process -- never freed. */
  145 
  146 extern const struct emul emul_netbsd;   /* defined in kern_exec.c */
  147 
  148 struct session session0 = {
  149         .s_count = 1,
  150         .s_sid = 0,
  151 };
  152 struct pgrp pgrp0 = {
  153         .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
  154         .pg_session = &session0,
  155 };
  156 filedesc_t filedesc0;
  157 struct cwdinfo cwdi0 = {
  158         .cwdi_cmask = CMASK,            /* see cmask below */
  159         .cwdi_refcnt = 1,
  160 };
  161 struct plimit limit0;
  162 struct pstats pstat0;
  163 struct vmspace vmspace0;
  164 struct sigacts sigacts0;
  165 struct turnstile turnstile0;
  166 struct proc proc0 = {
  167         .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
  168         .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
  169         .p_nlwps = 1,
  170         .p_nrlwps = 1,
  171         .p_nlwpid = 1,          /* must match lwp0.l_lid */
  172         .p_pgrp = &pgrp0,
  173         .p_comm = "system",
  174         /*
  175          * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
  176          * when they exit.  init(8) can easily wait them out for us.
  177          */
  178         .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
  179         .p_stat = SACTIVE,
  180         .p_nice = NZERO,
  181         .p_emul = &emul_netbsd,
  182         .p_cwdi = &cwdi0,
  183         .p_limit = &limit0,
  184         .p_fd = &filedesc0,
  185         .p_vmspace = &vmspace0,
  186         .p_stats = &pstat0,
  187         .p_sigacts = &sigacts0,
  188 };
  189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
  190 #ifdef LWP0_CPU_INFO
  191         .l_cpu = LWP0_CPU_INFO,
  192 #endif
  193         .l_proc = &proc0,
  194         .l_lid = 1,
  195         .l_flag = LW_INMEM | LW_SYSTEM,
  196         .l_stat = LSONPROC,
  197         .l_ts = &turnstile0,
  198         .l_syncobj = &sched_syncobj,
  199         .l_refcnt = 1,
  200         .l_priority = PRI_USER + NPRI_USER - 1,
  201         .l_inheritedprio = -1,
  202         .l_class = SCHED_OTHER,
  203         .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
  204         .l_name = __UNCONST("swapper"),
  205 };
  206 kauth_cred_t cred0;
  207 
  208 extern struct user *proc0paddr;
  209 
  210 int nofile = NOFILE;
  211 int maxuprc = MAXUPRC;
  212 int cmask = CMASK;
  213 
  214 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
  215 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  216 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  217 
  218 /*
  219  * The process list descriptors, used during pid allocation and
  220  * by sysctl.  No locking on this data structure is needed since
  221  * it is completely static.
  222  */
  223 const struct proclist_desc proclists[] = {
  224         { &allproc      },
  225         { &zombproc     },
  226         { NULL          },
  227 };
  228 
  229 static void orphanpg(struct pgrp *);
  230 static void pg_delete(pid_t);
  231 
  232 static specificdata_domain_t proc_specificdata_domain;
  233 
  234 static pool_cache_t proc_cache;
  235 
  236 /*
  237  * Initialize global process hashing structures.
  238  */
  239 void
  240 procinit(void)
  241 {
  242         const struct proclist_desc *pd;
  243         int i;
  244 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
  245 
  246         for (pd = proclists; pd->pd_list != NULL; pd++)
  247                 LIST_INIT(pd->pd_list);
  248 
  249         proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
  250 
  251         pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
  252                             M_PROC, M_WAITOK);
  253         /* Set free list running through table...
  254            Preset 'use count' above PID_MAX so we allocate pid 1 next. */
  255         for (i = 0; i <= pid_tbl_mask; i++) {
  256                 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
  257                 pid_table[i].pt_pgrp = 0;
  258         }
  259         /* slot 0 is just grabbed */
  260         next_free_pt = 1;
  261         /* Need to fix last entry. */
  262         last_free_pt = pid_tbl_mask;
  263         pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
  264         /* point at which we grow table - to avoid reusing pids too often */
  265         pid_alloc_lim = pid_tbl_mask - 1;
  266 #undef LINK_EMPTY
  267 
  268         proc_specificdata_domain = specificdata_domain_create();
  269         KASSERT(proc_specificdata_domain != NULL);
  270 
  271         proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
  272             "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
  273 }
  274 
  275 /*
  276  * Initialize process 0.
  277  */
  278 void
  279 proc0_init(void)
  280 {
  281         struct proc *p;
  282         struct pgrp *pg;
  283         struct session *sess;
  284         struct lwp *l;
  285         rlim_t lim;
  286         int i;
  287 
  288         p = &proc0;
  289         pg = &pgrp0;
  290         sess = &session0;
  291         l = &lwp0;
  292 
  293         KASSERT(l->l_lid == p->p_nlwpid);
  294 
  295         mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
  296         mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
  297         mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
  298         p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
  299 
  300         rw_init(&p->p_reflock);
  301         cv_init(&p->p_waitcv, "wait");
  302         cv_init(&p->p_lwpcv, "lwpwait");
  303 
  304         LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
  305 
  306         pid_table[0].pt_proc = p;
  307         LIST_INSERT_HEAD(&allproc, p, p_list);
  308         LIST_INSERT_HEAD(&alllwp, l, l_list);
  309 
  310         pid_table[0].pt_pgrp = pg;
  311         LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
  312 
  313 #ifdef __HAVE_SYSCALL_INTERN
  314         (*p->p_emul->e_syscall_intern)(p);
  315 #endif
  316 
  317         callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
  318         callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
  319         cv_init(&l->l_sigcv, "sigwait");
  320 
  321         /* Create credentials. */
  322         cred0 = kauth_cred_alloc();
  323         p->p_cred = cred0;
  324         kauth_cred_hold(cred0);
  325         l->l_cred = cred0;
  326 
  327         /* Create the CWD info. */
  328         rw_init(&cwdi0.cwdi_lock);
  329 
  330         /* Create the limits structures. */
  331         mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
  332         for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
  333                 limit0.pl_rlimit[i].rlim_cur =   
  334                     limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
  335 
  336         limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
  337         limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
  338             maxfiles < nofile ? maxfiles : nofile;
  339 
  340         limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
  341         limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
  342             maxproc < maxuprc ? maxproc : maxuprc;
  343 
  344         lim = ptoa(uvmexp.free);
  345         limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
  346         limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
  347         limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
  348         limit0.pl_corename = defcorename;        
  349         limit0.pl_refcnt = 1;    
  350         limit0.pl_sv_limit = NULL;
  351 
  352         /* Configure virtual memory system, set vm rlimits. */
  353         uvm_init_limits(p);
  354 
  355         /* Initialize file descriptor table for proc0. */
  356         fd_init(&filedesc0);
  357 
  358         /*
  359          * Initialize proc0's vmspace, which uses the kernel pmap.
  360          * All kernel processes (which never have user space mappings)
  361          * share proc0's vmspace, and thus, the kernel pmap.
  362          */
  363         uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
  364             trunc_page(VM_MAX_ADDRESS));
  365 
  366         l->l_addr = proc0paddr;                         /* XXX */
  367 
  368         /* Initialize signal state for proc0. XXX IPL_SCHED */
  369         mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
  370         siginit(p);
  371 
  372         proc_initspecific(p);
  373         lwp_initspecific(l);
  374 
  375         SYSCALL_TIME_LWP_INIT(l);
  376 }
  377 
  378 /*
  379  * Check that the specified process group is in the session of the
  380  * specified process.
  381  * Treats -ve ids as process ids.
  382  * Used to validate TIOCSPGRP requests.
  383  */
  384 int
  385 pgid_in_session(struct proc *p, pid_t pg_id)
  386 {
  387         struct pgrp *pgrp;
  388         struct session *session;
  389         int error;
  390 
  391         mutex_enter(proc_lock);
  392         if (pg_id < 0) {
  393                 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
  394                 if (p1 == NULL)
  395                         return EINVAL;
  396                 pgrp = p1->p_pgrp;
  397         } else {
  398                 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
  399                 if (pgrp == NULL)
  400                         return EINVAL;
  401         }
  402         session = pgrp->pg_session;
  403         if (session != p->p_pgrp->pg_session)
  404                 error = EPERM;
  405         else
  406                 error = 0;
  407         mutex_exit(proc_lock);
  408 
  409         return error;
  410 }
  411 
  412 /*
  413  * Is p an inferior of q?
  414  *
  415  * Call with the proc_lock held.
  416  */
  417 int
  418 inferior(struct proc *p, struct proc *q)
  419 {
  420 
  421         for (; p != q; p = p->p_pptr)
  422                 if (p->p_pid == 0)
  423                         return 0;
  424         return 1;
  425 }
  426 
  427 /*
  428  * Locate a process by number
  429  */
  430 struct proc *
  431 p_find(pid_t pid, uint flags)
  432 {
  433         struct proc *p;
  434         char stat;
  435 
  436         if (!(flags & PFIND_LOCKED))
  437                 mutex_enter(proc_lock);
  438 
  439         p = pid_table[pid & pid_tbl_mask].pt_proc;
  440 
  441         /* Only allow live processes to be found by pid. */
  442         /* XXXSMP p_stat */
  443         if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
  444             stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
  445             (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
  446                 if (flags & PFIND_UNLOCK_OK)
  447                          mutex_exit(proc_lock);
  448                 return p;
  449         }
  450         if (flags & PFIND_UNLOCK_FAIL)
  451                 mutex_exit(proc_lock);
  452         return NULL;
  453 }
  454 
  455 
  456 /*
  457  * Locate a process group by number
  458  */
  459 struct pgrp *
  460 pg_find(pid_t pgid, uint flags)
  461 {
  462         struct pgrp *pg;
  463 
  464         if (!(flags & PFIND_LOCKED))
  465                 mutex_enter(proc_lock);
  466         pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
  467         /*
  468          * Can't look up a pgrp that only exists because the session
  469          * hasn't died yet (traditional)
  470          */
  471         if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
  472                 if (flags & PFIND_UNLOCK_FAIL)
  473                          mutex_exit(proc_lock);
  474                 return NULL;
  475         }
  476 
  477         if (flags & PFIND_UNLOCK_OK)
  478                 mutex_exit(proc_lock);
  479         return pg;
  480 }
  481 
  482 static void
  483 expand_pid_table(void)
  484 {
  485         uint pt_size = pid_tbl_mask + 1;
  486         struct pid_table *n_pt, *new_pt;
  487         struct proc *proc;
  488         struct pgrp *pgrp;
  489         int i;
  490         pid_t pid;
  491 
  492         new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
  493 
  494         mutex_enter(proc_lock);
  495         if (pt_size != pid_tbl_mask + 1) {
  496                 /* Another process beat us to it... */
  497                 mutex_exit(proc_lock);
  498                 FREE(new_pt, M_PROC);
  499                 return;
  500         }
  501 
  502         /*
  503          * Copy entries from old table into new one.
  504          * If 'pid' is 'odd' we need to place in the upper half,
  505          * even pid's to the lower half.
  506          * Free items stay in the low half so we don't have to
  507          * fixup the reference to them.
  508          * We stuff free items on the front of the freelist
  509          * because we can't write to unmodified entries.
  510          * Processing the table backwards maintains a semblance
  511          * of issueing pid numbers that increase with time.
  512          */
  513         i = pt_size - 1;
  514         n_pt = new_pt + i;
  515         for (; ; i--, n_pt--) {
  516                 proc = pid_table[i].pt_proc;
  517                 pgrp = pid_table[i].pt_pgrp;
  518                 if (!P_VALID(proc)) {
  519                         /* Up 'use count' so that link is valid */
  520                         pid = (P_NEXT(proc) + pt_size) & ~pt_size;
  521                         proc = P_FREE(pid);
  522                         if (pgrp)
  523                                 pid = pgrp->pg_id;
  524                 } else
  525                         pid = proc->p_pid;
  526 
  527                 /* Save entry in appropriate half of table */
  528                 n_pt[pid & pt_size].pt_proc = proc;
  529                 n_pt[pid & pt_size].pt_pgrp = pgrp;
  530 
  531                 /* Put other piece on start of free list */
  532                 pid = (pid ^ pt_size) & ~pid_tbl_mask;
  533                 n_pt[pid & pt_size].pt_proc =
  534                                     P_FREE((pid & ~pt_size) | next_free_pt);
  535                 n_pt[pid & pt_size].pt_pgrp = 0;
  536                 next_free_pt = i | (pid & pt_size);
  537                 if (i == 0)
  538                         break;
  539         }
  540 
  541         /* Switch tables */
  542         n_pt = pid_table;
  543         pid_table = new_pt;
  544         pid_tbl_mask = pt_size * 2 - 1;
  545 
  546         /*
  547          * pid_max starts as PID_MAX (= 30000), once we have 16384
  548          * allocated pids we need it to be larger!
  549          */
  550         if (pid_tbl_mask > PID_MAX) {
  551                 pid_max = pid_tbl_mask * 2 + 1;
  552                 pid_alloc_lim |= pid_alloc_lim << 1;
  553         } else
  554                 pid_alloc_lim <<= 1;    /* doubles number of free slots... */
  555 
  556         mutex_exit(proc_lock);
  557         FREE(n_pt, M_PROC);
  558 }
  559 
  560 struct proc *
  561 proc_alloc(void)
  562 {
  563         struct proc *p;
  564         int nxt;
  565         pid_t pid;
  566         struct pid_table *pt;
  567 
  568         p = pool_cache_get(proc_cache, PR_WAITOK);
  569         p->p_stat = SIDL;                       /* protect against others */
  570 
  571         proc_initspecific(p);
  572         /* allocate next free pid */
  573 
  574         for (;;expand_pid_table()) {
  575                 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
  576                         /* ensure pids cycle through 2000+ values */
  577                         continue;
  578                 mutex_enter(proc_lock);
  579                 pt = &pid_table[next_free_pt];
  580 #ifdef DIAGNOSTIC
  581                 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
  582                         panic("proc_alloc: slot busy");
  583 #endif
  584                 nxt = P_NEXT(pt->pt_proc);
  585                 if (nxt & pid_tbl_mask)
  586                         break;
  587                 /* Table full - expand (NB last entry not used....) */
  588                 mutex_exit(proc_lock);
  589         }
  590 
  591         /* pid is 'saved use count' + 'size' + entry */
  592         pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
  593         if ((uint)pid > (uint)pid_max)
  594                 pid &= pid_tbl_mask;
  595         p->p_pid = pid;
  596         next_free_pt = nxt & pid_tbl_mask;
  597 
  598         /* Grab table slot */
  599         pt->pt_proc = p;
  600         pid_alloc_cnt++;
  601 
  602         mutex_exit(proc_lock);
  603 
  604         return p;
  605 }
  606 
  607 /*
  608  * Free a process id - called from proc_free (in kern_exit.c)
  609  *
  610  * Called with the proc_lock held.
  611  */
  612 void
  613 proc_free_pid(struct proc *p)
  614 {
  615         pid_t pid = p->p_pid;
  616         struct pid_table *pt;
  617 
  618         KASSERT(mutex_owned(proc_lock));
  619 
  620         pt = &pid_table[pid & pid_tbl_mask];
  621 #ifdef DIAGNOSTIC
  622         if (__predict_false(pt->pt_proc != p))
  623                 panic("proc_free: pid_table mismatch, pid %x, proc %p",
  624                         pid, p);
  625 #endif
  626         /* save pid use count in slot */
  627         pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
  628 
  629         if (pt->pt_pgrp == NULL) {
  630                 /* link last freed entry onto ours */
  631                 pid &= pid_tbl_mask;
  632                 pt = &pid_table[last_free_pt];
  633                 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
  634                 last_free_pt = pid;
  635                 pid_alloc_cnt--;
  636         }
  637 
  638         atomic_dec_uint(&nprocs);
  639 }
  640 
  641 void
  642 proc_free_mem(struct proc *p)
  643 {
  644 
  645         pool_cache_put(proc_cache, p);
  646 }
  647 
  648 /*
  649  * Move p to a new or existing process group (and session)
  650  *
  651  * If we are creating a new pgrp, the pgid should equal
  652  * the calling process' pid.
  653  * If is only valid to enter a process group that is in the session
  654  * of the process.
  655  * Also mksess should only be set if we are creating a process group
  656  *
  657  * Only called from sys_setsid and sys_setpgid.
  658  */
  659 int
  660 enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
  661 {
  662         struct pgrp *new_pgrp, *pgrp;
  663         struct session *sess;
  664         struct proc *p;
  665         int rval;
  666         pid_t pg_id = NO_PGID;
  667 
  668         if (mksess)
  669                 sess = kmem_alloc(sizeof(*sess), KM_SLEEP);
  670         else
  671                 sess = NULL;
  672 
  673         /* Allocate data areas we might need before doing any validity checks */
  674         mutex_enter(proc_lock);         /* Because pid_table might change */
  675         if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
  676                 mutex_exit(proc_lock);
  677                 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
  678                 mutex_enter(proc_lock);
  679         } else
  680                 new_pgrp = NULL;
  681         rval = EPERM;   /* most common error (to save typing) */
  682 
  683         /* Check pgrp exists or can be created */
  684         pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
  685         if (pgrp != NULL && pgrp->pg_id != pgid)
  686                 goto done;
  687 
  688         /* Can only set another process under restricted circumstances. */
  689         if (pid != curp->p_pid) {
  690                 /* must exist and be one of our children... */
  691                 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
  692                     !inferior(p, curp)) {
  693                         rval = ESRCH;
  694                         goto done;
  695                 }
  696                 /* ... in the same session... */
  697                 if (sess != NULL || p->p_session != curp->p_session)
  698                         goto done;
  699                 /* ... existing pgid must be in same session ... */
  700                 if (pgrp != NULL && pgrp->pg_session != p->p_session)
  701                         goto done;
  702                 /* ... and not done an exec. */
  703                 if (p->p_flag & PK_EXEC) {
  704                         rval = EACCES;
  705                         goto done;
  706                 }
  707         } else {
  708                 /* ... setsid() cannot re-enter a pgrp */
  709                 if (mksess && (curp->p_pgid == curp->p_pid ||
  710                     pg_find(curp->p_pid, PFIND_LOCKED)))
  711                         goto done;
  712                 p = curp;
  713         }
  714 
  715         /* Changing the process group/session of a session
  716            leader is definitely off limits. */
  717         if (SESS_LEADER(p)) {
  718                 if (sess == NULL && p->p_pgrp == pgrp)
  719                         /* unless it's a definite noop */
  720                         rval = 0;
  721                 goto done;
  722         }
  723 
  724         /* Can only create a process group with id of process */
  725         if (pgrp == NULL && pgid != pid)
  726                 goto done;
  727 
  728         /* Can only create a session if creating pgrp */
  729         if (sess != NULL && pgrp != NULL)
  730                 goto done;
  731 
  732         /* Check we allocated memory for a pgrp... */
  733         if (pgrp == NULL && new_pgrp == NULL)
  734                 goto done;
  735 
  736         /* Don't attach to 'zombie' pgrp */
  737         if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
  738                 goto done;
  739 
  740         /* Expect to succeed now */
  741         rval = 0;
  742 
  743         if (pgrp == p->p_pgrp)
  744                 /* nothing to do */
  745                 goto done;
  746 
  747         /* Ok all setup, link up required structures */
  748 
  749         if (pgrp == NULL) {
  750                 pgrp = new_pgrp;
  751                 new_pgrp = NULL;
  752                 if (sess != NULL) {
  753                         sess->s_sid = p->p_pid;
  754                         sess->s_leader = p;
  755                         sess->s_count = 1;
  756                         sess->s_ttyvp = NULL;
  757                         sess->s_ttyp = NULL;
  758                         sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
  759                         memcpy(sess->s_login, p->p_session->s_login,
  760                             sizeof(sess->s_login));
  761                         p->p_lflag &= ~PL_CONTROLT;
  762                 } else {
  763                         sess = p->p_pgrp->pg_session;
  764                         SESSHOLD(sess);
  765                 }
  766                 pgrp->pg_session = sess;
  767                 sess = NULL;
  768 
  769                 pgrp->pg_id = pgid;
  770                 LIST_INIT(&pgrp->pg_members);
  771 #ifdef DIAGNOSTIC
  772                 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
  773                         panic("enterpgrp: pgrp table slot in use");
  774                 if (__predict_false(mksess && p != curp))
  775                         panic("enterpgrp: mksession and p != curproc");
  776 #endif
  777                 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
  778                 pgrp->pg_jobc = 0;
  779         }
  780 
  781         /*
  782          * Adjust eligibility of affected pgrps to participate in job control.
  783          * Increment eligibility counts before decrementing, otherwise we
  784          * could reach 0 spuriously during the first call.
  785          */
  786         fixjobc(p, pgrp, 1);
  787         fixjobc(p, p->p_pgrp, 0);
  788 
  789         /* Interlock with ttread(). */
  790         mutex_spin_enter(&tty_lock);
  791 
  792         /* Move process to requested group. */
  793         LIST_REMOVE(p, p_pglist);
  794         if (LIST_EMPTY(&p->p_pgrp->pg_members))
  795                 /* defer delete until we've dumped the lock */
  796                 pg_id = p->p_pgrp->pg_id;
  797         p->p_pgrp = pgrp;
  798         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  799 
  800         /* Done with the swap; we can release the tty mutex. */
  801         mutex_spin_exit(&tty_lock);
  802 
  803     done:
  804         if (pg_id != NO_PGID)
  805                 pg_delete(pg_id);
  806         mutex_exit(proc_lock);
  807         if (sess != NULL)
  808                 kmem_free(sess, sizeof(*sess));
  809         if (new_pgrp != NULL)
  810                 kmem_free(new_pgrp, sizeof(*new_pgrp));
  811 #ifdef DEBUG_PGRP
  812         if (__predict_false(rval))
  813                 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
  814                         pid, pgid, mksess, curp->p_pid, rval);
  815 #endif
  816         return rval;
  817 }
  818 
  819 /*
  820  * Remove a process from its process group.  Must be called with the
  821  * proc_lock held.
  822  */
  823 void
  824 leavepgrp(struct proc *p)
  825 {
  826         struct pgrp *pgrp;
  827 
  828         KASSERT(mutex_owned(proc_lock));
  829 
  830         /* Interlock with ttread() */
  831         mutex_spin_enter(&tty_lock);
  832         pgrp = p->p_pgrp;
  833         LIST_REMOVE(p, p_pglist);
  834         p->p_pgrp = NULL;
  835         mutex_spin_exit(&tty_lock);
  836 
  837         if (LIST_EMPTY(&pgrp->pg_members))
  838                 pg_delete(pgrp->pg_id);
  839 }
  840 
  841 /*
  842  * Free a process group.  Must be called with the proc_lock held.
  843  */
  844 static void
  845 pg_free(pid_t pg_id)
  846 {
  847         struct pgrp *pgrp;
  848         struct pid_table *pt;
  849 
  850         KASSERT(mutex_owned(proc_lock));
  851 
  852         pt = &pid_table[pg_id & pid_tbl_mask];
  853         pgrp = pt->pt_pgrp;
  854 #ifdef DIAGNOSTIC
  855         if (__predict_false(!pgrp || pgrp->pg_id != pg_id
  856             || !LIST_EMPTY(&pgrp->pg_members)))
  857                 panic("pg_free: process group absent or has members");
  858 #endif
  859         pt->pt_pgrp = 0;
  860 
  861         if (!P_VALID(pt->pt_proc)) {
  862                 /* orphaned pgrp, put slot onto free list */
  863 #ifdef DIAGNOSTIC
  864                 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
  865                         panic("pg_free: process slot on free list");
  866 #endif
  867                 pg_id &= pid_tbl_mask;
  868                 pt = &pid_table[last_free_pt];
  869                 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
  870                 last_free_pt = pg_id;
  871                 pid_alloc_cnt--;
  872         }
  873         kmem_free(pgrp, sizeof(*pgrp));
  874 }
  875 
  876 /*
  877  * Delete a process group.  Must be called with the proc_lock held.
  878  */
  879 static void
  880 pg_delete(pid_t pg_id)
  881 {
  882         struct pgrp *pgrp;
  883         struct tty *ttyp;
  884         struct session *ss;
  885         int is_pgrp_leader;
  886 
  887         KASSERT(mutex_owned(proc_lock));
  888 
  889         pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
  890         if (pgrp == NULL || pgrp->pg_id != pg_id ||
  891             !LIST_EMPTY(&pgrp->pg_members))
  892                 return;
  893 
  894         ss = pgrp->pg_session;
  895 
  896         /* Remove reference (if any) from tty to this process group */
  897         mutex_spin_enter(&tty_lock);
  898         ttyp = ss->s_ttyp;
  899         if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
  900                 ttyp->t_pgrp = NULL;
  901 #ifdef DIAGNOSTIC
  902                 if (ttyp->t_session != ss)
  903                         panic("pg_delete: wrong session on terminal");
  904 #endif
  905         }
  906         mutex_spin_exit(&tty_lock);
  907 
  908         /*
  909          * The leading process group in a session is freed
  910          * by sessdelete() if last reference.
  911          */
  912         is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
  913         SESSRELE(ss);
  914 
  915         if (is_pgrp_leader)
  916                 return;
  917 
  918         pg_free(pg_id);
  919 }
  920 
  921 /*
  922  * Delete session - called from SESSRELE when s_count becomes zero.
  923  * Must be called with the proc_lock held.
  924  */
  925 void
  926 sessdelete(struct session *ss)
  927 {
  928 
  929         KASSERT(mutex_owned(proc_lock));
  930 
  931         /*
  932          * We keep the pgrp with the same id as the session in
  933          * order to stop a process being given the same pid.
  934          * Since the pgrp holds a reference to the session, it
  935          * must be a 'zombie' pgrp by now.
  936          */
  937         pg_free(ss->s_sid);
  938         kmem_free(ss, sizeof(*ss));
  939 }
  940 
  941 /*
  942  * Adjust pgrp jobc counters when specified process changes process group.
  943  * We count the number of processes in each process group that "qualify"
  944  * the group for terminal job control (those with a parent in a different
  945  * process group of the same session).  If that count reaches zero, the
  946  * process group becomes orphaned.  Check both the specified process'
  947  * process group and that of its children.
  948  * entering == 0 => p is leaving specified group.
  949  * entering == 1 => p is entering specified group.
  950  *
  951  * Call with proc_lock held.
  952  */
  953 void
  954 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
  955 {
  956         struct pgrp *hispgrp;
  957         struct session *mysession = pgrp->pg_session;
  958         struct proc *child;
  959 
  960         KASSERT(mutex_owned(proc_lock));
  961 
  962         /*
  963          * Check p's parent to see whether p qualifies its own process
  964          * group; if so, adjust count for p's process group.
  965          */
  966         hispgrp = p->p_pptr->p_pgrp;
  967         if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
  968                 if (entering) {
  969                         pgrp->pg_jobc++;
  970                         p->p_lflag &= ~PL_ORPHANPG;
  971                 } else if (--pgrp->pg_jobc == 0)
  972                         orphanpg(pgrp);
  973         }
  974 
  975         /*
  976          * Check this process' children to see whether they qualify
  977          * their process groups; if so, adjust counts for children's
  978          * process groups.
  979          */
  980         LIST_FOREACH(child, &p->p_children, p_sibling) {
  981                 hispgrp = child->p_pgrp;
  982                 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
  983                     !P_ZOMBIE(child)) {
  984                         if (entering) {
  985                                 child->p_lflag &= ~PL_ORPHANPG;
  986                                 hispgrp->pg_jobc++;
  987                         } else if (--hispgrp->pg_jobc == 0)
  988                                 orphanpg(hispgrp);
  989                 }
  990         }
  991 }
  992 
  993 /*
  994  * A process group has become orphaned;
  995  * if there are any stopped processes in the group,
  996  * hang-up all process in that group.
  997  *
  998  * Call with proc_lock held.
  999  */
 1000 static void
 1001 orphanpg(struct pgrp *pg)
 1002 {
 1003         struct proc *p;
 1004         int doit;
 1005 
 1006         KASSERT(mutex_owned(proc_lock));
 1007 
 1008         doit = 0;
 1009 
 1010         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
 1011                 if (p->p_stat == SSTOP) {
 1012                         p->p_lflag |= PL_ORPHANPG;
 1013                         psignal(p, SIGHUP);
 1014                         psignal(p, SIGCONT);
 1015                 }
 1016         }
 1017 }
 1018 
 1019 #ifdef DDB
 1020 #include <ddb/db_output.h>
 1021 void pidtbl_dump(void);
 1022 void
 1023 pidtbl_dump(void)
 1024 {
 1025         struct pid_table *pt;
 1026         struct proc *p;
 1027         struct pgrp *pgrp;
 1028         int id;
 1029 
 1030         db_printf("pid table %p size %x, next %x, last %x\n",
 1031                 pid_table, pid_tbl_mask+1,
 1032                 next_free_pt, last_free_pt);
 1033         for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
 1034                 p = pt->pt_proc;
 1035                 if (!P_VALID(p) && !pt->pt_pgrp)
 1036                         continue;
 1037                 db_printf("  id %x: ", id);
 1038                 if (P_VALID(p))
 1039                         db_printf("proc %p id %d (0x%x) %s\n",
 1040                                 p, p->p_pid, p->p_pid, p->p_comm);
 1041                 else
 1042                         db_printf("next %x use %x\n",
 1043                                 P_NEXT(p) & pid_tbl_mask,
 1044                                 P_NEXT(p) & ~pid_tbl_mask);
 1045                 if ((pgrp = pt->pt_pgrp)) {
 1046                         db_printf("\tsession %p, sid %d, count %d, login %s\n",
 1047                             pgrp->pg_session, pgrp->pg_session->s_sid,
 1048                             pgrp->pg_session->s_count,
 1049                             pgrp->pg_session->s_login);
 1050                         db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
 1051                             pgrp, pgrp->pg_id, pgrp->pg_jobc,
 1052                             LIST_FIRST(&pgrp->pg_members));
 1053                         LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
 1054                                 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
 1055                                     p->p_pid, p, p->p_pgrp, p->p_comm);
 1056                         }
 1057                 }
 1058         }
 1059 }
 1060 #endif /* DDB */
 1061 
 1062 #ifdef KSTACK_CHECK_MAGIC
 1063 #include <sys/user.h>
 1064 
 1065 #define KSTACK_MAGIC    0xdeadbeaf
 1066 
 1067 /* XXX should be per process basis? */
 1068 int kstackleftmin = KSTACK_SIZE;
 1069 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
 1070                                           less than this */
 1071 
 1072 void
 1073 kstack_setup_magic(const struct lwp *l)
 1074 {
 1075         uint32_t *ip;
 1076         uint32_t const *end;
 1077 
 1078         KASSERT(l != NULL);
 1079         KASSERT(l != &lwp0);
 1080 
 1081         /*
 1082          * fill all the stack with magic number
 1083          * so that later modification on it can be detected.
 1084          */
 1085         ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
 1086         end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
 1087         for (; ip < end; ip++) {
 1088                 *ip = KSTACK_MAGIC;
 1089         }
 1090 }
 1091 
 1092 void
 1093 kstack_check_magic(const struct lwp *l)
 1094 {
 1095         uint32_t const *ip, *end;
 1096         int stackleft;
 1097 
 1098         KASSERT(l != NULL);
 1099 
 1100         /* don't check proc0 */ /*XXX*/
 1101         if (l == &lwp0)
 1102                 return;
 1103 
 1104 #ifdef __MACHINE_STACK_GROWS_UP
 1105         /* stack grows upwards (eg. hppa) */
 1106         ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
 1107         end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
 1108         for (ip--; ip >= end; ip--)
 1109                 if (*ip != KSTACK_MAGIC)
 1110                         break;
 1111 
 1112         stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
 1113 #else /* __MACHINE_STACK_GROWS_UP */
 1114         /* stack grows downwards (eg. i386) */
 1115         ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
 1116         end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
 1117         for (; ip < end; ip++)
 1118                 if (*ip != KSTACK_MAGIC)
 1119                         break;
 1120 
 1121         stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
 1122 #endif /* __MACHINE_STACK_GROWS_UP */
 1123 
 1124         if (kstackleftmin > stackleft) {
 1125                 kstackleftmin = stackleft;
 1126                 if (stackleft < kstackleftthres)
 1127                         printf("warning: kernel stack left %d bytes"
 1128                             "(pid %u:lid %u)\n", stackleft,
 1129                             (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
 1130         }
 1131 
 1132         if (stackleft <= 0) {
 1133                 panic("magic on the top of kernel stack changed for "
 1134                     "pid %u, lid %u: maybe kernel stack overflow",
 1135                     (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
 1136         }
 1137 }
 1138 #endif /* KSTACK_CHECK_MAGIC */
 1139 
 1140 int
 1141 proclist_foreach_call(struct proclist *list,
 1142     int (*callback)(struct proc *, void *arg), void *arg)
 1143 {
 1144         struct proc marker;
 1145         struct proc *p;
 1146         struct lwp * const l = curlwp;
 1147         int ret = 0;
 1148 
 1149         marker.p_flag = PK_MARKER;
 1150         uvm_lwp_hold(l);
 1151         mutex_enter(proc_lock);
 1152         for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
 1153                 if (p->p_flag & PK_MARKER) {
 1154                         p = LIST_NEXT(p, p_list);
 1155                         continue;
 1156                 }
 1157                 LIST_INSERT_AFTER(p, &marker, p_list);
 1158                 ret = (*callback)(p, arg);
 1159                 KASSERT(mutex_owned(proc_lock));
 1160                 p = LIST_NEXT(&marker, p_list);
 1161                 LIST_REMOVE(&marker, p_list);
 1162         }
 1163         mutex_exit(proc_lock);
 1164         uvm_lwp_rele(l);
 1165 
 1166         return ret;
 1167 }
 1168 
 1169 int
 1170 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
 1171 {
 1172 
 1173         /* XXXCDC: how should locking work here? */
 1174 
 1175         /* curproc exception is for coredump. */
 1176 
 1177         if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
 1178             (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
 1179                 return EFAULT;
 1180         }
 1181 
 1182         uvmspace_addref(p->p_vmspace);
 1183         *vm = p->p_vmspace;
 1184 
 1185         return 0;
 1186 }
 1187 
 1188 /*
 1189  * Acquire a write lock on the process credential.
 1190  */
 1191 void 
 1192 proc_crmod_enter(void)
 1193 {
 1194         struct lwp *l = curlwp;
 1195         struct proc *p = l->l_proc;
 1196         struct plimit *lim;
 1197         kauth_cred_t oc;
 1198         char *cn;
 1199 
 1200         /* Reset what needs to be reset in plimit. */
 1201         if (p->p_limit->pl_corename != defcorename) {
 1202                 lim_privatise(p, false);
 1203                 lim = p->p_limit;
 1204                 mutex_enter(&lim->pl_lock);
 1205                 cn = lim->pl_corename;
 1206                 lim->pl_corename = defcorename;
 1207                 mutex_exit(&lim->pl_lock);
 1208                 if (cn != defcorename)
 1209                         free(cn, M_TEMP);
 1210         }
 1211 
 1212         mutex_enter(p->p_lock);
 1213 
 1214         /* Ensure the LWP cached credentials are up to date. */
 1215         if ((oc = l->l_cred) != p->p_cred) {
 1216                 kauth_cred_hold(p->p_cred);
 1217                 l->l_cred = p->p_cred;
 1218                 kauth_cred_free(oc);
 1219         }
 1220 
 1221 }
 1222 
 1223 /*
 1224  * Set in a new process credential, and drop the write lock.  The credential
 1225  * must have a reference already.  Optionally, free a no-longer required
 1226  * credential.  The scheduler also needs to inspect p_cred, so we also
 1227  * briefly acquire the sched state mutex.
 1228  */
 1229 void
 1230 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
 1231 {
 1232         struct lwp *l = curlwp, *l2;
 1233         struct proc *p = l->l_proc;
 1234         kauth_cred_t oc;
 1235 
 1236         KASSERT(mutex_owned(p->p_lock));
 1237 
 1238         /* Is there a new credential to set in? */
 1239         if (scred != NULL) {
 1240                 p->p_cred = scred;
 1241                 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
 1242                         if (l2 != l)
 1243                                 l2->l_prflag |= LPR_CRMOD;
 1244                 }
 1245 
 1246                 /* Ensure the LWP cached credentials are up to date. */
 1247                 if ((oc = l->l_cred) != scred) {
 1248                         kauth_cred_hold(scred);
 1249                         l->l_cred = scred;
 1250                 }
 1251         } else
 1252                 oc = NULL;      /* XXXgcc */
 1253 
 1254         if (sugid) {
 1255                 /*
 1256                  * Mark process as having changed credentials, stops
 1257                  * tracing etc.
 1258                  */
 1259                 p->p_flag |= PK_SUGID;
 1260         }
 1261 
 1262         mutex_exit(p->p_lock);
 1263 
 1264         /* If there is a credential to be released, free it now. */
 1265         if (fcred != NULL) {
 1266                 KASSERT(scred != NULL);
 1267                 kauth_cred_free(fcred);
 1268                 if (oc != scred)
 1269                         kauth_cred_free(oc);
 1270         }
 1271 }
 1272 
 1273 /*
 1274  * proc_specific_key_create --
 1275  *      Create a key for subsystem proc-specific data.
 1276  */
 1277 int
 1278 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
 1279 {
 1280 
 1281         return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
 1282 }
 1283 
 1284 /*
 1285  * proc_specific_key_delete --
 1286  *      Delete a key for subsystem proc-specific data.
 1287  */
 1288 void
 1289 proc_specific_key_delete(specificdata_key_t key)
 1290 {
 1291 
 1292         specificdata_key_delete(proc_specificdata_domain, key);
 1293 }
 1294 
 1295 /*
 1296  * proc_initspecific --
 1297  *      Initialize a proc's specificdata container.
 1298  */
 1299 void
 1300 proc_initspecific(struct proc *p)
 1301 {
 1302         int error;
 1303 
 1304         error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
 1305         KASSERT(error == 0);
 1306 }
 1307 
 1308 /*
 1309  * proc_finispecific --
 1310  *      Finalize a proc's specificdata container.
 1311  */
 1312 void
 1313 proc_finispecific(struct proc *p)
 1314 {
 1315 
 1316         specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
 1317 }
 1318 
 1319 /*
 1320  * proc_getspecific --
 1321  *      Return proc-specific data corresponding to the specified key.
 1322  */
 1323 void *
 1324 proc_getspecific(struct proc *p, specificdata_key_t key)
 1325 {
 1326 
 1327         return (specificdata_getspecific(proc_specificdata_domain,
 1328                                          &p->p_specdataref, key));
 1329 }
 1330 
 1331 /*
 1332  * proc_setspecific --
 1333  *      Set proc-specific data corresponding to the specified key.
 1334  */
 1335 void
 1336 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
 1337 {
 1338 
 1339         specificdata_setspecific(proc_specificdata_domain,
 1340                                  &p->p_specdataref, key, data);
 1341 }

Cache object: f4b3593e59c889af9f692167f2210491


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.