The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_prot.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
    5  *      The Regents of the University of California.
    6  * (c) UNIX System Laboratories, Inc.
    7  * Copyright (c) 2000-2001 Robert N. M. Watson.
    8  * All rights reserved.
    9  *
   10  * All or some portions of this file are derived from material licensed
   11  * to the University of California by American Telephone and Telegraph
   12  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   13  * the permission of UNIX System Laboratories, Inc.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. Neither the name of the University nor the names of its contributors
   24  *    may be used to endorse or promote products derived from this software
   25  *    without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   37  * SUCH DAMAGE.
   38  *
   39  *      @(#)kern_prot.c 8.6 (Berkeley) 1/21/94
   40  */
   41 
   42 /*
   43  * System calls related to processes and protection
   44  */
   45 
   46 #include <sys/cdefs.h>
   47 __FBSDID("$FreeBSD$");
   48 
   49 #include "opt_inet.h"
   50 #include "opt_inet6.h"
   51 
   52 #include <sys/param.h>
   53 #include <sys/systm.h>
   54 #include <sys/acct.h>
   55 #include <sys/kdb.h>
   56 #include <sys/kernel.h>
   57 #include <sys/lock.h>
   58 #include <sys/loginclass.h>
   59 #include <sys/malloc.h>
   60 #include <sys/mutex.h>
   61 #include <sys/refcount.h>
   62 #include <sys/sx.h>
   63 #include <sys/priv.h>
   64 #include <sys/proc.h>
   65 #include <sys/sysent.h>
   66 #include <sys/sysproto.h>
   67 #include <sys/jail.h>
   68 #include <sys/racct.h>
   69 #include <sys/rctl.h>
   70 #include <sys/resourcevar.h>
   71 #include <sys/socket.h>
   72 #include <sys/socketvar.h>
   73 #include <sys/syscallsubr.h>
   74 #include <sys/sysctl.h>
   75 
   76 #ifdef REGRESSION
   77 FEATURE(regression,
   78     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
   79 #endif
   80 
   81 #include <security/audit/audit.h>
   82 #include <security/mac/mac_framework.h>
   83 
   84 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
   85 
   86 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
   87     "BSD security policy");
   88 
   89 static void crfree_final(struct ucred *cr);
   90 static void crsetgroups_locked(struct ucred *cr, int ngrp,
   91     gid_t *groups);
   92 
   93 #ifndef _SYS_SYSPROTO_H_
   94 struct getpid_args {
   95         int     dummy;
   96 };
   97 #endif
   98 /* ARGSUSED */
   99 int
  100 sys_getpid(struct thread *td, struct getpid_args *uap)
  101 {
  102         struct proc *p = td->td_proc;
  103 
  104         td->td_retval[0] = p->p_pid;
  105 #if defined(COMPAT_43)
  106         if (SV_PROC_FLAG(p, SV_AOUT))
  107                 td->td_retval[1] = kern_getppid(td);
  108 #endif
  109         return (0);
  110 }
  111 
  112 #ifndef _SYS_SYSPROTO_H_
  113 struct getppid_args {
  114         int     dummy;
  115 };
  116 #endif
  117 /* ARGSUSED */
  118 int
  119 sys_getppid(struct thread *td, struct getppid_args *uap)
  120 {
  121 
  122         td->td_retval[0] = kern_getppid(td);
  123         return (0);
  124 }
  125 
  126 int
  127 kern_getppid(struct thread *td)
  128 {
  129         struct proc *p = td->td_proc;
  130 
  131         return (p->p_oppid);
  132 }
  133 
  134 /*
  135  * Get process group ID; note that POSIX getpgrp takes no parameter.
  136  */
  137 #ifndef _SYS_SYSPROTO_H_
  138 struct getpgrp_args {
  139         int     dummy;
  140 };
  141 #endif
  142 int
  143 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
  144 {
  145         struct proc *p = td->td_proc;
  146 
  147         PROC_LOCK(p);
  148         td->td_retval[0] = p->p_pgrp->pg_id;
  149         PROC_UNLOCK(p);
  150         return (0);
  151 }
  152 
  153 /* Get an arbitrary pid's process group id */
  154 #ifndef _SYS_SYSPROTO_H_
  155 struct getpgid_args {
  156         pid_t   pid;
  157 };
  158 #endif
  159 int
  160 sys_getpgid(struct thread *td, struct getpgid_args *uap)
  161 {
  162         struct proc *p;
  163         int error;
  164 
  165         if (uap->pid == 0) {
  166                 p = td->td_proc;
  167                 PROC_LOCK(p);
  168         } else {
  169                 p = pfind(uap->pid);
  170                 if (p == NULL)
  171                         return (ESRCH);
  172                 error = p_cansee(td, p);
  173                 if (error) {
  174                         PROC_UNLOCK(p);
  175                         return (error);
  176                 }
  177         }
  178         td->td_retval[0] = p->p_pgrp->pg_id;
  179         PROC_UNLOCK(p);
  180         return (0);
  181 }
  182 
  183 /*
  184  * Get an arbitrary pid's session id.
  185  */
  186 #ifndef _SYS_SYSPROTO_H_
  187 struct getsid_args {
  188         pid_t   pid;
  189 };
  190 #endif
  191 int
  192 sys_getsid(struct thread *td, struct getsid_args *uap)
  193 {
  194 
  195         return (kern_getsid(td, uap->pid));
  196 }
  197 
  198 int
  199 kern_getsid(struct thread *td, pid_t pid)
  200 {
  201         struct proc *p;
  202         int error;
  203 
  204         if (pid == 0) {
  205                 p = td->td_proc;
  206                 PROC_LOCK(p);
  207         } else {
  208                 p = pfind(pid);
  209                 if (p == NULL)
  210                         return (ESRCH);
  211                 error = p_cansee(td, p);
  212                 if (error) {
  213                         PROC_UNLOCK(p);
  214                         return (error);
  215                 }
  216         }
  217         td->td_retval[0] = p->p_session->s_sid;
  218         PROC_UNLOCK(p);
  219         return (0);
  220 }
  221 
  222 #ifndef _SYS_SYSPROTO_H_
  223 struct getuid_args {
  224         int     dummy;
  225 };
  226 #endif
  227 /* ARGSUSED */
  228 int
  229 sys_getuid(struct thread *td, struct getuid_args *uap)
  230 {
  231 
  232         td->td_retval[0] = td->td_ucred->cr_ruid;
  233 #if defined(COMPAT_43)
  234         td->td_retval[1] = td->td_ucred->cr_uid;
  235 #endif
  236         return (0);
  237 }
  238 
  239 #ifndef _SYS_SYSPROTO_H_
  240 struct geteuid_args {
  241         int     dummy;
  242 };
  243 #endif
  244 /* ARGSUSED */
  245 int
  246 sys_geteuid(struct thread *td, struct geteuid_args *uap)
  247 {
  248 
  249         td->td_retval[0] = td->td_ucred->cr_uid;
  250         return (0);
  251 }
  252 
  253 #ifndef _SYS_SYSPROTO_H_
  254 struct getgid_args {
  255         int     dummy;
  256 };
  257 #endif
  258 /* ARGSUSED */
  259 int
  260 sys_getgid(struct thread *td, struct getgid_args *uap)
  261 {
  262 
  263         td->td_retval[0] = td->td_ucred->cr_rgid;
  264 #if defined(COMPAT_43)
  265         td->td_retval[1] = td->td_ucred->cr_groups[0];
  266 #endif
  267         return (0);
  268 }
  269 
  270 /*
  271  * Get effective group ID.  The "egid" is groups[0], and could be obtained
  272  * via getgroups.  This syscall exists because it is somewhat painful to do
  273  * correctly in a library function.
  274  */
  275 #ifndef _SYS_SYSPROTO_H_
  276 struct getegid_args {
  277         int     dummy;
  278 };
  279 #endif
  280 /* ARGSUSED */
  281 int
  282 sys_getegid(struct thread *td, struct getegid_args *uap)
  283 {
  284 
  285         td->td_retval[0] = td->td_ucred->cr_groups[0];
  286         return (0);
  287 }
  288 
  289 #ifndef _SYS_SYSPROTO_H_
  290 struct getgroups_args {
  291         u_int   gidsetsize;
  292         gid_t   *gidset;
  293 };
  294 #endif
  295 int
  296 sys_getgroups(struct thread *td, struct getgroups_args *uap)
  297 {
  298         struct ucred *cred;
  299         u_int ngrp;
  300         int error;
  301 
  302         cred = td->td_ucred;
  303         ngrp = cred->cr_ngroups;
  304 
  305         if (uap->gidsetsize == 0) {
  306                 error = 0;
  307                 goto out;
  308         }
  309         if (uap->gidsetsize < ngrp)
  310                 return (EINVAL);
  311 
  312         error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
  313 out:
  314         td->td_retval[0] = ngrp;
  315         return (error);
  316 }
  317 
  318 #ifndef _SYS_SYSPROTO_H_
  319 struct setsid_args {
  320         int     dummy;
  321 };
  322 #endif
  323 /* ARGSUSED */
  324 int
  325 sys_setsid(struct thread *td, struct setsid_args *uap)
  326 {
  327         struct pgrp *pgrp;
  328         int error;
  329         struct proc *p = td->td_proc;
  330         struct pgrp *newpgrp;
  331         struct session *newsess;
  332 
  333         error = 0;
  334         pgrp = NULL;
  335 
  336         newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
  337         newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
  338 
  339         sx_xlock(&proctree_lock);
  340 
  341         if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
  342                 if (pgrp != NULL)
  343                         PGRP_UNLOCK(pgrp);
  344                 error = EPERM;
  345         } else {
  346                 (void)enterpgrp(p, p->p_pid, newpgrp, newsess);
  347                 td->td_retval[0] = p->p_pid;
  348                 newpgrp = NULL;
  349                 newsess = NULL;
  350         }
  351 
  352         sx_xunlock(&proctree_lock);
  353 
  354         uma_zfree(pgrp_zone, newpgrp);
  355         free(newsess, M_SESSION);
  356 
  357         return (error);
  358 }
  359 
  360 /*
  361  * set process group (setpgid/old setpgrp)
  362  *
  363  * caller does setpgid(targpid, targpgid)
  364  *
  365  * pid must be caller or child of caller (ESRCH)
  366  * if a child
  367  *      pid must be in same session (EPERM)
  368  *      pid can't have done an exec (EACCES)
  369  * if pgid != pid
  370  *      there must exist some pid in same session having pgid (EPERM)
  371  * pid must not be session leader (EPERM)
  372  */
  373 #ifndef _SYS_SYSPROTO_H_
  374 struct setpgid_args {
  375         int     pid;            /* target process id */
  376         int     pgid;           /* target pgrp id */
  377 };
  378 #endif
  379 /* ARGSUSED */
  380 int
  381 sys_setpgid(struct thread *td, struct setpgid_args *uap)
  382 {
  383         struct proc *curp = td->td_proc;
  384         struct proc *targp;     /* target process */
  385         struct pgrp *pgrp;      /* target pgrp */
  386         int error;
  387         struct pgrp *newpgrp;
  388 
  389         if (uap->pgid < 0)
  390                 return (EINVAL);
  391 
  392         error = 0;
  393 
  394         newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
  395 
  396         sx_xlock(&proctree_lock);
  397         if (uap->pid != 0 && uap->pid != curp->p_pid) {
  398                 if ((targp = pfind(uap->pid)) == NULL) {
  399                         error = ESRCH;
  400                         goto done;
  401                 }
  402                 if (!inferior(targp)) {
  403                         PROC_UNLOCK(targp);
  404                         error = ESRCH;
  405                         goto done;
  406                 }
  407                 if ((error = p_cansee(td, targp))) {
  408                         PROC_UNLOCK(targp);
  409                         goto done;
  410                 }
  411                 if (targp->p_pgrp == NULL ||
  412                     targp->p_session != curp->p_session) {
  413                         PROC_UNLOCK(targp);
  414                         error = EPERM;
  415                         goto done;
  416                 }
  417                 if (targp->p_flag & P_EXEC) {
  418                         PROC_UNLOCK(targp);
  419                         error = EACCES;
  420                         goto done;
  421                 }
  422                 PROC_UNLOCK(targp);
  423         } else
  424                 targp = curp;
  425         if (SESS_LEADER(targp)) {
  426                 error = EPERM;
  427                 goto done;
  428         }
  429         if (uap->pgid == 0)
  430                 uap->pgid = targp->p_pid;
  431         if ((pgrp = pgfind(uap->pgid)) == NULL) {
  432                 if (uap->pgid == targp->p_pid) {
  433                         error = enterpgrp(targp, uap->pgid, newpgrp,
  434                             NULL);
  435                         if (error == 0)
  436                                 newpgrp = NULL;
  437                 } else
  438                         error = EPERM;
  439         } else {
  440                 if (pgrp == targp->p_pgrp) {
  441                         PGRP_UNLOCK(pgrp);
  442                         goto done;
  443                 }
  444                 if (pgrp->pg_id != targp->p_pid &&
  445                     pgrp->pg_session != curp->p_session) {
  446                         PGRP_UNLOCK(pgrp);
  447                         error = EPERM;
  448                         goto done;
  449                 }
  450                 PGRP_UNLOCK(pgrp);
  451                 error = enterthispgrp(targp, pgrp);
  452         }
  453 done:
  454         sx_xunlock(&proctree_lock);
  455         KASSERT((error == 0) || (newpgrp != NULL),
  456             ("setpgid failed and newpgrp is NULL"));
  457         uma_zfree(pgrp_zone, newpgrp);
  458         return (error);
  459 }
  460 
  461 /*
  462  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
  463  * compatible.  It says that setting the uid/gid to euid/egid is a special
  464  * case of "appropriate privilege".  Once the rules are expanded out, this
  465  * basically means that setuid(nnn) sets all three id's, in all permitted
  466  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
  467  * does not set the saved id - this is dangerous for traditional BSD
  468  * programs.  For this reason, we *really* do not want to set
  469  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
  470  */
  471 #define POSIX_APPENDIX_B_4_2_2
  472 
  473 #ifndef _SYS_SYSPROTO_H_
  474 struct setuid_args {
  475         uid_t   uid;
  476 };
  477 #endif
  478 /* ARGSUSED */
  479 int
  480 sys_setuid(struct thread *td, struct setuid_args *uap)
  481 {
  482         struct proc *p = td->td_proc;
  483         struct ucred *newcred, *oldcred;
  484         uid_t uid;
  485         struct uidinfo *uip;
  486         int error;
  487 
  488         uid = uap->uid;
  489         AUDIT_ARG_UID(uid);
  490         newcred = crget();
  491         uip = uifind(uid);
  492         PROC_LOCK(p);
  493         /*
  494          * Copy credentials so other references do not see our changes.
  495          */
  496         oldcred = crcopysafe(p, newcred);
  497 
  498 #ifdef MAC
  499         error = mac_cred_check_setuid(oldcred, uid);
  500         if (error)
  501                 goto fail;
  502 #endif
  503 
  504         /*
  505          * See if we have "permission" by POSIX 1003.1 rules.
  506          *
  507          * Note that setuid(geteuid()) is a special case of
  508          * "appropriate privileges" in appendix B.4.2.2.  We need
  509          * to use this clause to be compatible with traditional BSD
  510          * semantics.  Basically, it means that "setuid(xx)" sets all
  511          * three id's (assuming you have privs).
  512          *
  513          * Notes on the logic.  We do things in three steps.
  514          * 1: We determine if the euid is going to change, and do EPERM
  515          *    right away.  We unconditionally change the euid later if this
  516          *    test is satisfied, simplifying that part of the logic.
  517          * 2: We determine if the real and/or saved uids are going to
  518          *    change.  Determined by compile options.
  519          * 3: Change euid last. (after tests in #2 for "appropriate privs")
  520          */
  521         if (uid != oldcred->cr_ruid &&          /* allow setuid(getuid()) */
  522 #ifdef _POSIX_SAVED_IDS
  523             uid != oldcred->cr_svuid &&         /* allow setuid(saved gid) */
  524 #endif
  525 #ifdef POSIX_APPENDIX_B_4_2_2   /* Use BSD-compat clause from B.4.2.2 */
  526             uid != oldcred->cr_uid &&           /* allow setuid(geteuid()) */
  527 #endif
  528             (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
  529                 goto fail;
  530 
  531 #ifdef _POSIX_SAVED_IDS
  532         /*
  533          * Do we have "appropriate privileges" (are we root or uid == euid)
  534          * If so, we are changing the real uid and/or saved uid.
  535          */
  536         if (
  537 #ifdef POSIX_APPENDIX_B_4_2_2   /* Use the clause from B.4.2.2 */
  538             uid == oldcred->cr_uid ||
  539 #endif
  540             /* We are using privs. */
  541             priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
  542 #endif
  543         {
  544                 /*
  545                  * Set the real uid and transfer proc count to new user.
  546                  */
  547                 if (uid != oldcred->cr_ruid) {
  548                         change_ruid(newcred, uip);
  549                         setsugid(p);
  550                 }
  551                 /*
  552                  * Set saved uid
  553                  *
  554                  * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
  555                  * the security of seteuid() depends on it.  B.4.2.2 says it
  556                  * is important that we should do this.
  557                  */
  558                 if (uid != oldcred->cr_svuid) {
  559                         change_svuid(newcred, uid);
  560                         setsugid(p);
  561                 }
  562         }
  563 
  564         /*
  565          * In all permitted cases, we are changing the euid.
  566          */
  567         if (uid != oldcred->cr_uid) {
  568                 change_euid(newcred, uip);
  569                 setsugid(p);
  570         }
  571         proc_set_cred(p, newcred);
  572 #ifdef RACCT
  573         racct_proc_ucred_changed(p, oldcred, newcred);
  574         crhold(newcred);
  575 #endif
  576         PROC_UNLOCK(p);
  577 #ifdef RCTL
  578         rctl_proc_ucred_changed(p, newcred);
  579         crfree(newcred);
  580 #endif
  581         uifree(uip);
  582         crfree(oldcred);
  583         return (0);
  584 
  585 fail:
  586         PROC_UNLOCK(p);
  587         uifree(uip);
  588         crfree(newcred);
  589         return (error);
  590 }
  591 
  592 #ifndef _SYS_SYSPROTO_H_
  593 struct seteuid_args {
  594         uid_t   euid;
  595 };
  596 #endif
  597 /* ARGSUSED */
  598 int
  599 sys_seteuid(struct thread *td, struct seteuid_args *uap)
  600 {
  601         struct proc *p = td->td_proc;
  602         struct ucred *newcred, *oldcred;
  603         uid_t euid;
  604         struct uidinfo *euip;
  605         int error;
  606 
  607         euid = uap->euid;
  608         AUDIT_ARG_EUID(euid);
  609         newcred = crget();
  610         euip = uifind(euid);
  611         PROC_LOCK(p);
  612         /*
  613          * Copy credentials so other references do not see our changes.
  614          */
  615         oldcred = crcopysafe(p, newcred);
  616 
  617 #ifdef MAC
  618         error = mac_cred_check_seteuid(oldcred, euid);
  619         if (error)
  620                 goto fail;
  621 #endif
  622 
  623         if (euid != oldcred->cr_ruid &&         /* allow seteuid(getuid()) */
  624             euid != oldcred->cr_svuid &&        /* allow seteuid(saved uid) */
  625             (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
  626                 goto fail;
  627 
  628         /*
  629          * Everything's okay, do it.
  630          */
  631         if (oldcred->cr_uid != euid) {
  632                 change_euid(newcred, euip);
  633                 setsugid(p);
  634         }
  635         proc_set_cred(p, newcred);
  636         PROC_UNLOCK(p);
  637         uifree(euip);
  638         crfree(oldcred);
  639         return (0);
  640 
  641 fail:
  642         PROC_UNLOCK(p);
  643         uifree(euip);
  644         crfree(newcred);
  645         return (error);
  646 }
  647 
  648 #ifndef _SYS_SYSPROTO_H_
  649 struct setgid_args {
  650         gid_t   gid;
  651 };
  652 #endif
  653 /* ARGSUSED */
  654 int
  655 sys_setgid(struct thread *td, struct setgid_args *uap)
  656 {
  657         struct proc *p = td->td_proc;
  658         struct ucred *newcred, *oldcred;
  659         gid_t gid;
  660         int error;
  661 
  662         gid = uap->gid;
  663         AUDIT_ARG_GID(gid);
  664         newcred = crget();
  665         PROC_LOCK(p);
  666         oldcred = crcopysafe(p, newcred);
  667 
  668 #ifdef MAC
  669         error = mac_cred_check_setgid(oldcred, gid);
  670         if (error)
  671                 goto fail;
  672 #endif
  673 
  674         /*
  675          * See if we have "permission" by POSIX 1003.1 rules.
  676          *
  677          * Note that setgid(getegid()) is a special case of
  678          * "appropriate privileges" in appendix B.4.2.2.  We need
  679          * to use this clause to be compatible with traditional BSD
  680          * semantics.  Basically, it means that "setgid(xx)" sets all
  681          * three id's (assuming you have privs).
  682          *
  683          * For notes on the logic here, see setuid() above.
  684          */
  685         if (gid != oldcred->cr_rgid &&          /* allow setgid(getgid()) */
  686 #ifdef _POSIX_SAVED_IDS
  687             gid != oldcred->cr_svgid &&         /* allow setgid(saved gid) */
  688 #endif
  689 #ifdef POSIX_APPENDIX_B_4_2_2   /* Use BSD-compat clause from B.4.2.2 */
  690             gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
  691 #endif
  692             (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
  693                 goto fail;
  694 
  695 #ifdef _POSIX_SAVED_IDS
  696         /*
  697          * Do we have "appropriate privileges" (are we root or gid == egid)
  698          * If so, we are changing the real uid and saved gid.
  699          */
  700         if (
  701 #ifdef POSIX_APPENDIX_B_4_2_2   /* use the clause from B.4.2.2 */
  702             gid == oldcred->cr_groups[0] ||
  703 #endif
  704             /* We are using privs. */
  705             priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
  706 #endif
  707         {
  708                 /*
  709                  * Set real gid
  710                  */
  711                 if (oldcred->cr_rgid != gid) {
  712                         change_rgid(newcred, gid);
  713                         setsugid(p);
  714                 }
  715                 /*
  716                  * Set saved gid
  717                  *
  718                  * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
  719                  * the security of setegid() depends on it.  B.4.2.2 says it
  720                  * is important that we should do this.
  721                  */
  722                 if (oldcred->cr_svgid != gid) {
  723                         change_svgid(newcred, gid);
  724                         setsugid(p);
  725                 }
  726         }
  727         /*
  728          * In all cases permitted cases, we are changing the egid.
  729          * Copy credentials so other references do not see our changes.
  730          */
  731         if (oldcred->cr_groups[0] != gid) {
  732                 change_egid(newcred, gid);
  733                 setsugid(p);
  734         }
  735         proc_set_cred(p, newcred);
  736         PROC_UNLOCK(p);
  737         crfree(oldcred);
  738         return (0);
  739 
  740 fail:
  741         PROC_UNLOCK(p);
  742         crfree(newcred);
  743         return (error);
  744 }
  745 
  746 #ifndef _SYS_SYSPROTO_H_
  747 struct setegid_args {
  748         gid_t   egid;
  749 };
  750 #endif
  751 /* ARGSUSED */
  752 int
  753 sys_setegid(struct thread *td, struct setegid_args *uap)
  754 {
  755         struct proc *p = td->td_proc;
  756         struct ucred *newcred, *oldcred;
  757         gid_t egid;
  758         int error;
  759 
  760         egid = uap->egid;
  761         AUDIT_ARG_EGID(egid);
  762         newcred = crget();
  763         PROC_LOCK(p);
  764         oldcred = crcopysafe(p, newcred);
  765 
  766 #ifdef MAC
  767         error = mac_cred_check_setegid(oldcred, egid);
  768         if (error)
  769                 goto fail;
  770 #endif
  771 
  772         if (egid != oldcred->cr_rgid &&         /* allow setegid(getgid()) */
  773             egid != oldcred->cr_svgid &&        /* allow setegid(saved gid) */
  774             (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
  775                 goto fail;
  776 
  777         if (oldcred->cr_groups[0] != egid) {
  778                 change_egid(newcred, egid);
  779                 setsugid(p);
  780         }
  781         proc_set_cred(p, newcred);
  782         PROC_UNLOCK(p);
  783         crfree(oldcred);
  784         return (0);
  785 
  786 fail:
  787         PROC_UNLOCK(p);
  788         crfree(newcred);
  789         return (error);
  790 }
  791 
  792 #ifndef _SYS_SYSPROTO_H_
  793 struct setgroups_args {
  794         u_int   gidsetsize;
  795         gid_t   *gidset;
  796 };
  797 #endif
  798 /* ARGSUSED */
  799 int
  800 sys_setgroups(struct thread *td, struct setgroups_args *uap)
  801 {
  802         gid_t smallgroups[XU_NGROUPS];
  803         gid_t *groups;
  804         u_int gidsetsize;
  805         int error;
  806 
  807         gidsetsize = uap->gidsetsize;
  808         if (gidsetsize > ngroups_max + 1)
  809                 return (EINVAL);
  810 
  811         if (gidsetsize > XU_NGROUPS)
  812                 groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
  813         else
  814                 groups = smallgroups;
  815 
  816         error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
  817         if (error == 0)
  818                 error = kern_setgroups(td, gidsetsize, groups);
  819 
  820         if (gidsetsize > XU_NGROUPS)
  821                 free(groups, M_TEMP);
  822         return (error);
  823 }
  824 
  825 int
  826 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
  827 {
  828         struct proc *p = td->td_proc;
  829         struct ucred *newcred, *oldcred;
  830         int error;
  831 
  832         MPASS(ngrp <= ngroups_max + 1);
  833         AUDIT_ARG_GROUPSET(groups, ngrp);
  834         newcred = crget();
  835         crextend(newcred, ngrp);
  836         PROC_LOCK(p);
  837         oldcred = crcopysafe(p, newcred);
  838 
  839 #ifdef MAC
  840         error = mac_cred_check_setgroups(oldcred, ngrp, groups);
  841         if (error)
  842                 goto fail;
  843 #endif
  844 
  845         error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
  846         if (error)
  847                 goto fail;
  848 
  849         if (ngrp == 0) {
  850                 /*
  851                  * setgroups(0, NULL) is a legitimate way of clearing the
  852                  * groups vector on non-BSD systems (which generally do not
  853                  * have the egid in the groups[0]).  We risk security holes
  854                  * when running non-BSD software if we do not do the same.
  855                  */
  856                 newcred->cr_ngroups = 1;
  857         } else {
  858                 crsetgroups_locked(newcred, ngrp, groups);
  859         }
  860         setsugid(p);
  861         proc_set_cred(p, newcred);
  862         PROC_UNLOCK(p);
  863         crfree(oldcred);
  864         return (0);
  865 
  866 fail:
  867         PROC_UNLOCK(p);
  868         crfree(newcred);
  869         return (error);
  870 }
  871 
  872 #ifndef _SYS_SYSPROTO_H_
  873 struct setreuid_args {
  874         uid_t   ruid;
  875         uid_t   euid;
  876 };
  877 #endif
  878 /* ARGSUSED */
  879 int
  880 sys_setreuid(struct thread *td, struct setreuid_args *uap)
  881 {
  882         struct proc *p = td->td_proc;
  883         struct ucred *newcred, *oldcred;
  884         uid_t euid, ruid;
  885         struct uidinfo *euip, *ruip;
  886         int error;
  887 
  888         euid = uap->euid;
  889         ruid = uap->ruid;
  890         AUDIT_ARG_EUID(euid);
  891         AUDIT_ARG_RUID(ruid);
  892         newcred = crget();
  893         euip = uifind(euid);
  894         ruip = uifind(ruid);
  895         PROC_LOCK(p);
  896         oldcred = crcopysafe(p, newcred);
  897 
  898 #ifdef MAC
  899         error = mac_cred_check_setreuid(oldcred, ruid, euid);
  900         if (error)
  901                 goto fail;
  902 #endif
  903 
  904         if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
  905               ruid != oldcred->cr_svuid) ||
  906              (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
  907               euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
  908             (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
  909                 goto fail;
  910 
  911         if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
  912                 change_euid(newcred, euip);
  913                 setsugid(p);
  914         }
  915         if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
  916                 change_ruid(newcred, ruip);
  917                 setsugid(p);
  918         }
  919         if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
  920             newcred->cr_svuid != newcred->cr_uid) {
  921                 change_svuid(newcred, newcred->cr_uid);
  922                 setsugid(p);
  923         }
  924         proc_set_cred(p, newcred);
  925 #ifdef RACCT
  926         racct_proc_ucred_changed(p, oldcred, newcred);
  927         crhold(newcred);
  928 #endif
  929         PROC_UNLOCK(p);
  930 #ifdef RCTL
  931         rctl_proc_ucred_changed(p, newcred);
  932         crfree(newcred);
  933 #endif
  934         uifree(ruip);
  935         uifree(euip);
  936         crfree(oldcred);
  937         return (0);
  938 
  939 fail:
  940         PROC_UNLOCK(p);
  941         uifree(ruip);
  942         uifree(euip);
  943         crfree(newcred);
  944         return (error);
  945 }
  946 
  947 #ifndef _SYS_SYSPROTO_H_
  948 struct setregid_args {
  949         gid_t   rgid;
  950         gid_t   egid;
  951 };
  952 #endif
  953 /* ARGSUSED */
  954 int
  955 sys_setregid(struct thread *td, struct setregid_args *uap)
  956 {
  957         struct proc *p = td->td_proc;
  958         struct ucred *newcred, *oldcred;
  959         gid_t egid, rgid;
  960         int error;
  961 
  962         egid = uap->egid;
  963         rgid = uap->rgid;
  964         AUDIT_ARG_EGID(egid);
  965         AUDIT_ARG_RGID(rgid);
  966         newcred = crget();
  967         PROC_LOCK(p);
  968         oldcred = crcopysafe(p, newcred);
  969 
  970 #ifdef MAC
  971         error = mac_cred_check_setregid(oldcred, rgid, egid);
  972         if (error)
  973                 goto fail;
  974 #endif
  975 
  976         if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
  977             rgid != oldcred->cr_svgid) ||
  978              (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
  979              egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
  980             (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
  981                 goto fail;
  982 
  983         if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
  984                 change_egid(newcred, egid);
  985                 setsugid(p);
  986         }
  987         if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
  988                 change_rgid(newcred, rgid);
  989                 setsugid(p);
  990         }
  991         if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
  992             newcred->cr_svgid != newcred->cr_groups[0]) {
  993                 change_svgid(newcred, newcred->cr_groups[0]);
  994                 setsugid(p);
  995         }
  996         proc_set_cred(p, newcred);
  997         PROC_UNLOCK(p);
  998         crfree(oldcred);
  999         return (0);
 1000 
 1001 fail:
 1002         PROC_UNLOCK(p);
 1003         crfree(newcred);
 1004         return (error);
 1005 }
 1006 
 1007 /*
 1008  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
 1009  * uid is explicit.
 1010  */
 1011 #ifndef _SYS_SYSPROTO_H_
 1012 struct setresuid_args {
 1013         uid_t   ruid;
 1014         uid_t   euid;
 1015         uid_t   suid;
 1016 };
 1017 #endif
 1018 /* ARGSUSED */
 1019 int
 1020 sys_setresuid(struct thread *td, struct setresuid_args *uap)
 1021 {
 1022         struct proc *p = td->td_proc;
 1023         struct ucred *newcred, *oldcred;
 1024         uid_t euid, ruid, suid;
 1025         struct uidinfo *euip, *ruip;
 1026         int error;
 1027 
 1028         euid = uap->euid;
 1029         ruid = uap->ruid;
 1030         suid = uap->suid;
 1031         AUDIT_ARG_EUID(euid);
 1032         AUDIT_ARG_RUID(ruid);
 1033         AUDIT_ARG_SUID(suid);
 1034         newcred = crget();
 1035         euip = uifind(euid);
 1036         ruip = uifind(ruid);
 1037         PROC_LOCK(p);
 1038         oldcred = crcopysafe(p, newcred);
 1039 
 1040 #ifdef MAC
 1041         error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
 1042         if (error)
 1043                 goto fail;
 1044 #endif
 1045 
 1046         if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
 1047              ruid != oldcred->cr_svuid &&
 1048               ruid != oldcred->cr_uid) ||
 1049              (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
 1050             euid != oldcred->cr_svuid &&
 1051               euid != oldcred->cr_uid) ||
 1052              (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
 1053             suid != oldcred->cr_svuid &&
 1054               suid != oldcred->cr_uid)) &&
 1055             (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
 1056                 goto fail;
 1057 
 1058         if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
 1059                 change_euid(newcred, euip);
 1060                 setsugid(p);
 1061         }
 1062         if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
 1063                 change_ruid(newcred, ruip);
 1064                 setsugid(p);
 1065         }
 1066         if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
 1067                 change_svuid(newcred, suid);
 1068                 setsugid(p);
 1069         }
 1070         proc_set_cred(p, newcred);
 1071 #ifdef RACCT
 1072         racct_proc_ucred_changed(p, oldcred, newcred);
 1073         crhold(newcred);
 1074 #endif
 1075         PROC_UNLOCK(p);
 1076 #ifdef RCTL
 1077         rctl_proc_ucred_changed(p, newcred);
 1078         crfree(newcred);
 1079 #endif
 1080         uifree(ruip);
 1081         uifree(euip);
 1082         crfree(oldcred);
 1083         return (0);
 1084 
 1085 fail:
 1086         PROC_UNLOCK(p);
 1087         uifree(ruip);
 1088         uifree(euip);
 1089         crfree(newcred);
 1090         return (error);
 1091 
 1092 }
 1093 
 1094 /*
 1095  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
 1096  * gid is explicit.
 1097  */
 1098 #ifndef _SYS_SYSPROTO_H_
 1099 struct setresgid_args {
 1100         gid_t   rgid;
 1101         gid_t   egid;
 1102         gid_t   sgid;
 1103 };
 1104 #endif
 1105 /* ARGSUSED */
 1106 int
 1107 sys_setresgid(struct thread *td, struct setresgid_args *uap)
 1108 {
 1109         struct proc *p = td->td_proc;
 1110         struct ucred *newcred, *oldcred;
 1111         gid_t egid, rgid, sgid;
 1112         int error;
 1113 
 1114         egid = uap->egid;
 1115         rgid = uap->rgid;
 1116         sgid = uap->sgid;
 1117         AUDIT_ARG_EGID(egid);
 1118         AUDIT_ARG_RGID(rgid);
 1119         AUDIT_ARG_SGID(sgid);
 1120         newcred = crget();
 1121         PROC_LOCK(p);
 1122         oldcred = crcopysafe(p, newcred);
 1123 
 1124 #ifdef MAC
 1125         error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
 1126         if (error)
 1127                 goto fail;
 1128 #endif
 1129 
 1130         if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
 1131               rgid != oldcred->cr_svgid &&
 1132               rgid != oldcred->cr_groups[0]) ||
 1133              (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
 1134               egid != oldcred->cr_svgid &&
 1135               egid != oldcred->cr_groups[0]) ||
 1136              (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
 1137               sgid != oldcred->cr_svgid &&
 1138               sgid != oldcred->cr_groups[0])) &&
 1139             (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
 1140                 goto fail;
 1141 
 1142         if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
 1143                 change_egid(newcred, egid);
 1144                 setsugid(p);
 1145         }
 1146         if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
 1147                 change_rgid(newcred, rgid);
 1148                 setsugid(p);
 1149         }
 1150         if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
 1151                 change_svgid(newcred, sgid);
 1152                 setsugid(p);
 1153         }
 1154         proc_set_cred(p, newcred);
 1155         PROC_UNLOCK(p);
 1156         crfree(oldcred);
 1157         return (0);
 1158 
 1159 fail:
 1160         PROC_UNLOCK(p);
 1161         crfree(newcred);
 1162         return (error);
 1163 }
 1164 
 1165 #ifndef _SYS_SYSPROTO_H_
 1166 struct getresuid_args {
 1167         uid_t   *ruid;
 1168         uid_t   *euid;
 1169         uid_t   *suid;
 1170 };
 1171 #endif
 1172 /* ARGSUSED */
 1173 int
 1174 sys_getresuid(struct thread *td, struct getresuid_args *uap)
 1175 {
 1176         struct ucred *cred;
 1177         int error1 = 0, error2 = 0, error3 = 0;
 1178 
 1179         cred = td->td_ucred;
 1180         if (uap->ruid)
 1181                 error1 = copyout(&cred->cr_ruid,
 1182                     uap->ruid, sizeof(cred->cr_ruid));
 1183         if (uap->euid)
 1184                 error2 = copyout(&cred->cr_uid,
 1185                     uap->euid, sizeof(cred->cr_uid));
 1186         if (uap->suid)
 1187                 error3 = copyout(&cred->cr_svuid,
 1188                     uap->suid, sizeof(cred->cr_svuid));
 1189         return (error1 ? error1 : error2 ? error2 : error3);
 1190 }
 1191 
 1192 #ifndef _SYS_SYSPROTO_H_
 1193 struct getresgid_args {
 1194         gid_t   *rgid;
 1195         gid_t   *egid;
 1196         gid_t   *sgid;
 1197 };
 1198 #endif
 1199 /* ARGSUSED */
 1200 int
 1201 sys_getresgid(struct thread *td, struct getresgid_args *uap)
 1202 {
 1203         struct ucred *cred;
 1204         int error1 = 0, error2 = 0, error3 = 0;
 1205 
 1206         cred = td->td_ucred;
 1207         if (uap->rgid)
 1208                 error1 = copyout(&cred->cr_rgid,
 1209                     uap->rgid, sizeof(cred->cr_rgid));
 1210         if (uap->egid)
 1211                 error2 = copyout(&cred->cr_groups[0],
 1212                     uap->egid, sizeof(cred->cr_groups[0]));
 1213         if (uap->sgid)
 1214                 error3 = copyout(&cred->cr_svgid,
 1215                     uap->sgid, sizeof(cred->cr_svgid));
 1216         return (error1 ? error1 : error2 ? error2 : error3);
 1217 }
 1218 
 1219 #ifndef _SYS_SYSPROTO_H_
 1220 struct issetugid_args {
 1221         int dummy;
 1222 };
 1223 #endif
 1224 /* ARGSUSED */
 1225 int
 1226 sys_issetugid(struct thread *td, struct issetugid_args *uap)
 1227 {
 1228         struct proc *p = td->td_proc;
 1229 
 1230         /*
 1231          * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
 1232          * we use P_SUGID because we consider changing the owners as
 1233          * "tainting" as well.
 1234          * This is significant for procs that start as root and "become"
 1235          * a user without an exec - programs cannot know *everything*
 1236          * that libc *might* have put in their data segment.
 1237          */
 1238         td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
 1239         return (0);
 1240 }
 1241 
 1242 int
 1243 sys___setugid(struct thread *td, struct __setugid_args *uap)
 1244 {
 1245 #ifdef REGRESSION
 1246         struct proc *p;
 1247 
 1248         p = td->td_proc;
 1249         switch (uap->flag) {
 1250         case 0:
 1251                 PROC_LOCK(p);
 1252                 p->p_flag &= ~P_SUGID;
 1253                 PROC_UNLOCK(p);
 1254                 return (0);
 1255         case 1:
 1256                 PROC_LOCK(p);
 1257                 p->p_flag |= P_SUGID;
 1258                 PROC_UNLOCK(p);
 1259                 return (0);
 1260         default:
 1261                 return (EINVAL);
 1262         }
 1263 #else /* !REGRESSION */
 1264 
 1265         return (ENOSYS);
 1266 #endif /* REGRESSION */
 1267 }
 1268 
 1269 /*
 1270  * Check if gid is a member of the group set.
 1271  */
 1272 int
 1273 groupmember(gid_t gid, struct ucred *cred)
 1274 {
 1275         int l;
 1276         int h;
 1277         int m;
 1278 
 1279         if (cred->cr_groups[0] == gid)
 1280                 return(1);
 1281 
 1282         /*
 1283          * If gid was not our primary group, perform a binary search
 1284          * of the supplemental groups.  This is possible because we
 1285          * sort the groups in crsetgroups().
 1286          */
 1287         l = 1;
 1288         h = cred->cr_ngroups;
 1289         while (l < h) {
 1290                 m = l + ((h - l) / 2);
 1291                 if (cred->cr_groups[m] < gid)
 1292                         l = m + 1; 
 1293                 else
 1294                         h = m; 
 1295         }
 1296         if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
 1297                 return (1);
 1298 
 1299         return (0);
 1300 }
 1301 
 1302 /*
 1303  * Test the active securelevel against a given level.  securelevel_gt()
 1304  * implements (securelevel > level).  securelevel_ge() implements
 1305  * (securelevel >= level).  Note that the logic is inverted -- these
 1306  * functions return EPERM on "success" and 0 on "failure".
 1307  *
 1308  * Due to care taken when setting the securelevel, we know that no jail will
 1309  * be less secure that its parent (or the physical system), so it is sufficient
 1310  * to test the current jail only.
 1311  *
 1312  * XXXRW: Possibly since this has to do with privilege, it should move to
 1313  * kern_priv.c.
 1314  */
 1315 int
 1316 securelevel_gt(struct ucred *cr, int level)
 1317 {
 1318 
 1319         return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
 1320 }
 1321 
 1322 int
 1323 securelevel_ge(struct ucred *cr, int level)
 1324 {
 1325 
 1326         return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
 1327 }
 1328 
 1329 /*
 1330  * 'see_other_uids' determines whether or not visibility of processes
 1331  * and sockets with credentials holding different real uids is possible
 1332  * using a variety of system MIBs.
 1333  * XXX: data declarations should be together near the beginning of the file.
 1334  */
 1335 static int      see_other_uids = 1;
 1336 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
 1337     &see_other_uids, 0,
 1338     "Unprivileged processes may see subjects/objects with different real uid");
 1339 
 1340 /*-
 1341  * Determine if u1 "can see" the subject specified by u2, according to the
 1342  * 'see_other_uids' policy.
 1343  * Returns: 0 for permitted, ESRCH otherwise
 1344  * Locks: none
 1345  * References: *u1 and *u2 must not change during the call
 1346  *             u1 may equal u2, in which case only one reference is required
 1347  */
 1348 int
 1349 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
 1350 {
 1351 
 1352         if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
 1353                 if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
 1354                         return (ESRCH);
 1355         }
 1356         return (0);
 1357 }
 1358 
 1359 /*
 1360  * 'see_other_gids' determines whether or not visibility of processes
 1361  * and sockets with credentials holding different real gids is possible
 1362  * using a variety of system MIBs.
 1363  * XXX: data declarations should be together near the beginning of the file.
 1364  */
 1365 static int      see_other_gids = 1;
 1366 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
 1367     &see_other_gids, 0,
 1368     "Unprivileged processes may see subjects/objects with different real gid");
 1369 
 1370 /*
 1371  * Determine if u1 can "see" the subject specified by u2, according to the
 1372  * 'see_other_gids' policy.
 1373  * Returns: 0 for permitted, ESRCH otherwise
 1374  * Locks: none
 1375  * References: *u1 and *u2 must not change during the call
 1376  *             u1 may equal u2, in which case only one reference is required
 1377  */
 1378 int
 1379 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
 1380 {
 1381         int i, match;
 1382 
 1383         if (!see_other_gids) {
 1384                 match = 0;
 1385                 for (i = 0; i < u1->cr_ngroups; i++) {
 1386                         if (groupmember(u1->cr_groups[i], u2))
 1387                                 match = 1;
 1388                         if (match)
 1389                                 break;
 1390                 }
 1391                 if (!match) {
 1392                         if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0)
 1393                                 return (ESRCH);
 1394                 }
 1395         }
 1396         return (0);
 1397 }
 1398 
 1399 /*
 1400  * 'see_jail_proc' determines whether or not visibility of processes and
 1401  * sockets with credentials holding different jail ids is possible using a
 1402  * variety of system MIBs.
 1403  *
 1404  * XXX: data declarations should be together near the beginning of the file.
 1405  */
 1406 
 1407 static int      see_jail_proc = 1;
 1408 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
 1409     &see_jail_proc, 0,
 1410     "Unprivileged processes may see subjects/objects with different jail ids");
 1411 
 1412 /*-
 1413  * Determine if u1 "can see" the subject specified by u2, according to the
 1414  * 'see_jail_proc' policy.
 1415  * Returns: 0 for permitted, ESRCH otherwise
 1416  * Locks: none
 1417  * References: *u1 and *u2 must not change during the call
 1418  *             u1 may equal u2, in which case only one reference is required
 1419  */
 1420 int
 1421 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
 1422 {
 1423         if (u1->cr_uid == 0)
 1424                 return (0);
 1425         return (!see_jail_proc && u1->cr_prison != u2->cr_prison ? ESRCH : 0);
 1426 }
 1427 
 1428 /*-
 1429  * Determine if u1 "can see" the subject specified by u2.
 1430  * Returns: 0 for permitted, an errno value otherwise
 1431  * Locks: none
 1432  * References: *u1 and *u2 must not change during the call
 1433  *             u1 may equal u2, in which case only one reference is required
 1434  */
 1435 int
 1436 cr_cansee(struct ucred *u1, struct ucred *u2)
 1437 {
 1438         int error;
 1439 
 1440         if ((error = prison_check(u1, u2)))
 1441                 return (error);
 1442 #ifdef MAC
 1443         if ((error = mac_cred_check_visible(u1, u2)))
 1444                 return (error);
 1445 #endif
 1446         if ((error = cr_canseeotheruids(u1, u2)))
 1447                 return (error);
 1448         if ((error = cr_canseeothergids(u1, u2)))
 1449                 return (error);
 1450         if ((error = cr_canseejailproc(u1, u2)))
 1451                 return (error);
 1452         return (0);
 1453 }
 1454 
 1455 /*-
 1456  * Determine if td "can see" the subject specified by p.
 1457  * Returns: 0 for permitted, an errno value otherwise
 1458  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
 1459  *        should be curthread.
 1460  * References: td and p must be valid for the lifetime of the call
 1461  */
 1462 int
 1463 p_cansee(struct thread *td, struct proc *p)
 1464 {
 1465 
 1466         /* Wrap cr_cansee() for all functionality. */
 1467         KASSERT(td == curthread, ("%s: td not curthread", __func__));
 1468         PROC_LOCK_ASSERT(p, MA_OWNED);
 1469         return (cr_cansee(td->td_ucred, p->p_ucred));
 1470 }
 1471 
 1472 /*
 1473  * 'conservative_signals' prevents the delivery of a broad class of
 1474  * signals by unprivileged processes to processes that have changed their
 1475  * credentials since the last invocation of execve().  This can prevent
 1476  * the leakage of cached information or retained privileges as a result
 1477  * of a common class of signal-related vulnerabilities.  However, this
 1478  * may interfere with some applications that expect to be able to
 1479  * deliver these signals to peer processes after having given up
 1480  * privilege.
 1481  */
 1482 static int      conservative_signals = 1;
 1483 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
 1484     &conservative_signals, 0, "Unprivileged processes prevented from "
 1485     "sending certain signals to processes whose credentials have changed");
 1486 /*-
 1487  * Determine whether cred may deliver the specified signal to proc.
 1488  * Returns: 0 for permitted, an errno value otherwise.
 1489  * Locks: A lock must be held for proc.
 1490  * References: cred and proc must be valid for the lifetime of the call.
 1491  */
 1492 int
 1493 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
 1494 {
 1495         int error;
 1496 
 1497         PROC_LOCK_ASSERT(proc, MA_OWNED);
 1498         /*
 1499          * Jail semantics limit the scope of signalling to proc in the
 1500          * same jail as cred, if cred is in jail.
 1501          */
 1502         error = prison_check(cred, proc->p_ucred);
 1503         if (error)
 1504                 return (error);
 1505 #ifdef MAC
 1506         if ((error = mac_proc_check_signal(cred, proc, signum)))
 1507                 return (error);
 1508 #endif
 1509         if ((error = cr_canseeotheruids(cred, proc->p_ucred)))
 1510                 return (error);
 1511         if ((error = cr_canseeothergids(cred, proc->p_ucred)))
 1512                 return (error);
 1513 
 1514         /*
 1515          * UNIX signal semantics depend on the status of the P_SUGID
 1516          * bit on the target process.  If the bit is set, then additional
 1517          * restrictions are placed on the set of available signals.
 1518          */
 1519         if (conservative_signals && (proc->p_flag & P_SUGID)) {
 1520                 switch (signum) {
 1521                 case 0:
 1522                 case SIGKILL:
 1523                 case SIGINT:
 1524                 case SIGTERM:
 1525                 case SIGALRM:
 1526                 case SIGSTOP:
 1527                 case SIGTTIN:
 1528                 case SIGTTOU:
 1529                 case SIGTSTP:
 1530                 case SIGHUP:
 1531                 case SIGUSR1:
 1532                 case SIGUSR2:
 1533                         /*
 1534                          * Generally, permit job and terminal control
 1535                          * signals.
 1536                          */
 1537                         break;
 1538                 default:
 1539                         /* Not permitted without privilege. */
 1540                         error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
 1541                         if (error)
 1542                                 return (error);
 1543                 }
 1544         }
 1545 
 1546         /*
 1547          * Generally, the target credential's ruid or svuid must match the
 1548          * subject credential's ruid or euid.
 1549          */
 1550         if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
 1551             cred->cr_ruid != proc->p_ucred->cr_svuid &&
 1552             cred->cr_uid != proc->p_ucred->cr_ruid &&
 1553             cred->cr_uid != proc->p_ucred->cr_svuid) {
 1554                 error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
 1555                 if (error)
 1556                         return (error);
 1557         }
 1558 
 1559         return (0);
 1560 }
 1561 
 1562 /*-
 1563  * Determine whether td may deliver the specified signal to p.
 1564  * Returns: 0 for permitted, an errno value otherwise
 1565  * Locks: Sufficient locks to protect various components of td and p
 1566  *        must be held.  td must be curthread, and a lock must be
 1567  *        held for p.
 1568  * References: td and p must be valid for the lifetime of the call
 1569  */
 1570 int
 1571 p_cansignal(struct thread *td, struct proc *p, int signum)
 1572 {
 1573 
 1574         KASSERT(td == curthread, ("%s: td not curthread", __func__));
 1575         PROC_LOCK_ASSERT(p, MA_OWNED);
 1576         if (td->td_proc == p)
 1577                 return (0);
 1578 
 1579         /*
 1580          * UNIX signalling semantics require that processes in the same
 1581          * session always be able to deliver SIGCONT to one another,
 1582          * overriding the remaining protections.
 1583          */
 1584         /* XXX: This will require an additional lock of some sort. */
 1585         if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
 1586                 return (0);
 1587         /*
 1588          * Some compat layers use SIGTHR and higher signals for
 1589          * communication between different kernel threads of the same
 1590          * process, so that they expect that it's always possible to
 1591          * deliver them, even for suid applications where cr_cansignal() can
 1592          * deny such ability for security consideration.  It should be
 1593          * pretty safe to do since the only way to create two processes
 1594          * with the same p_leader is via rfork(2).
 1595          */
 1596         if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
 1597             signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
 1598                 return (0);
 1599 
 1600         return (cr_cansignal(td->td_ucred, p, signum));
 1601 }
 1602 
 1603 /*-
 1604  * Determine whether td may reschedule p.
 1605  * Returns: 0 for permitted, an errno value otherwise
 1606  * Locks: Sufficient locks to protect various components of td and p
 1607  *        must be held.  td must be curthread, and a lock must
 1608  *        be held for p.
 1609  * References: td and p must be valid for the lifetime of the call
 1610  */
 1611 int
 1612 p_cansched(struct thread *td, struct proc *p)
 1613 {
 1614         int error;
 1615 
 1616         KASSERT(td == curthread, ("%s: td not curthread", __func__));
 1617         PROC_LOCK_ASSERT(p, MA_OWNED);
 1618         if (td->td_proc == p)
 1619                 return (0);
 1620         if ((error = prison_check(td->td_ucred, p->p_ucred)))
 1621                 return (error);
 1622 #ifdef MAC
 1623         if ((error = mac_proc_check_sched(td->td_ucred, p)))
 1624                 return (error);
 1625 #endif
 1626         if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
 1627                 return (error);
 1628         if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
 1629                 return (error);
 1630         if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
 1631             td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
 1632                 error = priv_check(td, PRIV_SCHED_DIFFCRED);
 1633                 if (error)
 1634                         return (error);
 1635         }
 1636         return (0);
 1637 }
 1638 
 1639 /*
 1640  * Handle getting or setting the prison's unprivileged_proc_debug
 1641  * value.
 1642  */
 1643 static int
 1644 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
 1645 {
 1646         int error, val;
 1647 
 1648         val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG);
 1649         error = sysctl_handle_int(oidp, &val, 0, req);
 1650         if (error != 0 || req->newptr == NULL)
 1651                 return (error);
 1652         if (val != 0 && val != 1)
 1653                 return (EINVAL);
 1654         prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val);
 1655         return (0);
 1656 }
 1657 
 1658 /*
 1659  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
 1660  * unprivileged inter-process debugging services, including some procfs
 1661  * functionality, ptrace(), and ktrace().  In the past, inter-process
 1662  * debugging has been involved in a variety of security problems, and sites
 1663  * not requiring the service might choose to disable it when hardening
 1664  * systems.
 1665  */
 1666 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
 1667     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE |
 1668     CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I",
 1669     "Unprivileged processes may use process debugging facilities");
 1670 
 1671 /*-
 1672  * Determine whether td may debug p.
 1673  * Returns: 0 for permitted, an errno value otherwise
 1674  * Locks: Sufficient locks to protect various components of td and p
 1675  *        must be held.  td must be curthread, and a lock must
 1676  *        be held for p.
 1677  * References: td and p must be valid for the lifetime of the call
 1678  */
 1679 int
 1680 p_candebug(struct thread *td, struct proc *p)
 1681 {
 1682         int credentialchanged, error, grpsubset, i, uidsubset;
 1683 
 1684         KASSERT(td == curthread, ("%s: td not curthread", __func__));
 1685         PROC_LOCK_ASSERT(p, MA_OWNED);
 1686         if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
 1687                 return (error);
 1688         if (td->td_proc == p)
 1689                 return (0);
 1690         if ((error = prison_check(td->td_ucred, p->p_ucred)))
 1691                 return (error);
 1692 #ifdef MAC
 1693         if ((error = mac_proc_check_debug(td->td_ucred, p)))
 1694                 return (error);
 1695 #endif
 1696         if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
 1697                 return (error);
 1698         if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
 1699                 return (error);
 1700 
 1701         /*
 1702          * Is p's group set a subset of td's effective group set?  This
 1703          * includes p's egid, group access list, rgid, and svgid.
 1704          */
 1705         grpsubset = 1;
 1706         for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
 1707                 if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
 1708                         grpsubset = 0;
 1709                         break;
 1710                 }
 1711         }
 1712         grpsubset = grpsubset &&
 1713             groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
 1714             groupmember(p->p_ucred->cr_svgid, td->td_ucred);
 1715 
 1716         /*
 1717          * Are the uids present in p's credential equal to td's
 1718          * effective uid?  This includes p's euid, svuid, and ruid.
 1719          */
 1720         uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
 1721             td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
 1722             td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
 1723 
 1724         /*
 1725          * Has the credential of the process changed since the last exec()?
 1726          */
 1727         credentialchanged = (p->p_flag & P_SUGID);
 1728 
 1729         /*
 1730          * If p's gids aren't a subset, or the uids aren't a subset,
 1731          * or the credential has changed, require appropriate privilege
 1732          * for td to debug p.
 1733          */
 1734         if (!grpsubset || !uidsubset) {
 1735                 error = priv_check(td, PRIV_DEBUG_DIFFCRED);
 1736                 if (error)
 1737                         return (error);
 1738         }
 1739 
 1740         if (credentialchanged) {
 1741                 error = priv_check(td, PRIV_DEBUG_SUGID);
 1742                 if (error)
 1743                         return (error);
 1744         }
 1745 
 1746         /* Can't trace init when securelevel > 0. */
 1747         if (p == initproc) {
 1748                 error = securelevel_gt(td->td_ucred, 0);
 1749                 if (error)
 1750                         return (error);
 1751         }
 1752 
 1753         /*
 1754          * Can't trace a process that's currently exec'ing.
 1755          *
 1756          * XXX: Note, this is not a security policy decision, it's a
 1757          * basic correctness/functionality decision.  Therefore, this check
 1758          * should be moved to the caller's of p_candebug().
 1759          */
 1760         if ((p->p_flag & P_INEXEC) != 0)
 1761                 return (EBUSY);
 1762 
 1763         /* Denied explicitely */
 1764         if ((p->p_flag2 & P2_NOTRACE) != 0) {
 1765                 error = priv_check(td, PRIV_DEBUG_DENIED);
 1766                 if (error != 0)
 1767                         return (error);
 1768         }
 1769 
 1770         return (0);
 1771 }
 1772 
 1773 /*-
 1774  * Determine whether the subject represented by cred can "see" a socket.
 1775  * Returns: 0 for permitted, ENOENT otherwise.
 1776  */
 1777 int
 1778 cr_canseesocket(struct ucred *cred, struct socket *so)
 1779 {
 1780         int error;
 1781 
 1782         error = prison_check(cred, so->so_cred);
 1783         if (error)
 1784                 return (ENOENT);
 1785 #ifdef MAC
 1786         error = mac_socket_check_visible(cred, so);
 1787         if (error)
 1788                 return (error);
 1789 #endif
 1790         if (cr_canseeotheruids(cred, so->so_cred))
 1791                 return (ENOENT);
 1792         if (cr_canseeothergids(cred, so->so_cred))
 1793                 return (ENOENT);
 1794 
 1795         return (0);
 1796 }
 1797 
 1798 /*-
 1799  * Determine whether td can wait for the exit of p.
 1800  * Returns: 0 for permitted, an errno value otherwise
 1801  * Locks: Sufficient locks to protect various components of td and p
 1802  *        must be held.  td must be curthread, and a lock must
 1803  *        be held for p.
 1804  * References: td and p must be valid for the lifetime of the call
 1805 
 1806  */
 1807 int
 1808 p_canwait(struct thread *td, struct proc *p)
 1809 {
 1810         int error;
 1811 
 1812         KASSERT(td == curthread, ("%s: td not curthread", __func__));
 1813         PROC_LOCK_ASSERT(p, MA_OWNED);
 1814         if ((error = prison_check(td->td_ucred, p->p_ucred)))
 1815                 return (error);
 1816 #ifdef MAC
 1817         if ((error = mac_proc_check_wait(td->td_ucred, p)))
 1818                 return (error);
 1819 #endif
 1820 #if 0
 1821         /* XXXMAC: This could have odd effects on some shells. */
 1822         if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
 1823                 return (error);
 1824 #endif
 1825 
 1826         return (0);
 1827 }
 1828 
 1829 /*
 1830  * Credential management.
 1831  *
 1832  * struct ucred objects are rarely allocated but gain and lose references all
 1833  * the time (e.g., on struct file alloc/dealloc) turning refcount updates into
 1834  * a significant source of cache-line ping ponging. Common cases are worked
 1835  * around by modifying thread-local counter instead if the cred to operate on
 1836  * matches td_realucred.
 1837  *
 1838  * The counter is split into 2 parts:
 1839  * - cr_users -- total count of all struct proc and struct thread objects
 1840  *   which have given cred in p_ucred and td_ucred respectively
 1841  * - cr_ref -- the actual ref count, only valid if cr_users == 0
 1842  *
 1843  * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if
 1844  * the count reaches 0 the object is freeable.
 1845  * If users > 0 and curthread->td_realucred == cred, then updates are performed
 1846  * against td_ucredref.
 1847  * In other cases updates are performed against cr_ref.
 1848  *
 1849  * Changing td_realucred into something else decrements cr_users and transfers
 1850  * accumulated updates.
 1851  */
 1852 struct ucred *
 1853 crcowget(struct ucred *cr)
 1854 {
 1855 
 1856         mtx_lock(&cr->cr_mtx);
 1857         KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 1858             __func__, cr->cr_users, cr));
 1859         cr->cr_users++;
 1860         cr->cr_ref++;
 1861         mtx_unlock(&cr->cr_mtx);
 1862         return (cr);
 1863 }
 1864 
 1865 static struct ucred *
 1866 crunuse(struct thread *td)
 1867 {
 1868         struct ucred *cr, *crold;
 1869 
 1870         MPASS(td->td_realucred == td->td_ucred);
 1871         cr = td->td_realucred;
 1872         mtx_lock(&cr->cr_mtx);
 1873         cr->cr_ref += td->td_ucredref;
 1874         td->td_ucredref = 0;
 1875         KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 1876             __func__, cr->cr_users, cr));
 1877         cr->cr_users--;
 1878         if (cr->cr_users == 0) {
 1879                 KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p",
 1880                     __func__, cr->cr_ref, cr));
 1881                 crold = cr;
 1882         } else {
 1883                 cr->cr_ref--;
 1884                 crold = NULL;
 1885         }
 1886         mtx_unlock(&cr->cr_mtx);
 1887         td->td_realucred = NULL;
 1888         return (crold);
 1889 }
 1890 
 1891 static void
 1892 crunusebatch(struct ucred *cr, int users, int ref)
 1893 {
 1894 
 1895         KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p",
 1896             __func__, users, cr));
 1897         mtx_lock(&cr->cr_mtx);
 1898         KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p",
 1899             __func__, cr->cr_users, users, cr));
 1900         cr->cr_users -= users;
 1901         cr->cr_ref += ref;
 1902         cr->cr_ref -= users;
 1903         if (cr->cr_users > 0) {
 1904                 mtx_unlock(&cr->cr_mtx);
 1905                 return;
 1906         }
 1907         KASSERT(cr->cr_ref >= 0, ("%s: ref %d not >= 0 on cred %p",
 1908             __func__, cr->cr_ref, cr));
 1909         if (cr->cr_ref > 0) {
 1910                 mtx_unlock(&cr->cr_mtx);
 1911                 return;
 1912         }
 1913         crfree_final(cr);
 1914 }
 1915 
 1916 void
 1917 crcowfree(struct thread *td)
 1918 {
 1919         struct ucred *cr;
 1920 
 1921         cr = crunuse(td);
 1922         if (cr != NULL)
 1923                 crfree(cr);
 1924 }
 1925 
 1926 struct ucred *
 1927 crcowsync(void)
 1928 {
 1929         struct thread *td;
 1930         struct proc *p;
 1931         struct ucred *crnew, *crold;
 1932 
 1933         td = curthread;
 1934         p = td->td_proc;
 1935         PROC_LOCK_ASSERT(p, MA_OWNED);
 1936 
 1937         MPASS(td->td_realucred == td->td_ucred);
 1938         if (td->td_realucred == p->p_ucred)
 1939                 return (NULL);
 1940 
 1941         crnew = crcowget(p->p_ucred);
 1942         crold = crunuse(td);
 1943         td->td_realucred = crnew;
 1944         td->td_ucred = td->td_realucred;
 1945         return (crold);
 1946 }
 1947 
 1948 /*
 1949  * Batching.
 1950  */
 1951 void
 1952 credbatch_add(struct credbatch *crb, struct thread *td)
 1953 {
 1954         struct ucred *cr;
 1955 
 1956         MPASS(td->td_realucred != NULL);
 1957         MPASS(td->td_realucred == td->td_ucred);
 1958         MPASS(td->td_state == TDS_INACTIVE);
 1959         cr = td->td_realucred;
 1960         KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 1961             __func__, cr->cr_users, cr));
 1962         if (crb->cred != cr) {
 1963                 if (crb->users > 0) {
 1964                         MPASS(crb->cred != NULL);
 1965                         crunusebatch(crb->cred, crb->users, crb->ref);
 1966                         crb->users = 0;
 1967                         crb->ref = 0;
 1968                 }
 1969         }
 1970         crb->cred = cr;
 1971         crb->users++;
 1972         crb->ref += td->td_ucredref;
 1973         td->td_ucredref = 0;
 1974         td->td_realucred = NULL;
 1975 }
 1976 
 1977 void
 1978 credbatch_final(struct credbatch *crb)
 1979 {
 1980 
 1981         MPASS(crb->cred != NULL);
 1982         MPASS(crb->users > 0);
 1983         crunusebatch(crb->cred, crb->users, crb->ref);
 1984 }
 1985 
 1986 /*
 1987  * Allocate a zeroed cred structure.
 1988  */
 1989 struct ucred *
 1990 crget(void)
 1991 {
 1992         struct ucred *cr;
 1993 
 1994         cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
 1995         mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF);
 1996         cr->cr_ref = 1;
 1997 #ifdef AUDIT
 1998         audit_cred_init(cr);
 1999 #endif
 2000 #ifdef MAC
 2001         mac_cred_init(cr);
 2002 #endif
 2003         cr->cr_groups = cr->cr_smallgroups;
 2004         cr->cr_agroups =
 2005             sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
 2006         return (cr);
 2007 }
 2008 
 2009 /*
 2010  * Claim another reference to a ucred structure.
 2011  */
 2012 struct ucred *
 2013 crhold(struct ucred *cr)
 2014 {
 2015         struct thread *td;
 2016 
 2017         td = curthread;
 2018         if (__predict_true(td->td_realucred == cr)) {
 2019                 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 2020                     __func__, cr->cr_users, cr));
 2021                 td->td_ucredref++;
 2022                 return (cr);
 2023         }
 2024         mtx_lock(&cr->cr_mtx);
 2025         cr->cr_ref++;
 2026         mtx_unlock(&cr->cr_mtx);
 2027         return (cr);
 2028 }
 2029 
 2030 /*
 2031  * Free a cred structure.  Throws away space when ref count gets to 0.
 2032  */
 2033 void
 2034 crfree(struct ucred *cr)
 2035 {
 2036         struct thread *td;
 2037 
 2038         td = curthread;
 2039         if (__predict_true(td->td_realucred == cr)) {
 2040                 KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 2041                     __func__, cr->cr_users, cr));
 2042                 td->td_ucredref--;
 2043                 return;
 2044         }
 2045         mtx_lock(&cr->cr_mtx);
 2046         KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p",
 2047             __func__, cr->cr_users, cr));
 2048         cr->cr_ref--;
 2049         if (cr->cr_users > 0) {
 2050                 mtx_unlock(&cr->cr_mtx);
 2051                 return;
 2052         }
 2053         KASSERT(cr->cr_ref >= 0, ("%s: ref %d not >= 0 on cred %p",
 2054             __func__, cr->cr_ref, cr));
 2055         if (cr->cr_ref > 0) {
 2056                 mtx_unlock(&cr->cr_mtx);
 2057                 return;
 2058         }
 2059         crfree_final(cr);
 2060 }
 2061 
 2062 static void
 2063 crfree_final(struct ucred *cr)
 2064 {
 2065 
 2066         KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p",
 2067             __func__, cr->cr_users, cr));
 2068         KASSERT(cr->cr_ref == 0, ("%s: ref %d not == 0 on cred %p",
 2069             __func__, cr->cr_ref, cr));
 2070 
 2071         /*
 2072          * Some callers of crget(), such as nfs_statfs(), allocate a temporary
 2073          * credential, but don't allocate a uidinfo structure.
 2074          */
 2075         if (cr->cr_uidinfo != NULL)
 2076                 uifree(cr->cr_uidinfo);
 2077         if (cr->cr_ruidinfo != NULL)
 2078                 uifree(cr->cr_ruidinfo);
 2079         if (cr->cr_prison != NULL)
 2080                 prison_free(cr->cr_prison);
 2081         if (cr->cr_loginclass != NULL)
 2082                 loginclass_free(cr->cr_loginclass);
 2083 #ifdef AUDIT
 2084         audit_cred_destroy(cr);
 2085 #endif
 2086 #ifdef MAC
 2087         mac_cred_destroy(cr);
 2088 #endif
 2089         mtx_destroy(&cr->cr_mtx);
 2090         if (cr->cr_groups != cr->cr_smallgroups)
 2091                 free(cr->cr_groups, M_CRED);
 2092         free(cr, M_CRED);
 2093 }
 2094 
 2095 /*
 2096  * Copy a ucred's contents from a template.  Does not block.
 2097  */
 2098 void
 2099 crcopy(struct ucred *dest, struct ucred *src)
 2100 {
 2101 
 2102         KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
 2103         bcopy(&src->cr_startcopy, &dest->cr_startcopy,
 2104             (unsigned)((caddr_t)&src->cr_endcopy -
 2105                 (caddr_t)&src->cr_startcopy));
 2106         crsetgroups(dest, src->cr_ngroups, src->cr_groups);
 2107         uihold(dest->cr_uidinfo);
 2108         uihold(dest->cr_ruidinfo);
 2109         prison_hold(dest->cr_prison);
 2110         loginclass_hold(dest->cr_loginclass);
 2111 #ifdef AUDIT
 2112         audit_cred_copy(src, dest);
 2113 #endif
 2114 #ifdef MAC
 2115         mac_cred_copy(src, dest);
 2116 #endif
 2117 }
 2118 
 2119 /*
 2120  * Dup cred struct to a new held one.
 2121  */
 2122 struct ucred *
 2123 crdup(struct ucred *cr)
 2124 {
 2125         struct ucred *newcr;
 2126 
 2127         newcr = crget();
 2128         crcopy(newcr, cr);
 2129         return (newcr);
 2130 }
 2131 
 2132 /*
 2133  * Fill in a struct xucred based on a struct ucred.
 2134  */
 2135 void
 2136 cru2x(struct ucred *cr, struct xucred *xcr)
 2137 {
 2138         int ngroups;
 2139 
 2140         bzero(xcr, sizeof(*xcr));
 2141         xcr->cr_version = XUCRED_VERSION;
 2142         xcr->cr_uid = cr->cr_uid;
 2143 
 2144         ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
 2145         xcr->cr_ngroups = ngroups;
 2146         bcopy(cr->cr_groups, xcr->cr_groups,
 2147             ngroups * sizeof(*cr->cr_groups));
 2148 }
 2149 
 2150 void
 2151 cru2xt(struct thread *td, struct xucred *xcr)
 2152 {
 2153 
 2154         cru2x(td->td_ucred, xcr);
 2155         xcr->cr_pid = td->td_proc->p_pid;
 2156 }
 2157 
 2158 /*
 2159  * Set initial process credentials.
 2160  * Callers are responsible for providing the reference for provided credentials.
 2161  */
 2162 void
 2163 proc_set_cred_init(struct proc *p, struct ucred *newcred)
 2164 {
 2165 
 2166         p->p_ucred = crcowget(newcred);
 2167 }
 2168 
 2169 /*
 2170  * Change process credentials.
 2171  * Callers are responsible for providing the reference for passed credentials
 2172  * and for freeing old ones.
 2173  *
 2174  * Process has to be locked except when it does not have credentials (as it
 2175  * should not be visible just yet) or when newcred is NULL (as this can be
 2176  * only used when the process is about to be freed, at which point it should
 2177  * not be visible anymore).
 2178  */
 2179 void
 2180 proc_set_cred(struct proc *p, struct ucred *newcred)
 2181 {
 2182         struct ucred *cr;
 2183 
 2184         cr = p->p_ucred;
 2185         MPASS(cr != NULL);
 2186         PROC_LOCK_ASSERT(p, MA_OWNED);
 2187         KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
 2188             __func__, newcred->cr_users, newcred));
 2189         mtx_lock(&cr->cr_mtx);
 2190         KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 2191             __func__, cr->cr_users, cr));
 2192         cr->cr_users--;
 2193         mtx_unlock(&cr->cr_mtx);
 2194         p->p_ucred = newcred;
 2195         newcred->cr_users = 1;
 2196         PROC_UPDATE_COW(p);
 2197 }
 2198 
 2199 void
 2200 proc_unset_cred(struct proc *p)
 2201 {
 2202         struct ucred *cr;
 2203 
 2204         MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW);
 2205         cr = p->p_ucred;
 2206         p->p_ucred = NULL;
 2207         KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 2208             __func__, cr->cr_users, cr));
 2209         mtx_lock(&cr->cr_mtx);
 2210         cr->cr_users--;
 2211         if (cr->cr_users == 0)
 2212                 KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p",
 2213                     __func__, cr->cr_ref, cr));
 2214         mtx_unlock(&cr->cr_mtx);
 2215         crfree(cr);
 2216 }
 2217 
 2218 struct ucred *
 2219 crcopysafe(struct proc *p, struct ucred *cr)
 2220 {
 2221         struct ucred *oldcred;
 2222         int groups;
 2223 
 2224         PROC_LOCK_ASSERT(p, MA_OWNED);
 2225 
 2226         oldcred = p->p_ucred;
 2227         while (cr->cr_agroups < oldcred->cr_agroups) {
 2228                 groups = oldcred->cr_agroups;
 2229                 PROC_UNLOCK(p);
 2230                 crextend(cr, groups);
 2231                 PROC_LOCK(p);
 2232                 oldcred = p->p_ucred;
 2233         }
 2234         crcopy(cr, oldcred);
 2235 
 2236         return (oldcred);
 2237 }
 2238 
 2239 /*
 2240  * Extend the passed in credential to hold n items.
 2241  */
 2242 void
 2243 crextend(struct ucred *cr, int n)
 2244 {
 2245         int cnt;
 2246 
 2247         /* Truncate? */
 2248         if (n <= cr->cr_agroups)
 2249                 return;
 2250 
 2251         /*
 2252          * We extend by 2 each time since we're using a power of two
 2253          * allocator until we need enough groups to fill a page.
 2254          * Once we're allocating multiple pages, only allocate as many
 2255          * as we actually need.  The case of processes needing a
 2256          * non-power of two number of pages seems more likely than
 2257          * a real world process that adds thousands of groups one at a
 2258          * time.
 2259          */
 2260         if ( n < PAGE_SIZE / sizeof(gid_t) ) {
 2261                 if (cr->cr_agroups == 0)
 2262                         cnt = MAX(1, MINALLOCSIZE / sizeof(gid_t));
 2263                 else
 2264                         cnt = cr->cr_agroups * 2;
 2265 
 2266                 while (cnt < n)
 2267                         cnt *= 2;
 2268         } else
 2269                 cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
 2270 
 2271         /* Free the old array. */
 2272         if (cr->cr_groups != cr->cr_smallgroups)
 2273                 free(cr->cr_groups, M_CRED);
 2274 
 2275         cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
 2276         cr->cr_agroups = cnt;
 2277 }
 2278 
 2279 /*
 2280  * Copy groups in to a credential, preserving any necessary invariants.
 2281  * Currently this includes the sorting of all supplemental gids.
 2282  * crextend() must have been called before hand to ensure sufficient
 2283  * space is available.
 2284  */
 2285 static void
 2286 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
 2287 {
 2288         int i;
 2289         int j;
 2290         gid_t g;
 2291 
 2292         KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
 2293 
 2294         bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
 2295         cr->cr_ngroups = ngrp;
 2296 
 2297         /*
 2298          * Sort all groups except cr_groups[0] to allow groupmember to
 2299          * perform a binary search.
 2300          *
 2301          * XXX: If large numbers of groups become common this should
 2302          * be replaced with shell sort like linux uses or possibly
 2303          * heap sort.
 2304          */
 2305         for (i = 2; i < ngrp; i++) {
 2306                 g = cr->cr_groups[i];
 2307                 for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
 2308                         cr->cr_groups[j + 1] = cr->cr_groups[j];
 2309                 cr->cr_groups[j + 1] = g;
 2310         }
 2311 }
 2312 
 2313 /*
 2314  * Copy groups in to a credential after expanding it if required.
 2315  * Truncate the list to (ngroups_max + 1) if it is too large.
 2316  */
 2317 void
 2318 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
 2319 {
 2320 
 2321         if (ngrp > ngroups_max + 1)
 2322                 ngrp = ngroups_max + 1;
 2323 
 2324         crextend(cr, ngrp);
 2325         crsetgroups_locked(cr, ngrp, groups);
 2326 }
 2327 
 2328 /*
 2329  * Get login name, if available.
 2330  */
 2331 #ifndef _SYS_SYSPROTO_H_
 2332 struct getlogin_args {
 2333         char    *namebuf;
 2334         u_int   namelen;
 2335 };
 2336 #endif
 2337 /* ARGSUSED */
 2338 int
 2339 sys_getlogin(struct thread *td, struct getlogin_args *uap)
 2340 {
 2341         char login[MAXLOGNAME];
 2342         struct proc *p = td->td_proc;
 2343         size_t len;
 2344 
 2345         if (uap->namelen > MAXLOGNAME)
 2346                 uap->namelen = MAXLOGNAME;
 2347         PROC_LOCK(p);
 2348         SESS_LOCK(p->p_session);
 2349         len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
 2350         SESS_UNLOCK(p->p_session);
 2351         PROC_UNLOCK(p);
 2352         if (len > uap->namelen)
 2353                 return (ERANGE);
 2354         return (copyout(login, uap->namebuf, len));
 2355 }
 2356 
 2357 /*
 2358  * Set login name.
 2359  */
 2360 #ifndef _SYS_SYSPROTO_H_
 2361 struct setlogin_args {
 2362         char    *namebuf;
 2363 };
 2364 #endif
 2365 /* ARGSUSED */
 2366 int
 2367 sys_setlogin(struct thread *td, struct setlogin_args *uap)
 2368 {
 2369         struct proc *p = td->td_proc;
 2370         int error;
 2371         char logintmp[MAXLOGNAME];
 2372 
 2373         CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
 2374 
 2375         error = priv_check(td, PRIV_PROC_SETLOGIN);
 2376         if (error)
 2377                 return (error);
 2378         error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
 2379         if (error != 0) {
 2380                 if (error == ENAMETOOLONG)
 2381                         error = EINVAL;
 2382                 return (error);
 2383         }
 2384         AUDIT_ARG_LOGIN(logintmp);
 2385         PROC_LOCK(p);
 2386         SESS_LOCK(p->p_session);
 2387         strcpy(p->p_session->s_login, logintmp);
 2388         SESS_UNLOCK(p->p_session);
 2389         PROC_UNLOCK(p);
 2390         return (0);
 2391 }
 2392 
 2393 void
 2394 setsugid(struct proc *p)
 2395 {
 2396 
 2397         PROC_LOCK_ASSERT(p, MA_OWNED);
 2398         p->p_flag |= P_SUGID;
 2399 }
 2400 
 2401 /*-
 2402  * Change a process's effective uid.
 2403  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
 2404  * References: newcred must be an exclusive credential reference for the
 2405  *             duration of the call.
 2406  */
 2407 void
 2408 change_euid(struct ucred *newcred, struct uidinfo *euip)
 2409 {
 2410 
 2411         newcred->cr_uid = euip->ui_uid;
 2412         uihold(euip);
 2413         uifree(newcred->cr_uidinfo);
 2414         newcred->cr_uidinfo = euip;
 2415 }
 2416 
 2417 /*-
 2418  * Change a process's effective gid.
 2419  * Side effects: newcred->cr_gid will be modified.
 2420  * References: newcred must be an exclusive credential reference for the
 2421  *             duration of the call.
 2422  */
 2423 void
 2424 change_egid(struct ucred *newcred, gid_t egid)
 2425 {
 2426 
 2427         newcred->cr_groups[0] = egid;
 2428 }
 2429 
 2430 /*-
 2431  * Change a process's real uid.
 2432  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
 2433  *               will be updated, and the old and new cr_ruidinfo proc
 2434  *               counts will be updated.
 2435  * References: newcred must be an exclusive credential reference for the
 2436  *             duration of the call.
 2437  */
 2438 void
 2439 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
 2440 {
 2441 
 2442         (void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
 2443         newcred->cr_ruid = ruip->ui_uid;
 2444         uihold(ruip);
 2445         uifree(newcred->cr_ruidinfo);
 2446         newcred->cr_ruidinfo = ruip;
 2447         (void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
 2448 }
 2449 
 2450 /*-
 2451  * Change a process's real gid.
 2452  * Side effects: newcred->cr_rgid will be updated.
 2453  * References: newcred must be an exclusive credential reference for the
 2454  *             duration of the call.
 2455  */
 2456 void
 2457 change_rgid(struct ucred *newcred, gid_t rgid)
 2458 {
 2459 
 2460         newcred->cr_rgid = rgid;
 2461 }
 2462 
 2463 /*-
 2464  * Change a process's saved uid.
 2465  * Side effects: newcred->cr_svuid will be updated.
 2466  * References: newcred must be an exclusive credential reference for the
 2467  *             duration of the call.
 2468  */
 2469 void
 2470 change_svuid(struct ucred *newcred, uid_t svuid)
 2471 {
 2472 
 2473         newcred->cr_svuid = svuid;
 2474 }
 2475 
 2476 /*-
 2477  * Change a process's saved gid.
 2478  * Side effects: newcred->cr_svgid will be updated.
 2479  * References: newcred must be an exclusive credential reference for the
 2480  *             duration of the call.
 2481  */
 2482 void
 2483 change_svgid(struct ucred *newcred, gid_t svgid)
 2484 {
 2485 
 2486         newcred->cr_svgid = svgid;
 2487 }

Cache object: a8f58bad1b4c9a5e5aa9f154faf4fe8e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.