The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_procctl.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2014 John Baldwin
    3  * Copyright (c) 2014, 2016 The FreeBSD Foundation
    4  *
    5  * Portions of this software were developed by Konstantin Belousov
    6  * under sponsorship from the FreeBSD Foundation.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD: releng/11.1/sys/kern/kern_procctl.c 313302 2017-02-05 20:55:01Z jilles $");
   32 
   33 #include <sys/param.h>
   34 #include <sys/systm.h>
   35 #include <sys/capsicum.h>
   36 #include <sys/lock.h>
   37 #include <sys/mutex.h>
   38 #include <sys/priv.h>
   39 #include <sys/proc.h>
   40 #include <sys/procctl.h>
   41 #include <sys/sx.h>
   42 #include <sys/syscallsubr.h>
   43 #include <sys/sysproto.h>
   44 #include <sys/wait.h>
   45 
   46 static int
   47 protect_setchild(struct thread *td, struct proc *p, int flags)
   48 {
   49 
   50         PROC_LOCK_ASSERT(p, MA_OWNED);
   51         if (p->p_flag & P_SYSTEM || p_cansched(td, p) != 0)
   52                 return (0);
   53         if (flags & PPROT_SET) {
   54                 p->p_flag |= P_PROTECTED;
   55                 if (flags & PPROT_INHERIT)
   56                         p->p_flag2 |= P2_INHERIT_PROTECTED;
   57         } else {
   58                 p->p_flag &= ~P_PROTECTED;
   59                 p->p_flag2 &= ~P2_INHERIT_PROTECTED;
   60         }
   61         return (1);
   62 }
   63 
   64 static int
   65 protect_setchildren(struct thread *td, struct proc *top, int flags)
   66 {
   67         struct proc *p;
   68         int ret;
   69 
   70         p = top;
   71         ret = 0;
   72         sx_assert(&proctree_lock, SX_LOCKED);
   73         for (;;) {
   74                 ret |= protect_setchild(td, p, flags);
   75                 PROC_UNLOCK(p);
   76                 /*
   77                  * If this process has children, descend to them next,
   78                  * otherwise do any siblings, and if done with this level,
   79                  * follow back up the tree (but not past top).
   80                  */
   81                 if (!LIST_EMPTY(&p->p_children))
   82                         p = LIST_FIRST(&p->p_children);
   83                 else for (;;) {
   84                         if (p == top) {
   85                                 PROC_LOCK(p);
   86                                 return (ret);
   87                         }
   88                         if (LIST_NEXT(p, p_sibling)) {
   89                                 p = LIST_NEXT(p, p_sibling);
   90                                 break;
   91                         }
   92                         p = p->p_pptr;
   93                 }
   94                 PROC_LOCK(p);
   95         }
   96 }
   97 
   98 static int
   99 protect_set(struct thread *td, struct proc *p, int flags)
  100 {
  101         int error, ret;
  102 
  103         switch (PPROT_OP(flags)) {
  104         case PPROT_SET:
  105         case PPROT_CLEAR:
  106                 break;
  107         default:
  108                 return (EINVAL);
  109         }
  110 
  111         if ((PPROT_FLAGS(flags) & ~(PPROT_DESCEND | PPROT_INHERIT)) != 0)
  112                 return (EINVAL);
  113 
  114         error = priv_check(td, PRIV_VM_MADV_PROTECT);
  115         if (error)
  116                 return (error);
  117 
  118         if (flags & PPROT_DESCEND)
  119                 ret = protect_setchildren(td, p, flags);
  120         else
  121                 ret = protect_setchild(td, p, flags);
  122         if (ret == 0)
  123                 return (EPERM);
  124         return (0);
  125 }
  126 
  127 static int
  128 reap_acquire(struct thread *td, struct proc *p)
  129 {
  130 
  131         sx_assert(&proctree_lock, SX_XLOCKED);
  132         if (p != curproc)
  133                 return (EPERM);
  134         if ((p->p_treeflag & P_TREE_REAPER) != 0)
  135                 return (EBUSY);
  136         p->p_treeflag |= P_TREE_REAPER;
  137         /*
  138          * We do not reattach existing children and the whole tree
  139          * under them to us, since p->p_reaper already seen them.
  140          */
  141         return (0);
  142 }
  143 
  144 static int
  145 reap_release(struct thread *td, struct proc *p)
  146 {
  147 
  148         sx_assert(&proctree_lock, SX_XLOCKED);
  149         if (p != curproc)
  150                 return (EPERM);
  151         if (p == initproc)
  152                 return (EINVAL);
  153         if ((p->p_treeflag & P_TREE_REAPER) == 0)
  154                 return (EINVAL);
  155         reaper_abandon_children(p, false);
  156         return (0);
  157 }
  158 
  159 static int
  160 reap_status(struct thread *td, struct proc *p,
  161     struct procctl_reaper_status *rs)
  162 {
  163         struct proc *reap, *p2, *first_p;
  164 
  165         sx_assert(&proctree_lock, SX_LOCKED);
  166         bzero(rs, sizeof(*rs));
  167         if ((p->p_treeflag & P_TREE_REAPER) == 0) {
  168                 reap = p->p_reaper;
  169         } else {
  170                 reap = p;
  171                 rs->rs_flags |= REAPER_STATUS_OWNED;
  172         }
  173         if (reap == initproc)
  174                 rs->rs_flags |= REAPER_STATUS_REALINIT;
  175         rs->rs_reaper = reap->p_pid;
  176         rs->rs_descendants = 0;
  177         rs->rs_children = 0;
  178         if (!LIST_EMPTY(&reap->p_reaplist)) {
  179                 first_p = LIST_FIRST(&reap->p_children);
  180                 if (first_p == NULL)
  181                         first_p = LIST_FIRST(&reap->p_reaplist);
  182                 rs->rs_pid = first_p->p_pid;
  183                 LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) {
  184                         if (proc_realparent(p2) == reap)
  185                                 rs->rs_children++;
  186                         rs->rs_descendants++;
  187                 }
  188         } else {
  189                 rs->rs_pid = -1;
  190         }
  191         return (0);
  192 }
  193 
  194 static int
  195 reap_getpids(struct thread *td, struct proc *p, struct procctl_reaper_pids *rp)
  196 {
  197         struct proc *reap, *p2;
  198         struct procctl_reaper_pidinfo *pi, *pip;
  199         u_int i, n;
  200         int error;
  201 
  202         sx_assert(&proctree_lock, SX_LOCKED);
  203         PROC_UNLOCK(p);
  204         reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p;
  205         n = i = 0;
  206         error = 0;
  207         LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling)
  208                 n++;
  209         sx_unlock(&proctree_lock);
  210         if (rp->rp_count < n)
  211                 n = rp->rp_count;
  212         pi = malloc(n * sizeof(*pi), M_TEMP, M_WAITOK);
  213         sx_slock(&proctree_lock);
  214         LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) {
  215                 if (i == n)
  216                         break;
  217                 pip = &pi[i];
  218                 bzero(pip, sizeof(*pip));
  219                 pip->pi_pid = p2->p_pid;
  220                 pip->pi_subtree = p2->p_reapsubtree;
  221                 pip->pi_flags = REAPER_PIDINFO_VALID;
  222                 if (proc_realparent(p2) == reap)
  223                         pip->pi_flags |= REAPER_PIDINFO_CHILD;
  224                 i++;
  225         }
  226         sx_sunlock(&proctree_lock);
  227         error = copyout(pi, rp->rp_pids, i * sizeof(*pi));
  228         free(pi, M_TEMP);
  229         sx_slock(&proctree_lock);
  230         PROC_LOCK(p);
  231         return (error);
  232 }
  233 
  234 static int
  235 reap_kill(struct thread *td, struct proc *p, struct procctl_reaper_kill *rk)
  236 {
  237         struct proc *reap, *p2;
  238         ksiginfo_t ksi;
  239         int error, error1;
  240 
  241         sx_assert(&proctree_lock, SX_LOCKED);
  242         if (IN_CAPABILITY_MODE(td))
  243                 return (ECAPMODE);
  244         if (rk->rk_sig <= 0 || rk->rk_sig > _SIG_MAXSIG)
  245                 return (EINVAL);
  246         if ((rk->rk_flags & ~(REAPER_KILL_CHILDREN | REAPER_KILL_SUBTREE)) != 0)
  247                 return (EINVAL);
  248         PROC_UNLOCK(p);
  249         reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p;
  250         ksiginfo_init(&ksi);
  251         ksi.ksi_signo = rk->rk_sig;
  252         ksi.ksi_code = SI_USER;
  253         ksi.ksi_pid = td->td_proc->p_pid;
  254         ksi.ksi_uid = td->td_ucred->cr_ruid;
  255         error = ESRCH;
  256         rk->rk_killed = 0;
  257         rk->rk_fpid = -1;
  258         for (p2 = (rk->rk_flags & REAPER_KILL_CHILDREN) != 0 ?
  259             LIST_FIRST(&reap->p_children) : LIST_FIRST(&reap->p_reaplist);
  260             p2 != NULL;
  261             p2 = (rk->rk_flags & REAPER_KILL_CHILDREN) != 0 ?
  262             LIST_NEXT(p2, p_sibling) : LIST_NEXT(p2, p_reapsibling)) {
  263                 if ((rk->rk_flags & REAPER_KILL_SUBTREE) != 0 &&
  264                     p2->p_reapsubtree != rk->rk_subtree)
  265                         continue;
  266                 PROC_LOCK(p2);
  267                 error1 = p_cansignal(td, p2, rk->rk_sig);
  268                 if (error1 == 0) {
  269                         pksignal(p2, rk->rk_sig, &ksi);
  270                         rk->rk_killed++;
  271                         error = error1;
  272                 } else if (error == ESRCH) {
  273                         error = error1;
  274                         rk->rk_fpid = p2->p_pid;
  275                 }
  276                 PROC_UNLOCK(p2);
  277                 /* Do not end the loop on error, signal everything we can. */
  278         }
  279         PROC_LOCK(p);
  280         return (error);
  281 }
  282 
  283 static int
  284 trace_ctl(struct thread *td, struct proc *p, int state)
  285 {
  286 
  287         PROC_LOCK_ASSERT(p, MA_OWNED);
  288 
  289         /*
  290          * Ktrace changes p_traceflag from or to zero under the
  291          * process lock, so the test does not need to acquire ktrace
  292          * mutex.
  293          */
  294         if ((p->p_flag & P_TRACED) != 0 || p->p_traceflag != 0)
  295                 return (EBUSY);
  296 
  297         switch (state) {
  298         case PROC_TRACE_CTL_ENABLE:
  299                 if (td->td_proc != p)
  300                         return (EPERM);
  301                 p->p_flag2 &= ~(P2_NOTRACE | P2_NOTRACE_EXEC);
  302                 break;
  303         case PROC_TRACE_CTL_DISABLE_EXEC:
  304                 p->p_flag2 |= P2_NOTRACE_EXEC | P2_NOTRACE;
  305                 break;
  306         case PROC_TRACE_CTL_DISABLE:
  307                 if ((p->p_flag2 & P2_NOTRACE_EXEC) != 0) {
  308                         KASSERT((p->p_flag2 & P2_NOTRACE) != 0,
  309                             ("dandling P2_NOTRACE_EXEC"));
  310                         if (td->td_proc != p)
  311                                 return (EPERM);
  312                         p->p_flag2 &= ~P2_NOTRACE_EXEC;
  313                 } else {
  314                         p->p_flag2 |= P2_NOTRACE;
  315                 }
  316                 break;
  317         default:
  318                 return (EINVAL);
  319         }
  320         return (0);
  321 }
  322 
  323 static int
  324 trace_status(struct thread *td, struct proc *p, int *data)
  325 {
  326 
  327         if ((p->p_flag2 & P2_NOTRACE) != 0) {
  328                 KASSERT((p->p_flag & P_TRACED) == 0,
  329                     ("%d traced but tracing disabled", p->p_pid));
  330                 *data = -1;
  331         } else if ((p->p_flag & P_TRACED) != 0) {
  332                 *data = p->p_pptr->p_pid;
  333         } else {
  334                 *data = 0;
  335         }
  336         return (0);
  337 }
  338 
  339 static int
  340 trapcap_ctl(struct thread *td, struct proc *p, int state)
  341 {
  342 
  343         PROC_LOCK_ASSERT(p, MA_OWNED);
  344 
  345         switch (state) {
  346         case PROC_TRAPCAP_CTL_ENABLE:
  347                 p->p_flag2 |= P2_TRAPCAP;
  348                 break;
  349         case PROC_TRAPCAP_CTL_DISABLE:
  350                 p->p_flag2 &= ~P2_TRAPCAP;
  351                 break;
  352         default:
  353                 return (EINVAL);
  354         }
  355         return (0);
  356 }
  357 
  358 static int
  359 trapcap_status(struct thread *td, struct proc *p, int *data)
  360 {
  361 
  362         *data = (p->p_flag2 & P2_TRAPCAP) != 0 ? PROC_TRAPCAP_CTL_ENABLE :
  363             PROC_TRAPCAP_CTL_DISABLE;
  364         return (0);
  365 }
  366 
  367 #ifndef _SYS_SYSPROTO_H_
  368 struct procctl_args {
  369         idtype_t idtype;
  370         id_t    id;
  371         int     com;
  372         void    *data;
  373 };
  374 #endif
  375 /* ARGSUSED */
  376 int
  377 sys_procctl(struct thread *td, struct procctl_args *uap)
  378 {
  379         void *data;
  380         union {
  381                 struct procctl_reaper_status rs;
  382                 struct procctl_reaper_pids rp;
  383                 struct procctl_reaper_kill rk;
  384         } x;
  385         int error, error1, flags;
  386 
  387         switch (uap->com) {
  388         case PROC_SPROTECT:
  389         case PROC_TRACE_CTL:
  390         case PROC_TRAPCAP_CTL:
  391                 error = copyin(uap->data, &flags, sizeof(flags));
  392                 if (error != 0)
  393                         return (error);
  394                 data = &flags;
  395                 break;
  396         case PROC_REAP_ACQUIRE:
  397         case PROC_REAP_RELEASE:
  398                 if (uap->data != NULL)
  399                         return (EINVAL);
  400                 data = NULL;
  401                 break;
  402         case PROC_REAP_STATUS:
  403                 data = &x.rs;
  404                 break;
  405         case PROC_REAP_GETPIDS:
  406                 error = copyin(uap->data, &x.rp, sizeof(x.rp));
  407                 if (error != 0)
  408                         return (error);
  409                 data = &x.rp;
  410                 break;
  411         case PROC_REAP_KILL:
  412                 error = copyin(uap->data, &x.rk, sizeof(x.rk));
  413                 if (error != 0)
  414                         return (error);
  415                 data = &x.rk;
  416                 break;
  417         case PROC_TRACE_STATUS:
  418         case PROC_TRAPCAP_STATUS:
  419                 data = &flags;
  420                 break;
  421         default:
  422                 return (EINVAL);
  423         }
  424         error = kern_procctl(td, uap->idtype, uap->id, uap->com, data);
  425         switch (uap->com) {
  426         case PROC_REAP_STATUS:
  427                 if (error == 0)
  428                         error = copyout(&x.rs, uap->data, sizeof(x.rs));
  429                 break;
  430         case PROC_REAP_KILL:
  431                 error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
  432                 if (error == 0)
  433                         error = error1;
  434                 break;
  435         case PROC_TRACE_STATUS:
  436         case PROC_TRAPCAP_STATUS:
  437                 if (error == 0)
  438                         error = copyout(&flags, uap->data, sizeof(flags));
  439                 break;
  440         }
  441         return (error);
  442 }
  443 
  444 static int
  445 kern_procctl_single(struct thread *td, struct proc *p, int com, void *data)
  446 {
  447 
  448         PROC_LOCK_ASSERT(p, MA_OWNED);
  449         switch (com) {
  450         case PROC_SPROTECT:
  451                 return (protect_set(td, p, *(int *)data));
  452         case PROC_REAP_ACQUIRE:
  453                 return (reap_acquire(td, p));
  454         case PROC_REAP_RELEASE:
  455                 return (reap_release(td, p));
  456         case PROC_REAP_STATUS:
  457                 return (reap_status(td, p, data));
  458         case PROC_REAP_GETPIDS:
  459                 return (reap_getpids(td, p, data));
  460         case PROC_REAP_KILL:
  461                 return (reap_kill(td, p, data));
  462         case PROC_TRACE_CTL:
  463                 return (trace_ctl(td, p, *(int *)data));
  464         case PROC_TRACE_STATUS:
  465                 return (trace_status(td, p, data));
  466         case PROC_TRAPCAP_CTL:
  467                 return (trapcap_ctl(td, p, *(int *)data));
  468         case PROC_TRAPCAP_STATUS:
  469                 return (trapcap_status(td, p, data));
  470         default:
  471                 return (EINVAL);
  472         }
  473 }
  474 
  475 int
  476 kern_procctl(struct thread *td, idtype_t idtype, id_t id, int com, void *data)
  477 {
  478         struct pgrp *pg;
  479         struct proc *p;
  480         int error, first_error, ok;
  481         bool tree_locked;
  482 
  483         switch (com) {
  484         case PROC_REAP_ACQUIRE:
  485         case PROC_REAP_RELEASE:
  486         case PROC_REAP_STATUS:
  487         case PROC_REAP_GETPIDS:
  488         case PROC_REAP_KILL:
  489         case PROC_TRACE_STATUS:
  490         case PROC_TRAPCAP_STATUS:
  491                 if (idtype != P_PID)
  492                         return (EINVAL);
  493         }
  494 
  495         switch (com) {
  496         case PROC_SPROTECT:
  497         case PROC_REAP_STATUS:
  498         case PROC_REAP_GETPIDS:
  499         case PROC_REAP_KILL:
  500         case PROC_TRACE_CTL:
  501         case PROC_TRAPCAP_CTL:
  502                 sx_slock(&proctree_lock);
  503                 tree_locked = true;
  504                 break;
  505         case PROC_REAP_ACQUIRE:
  506         case PROC_REAP_RELEASE:
  507                 sx_xlock(&proctree_lock);
  508                 tree_locked = true;
  509                 break;
  510         case PROC_TRACE_STATUS:
  511         case PROC_TRAPCAP_STATUS:
  512                 tree_locked = false;
  513                 break;
  514         default:
  515                 return (EINVAL);
  516         }
  517 
  518         switch (idtype) {
  519         case P_PID:
  520                 p = pfind(id);
  521                 if (p == NULL) {
  522                         error = ESRCH;
  523                         break;
  524                 }
  525                 error = p_cansee(td, p);
  526                 if (error == 0)
  527                         error = kern_procctl_single(td, p, com, data);
  528                 PROC_UNLOCK(p);
  529                 break;
  530         case P_PGID:
  531                 /*
  532                  * Attempt to apply the operation to all members of the
  533                  * group.  Ignore processes in the group that can't be
  534                  * seen.  Ignore errors so long as at least one process is
  535                  * able to complete the request successfully.
  536                  */
  537                 pg = pgfind(id);
  538                 if (pg == NULL) {
  539                         error = ESRCH;
  540                         break;
  541                 }
  542                 PGRP_UNLOCK(pg);
  543                 ok = 0;
  544                 first_error = 0;
  545                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  546                         PROC_LOCK(p);
  547                         if (p->p_state == PRS_NEW || p_cansee(td, p) != 0) {
  548                                 PROC_UNLOCK(p);
  549                                 continue;
  550                         }
  551                         error = kern_procctl_single(td, p, com, data);
  552                         PROC_UNLOCK(p);
  553                         if (error == 0)
  554                                 ok = 1;
  555                         else if (first_error == 0)
  556                                 first_error = error;
  557                 }
  558                 if (ok)
  559                         error = 0;
  560                 else if (first_error != 0)
  561                         error = first_error;
  562                 else
  563                         /*
  564                          * Was not able to see any processes in the
  565                          * process group.
  566                          */
  567                         error = ESRCH;
  568                 break;
  569         default:
  570                 error = EINVAL;
  571                 break;
  572         }
  573         if (tree_locked)
  574                 sx_unlock(&proctree_lock);
  575         return (error);
  576 }

Cache object: 2c741e0fd7e9acd8ea9e2ac223d20f91


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.