The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_prot.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
    3  *      The Regents of the University of California.
    4  * (c) UNIX System Laboratories, Inc.
    5  * Copyright (c) 2000-2001 Robert N. M. Watson.
    6  * All rights reserved.
    7  *
    8  * All or some portions of this file are derived from material licensed
    9  * to the University of California by American Telephone and Telegraph
   10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   11  * the permission of UNIX System Laboratories, Inc.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 4. Neither the name of the University nor the names of its contributors
   22  *    may be used to endorse or promote products derived from this software
   23  *    without specific prior written permission.
   24  *
   25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   35  * SUCH DAMAGE.
   36  *
   37  *      @(#)kern_prot.c 8.6 (Berkeley) 1/21/94
   38  */
   39 
   40 /*
   41  * System calls related to processes and protection
   42  */
   43 
   44 #include <sys/cdefs.h>
   45 __FBSDID("$FreeBSD$");
   46 
   47 #include "opt_compat.h"
   48 #include "opt_inet.h"
   49 #include "opt_inet6.h"
   50 
   51 #include <sys/param.h>
   52 #include <sys/systm.h>
   53 #include <sys/acct.h>
   54 #include <sys/kdb.h>
   55 #include <sys/kernel.h>
   56 #include <sys/lock.h>
   57 #include <sys/malloc.h>
   58 #include <sys/mutex.h>
   59 #include <sys/refcount.h>
   60 #include <sys/sx.h>
   61 #include <sys/priv.h>
   62 #include <sys/proc.h>
   63 #include <sys/sysproto.h>
   64 #include <sys/jail.h>
   65 #include <sys/pioctl.h>
   66 #include <sys/resourcevar.h>
   67 #include <sys/socket.h>
   68 #include <sys/socketvar.h>
   69 #include <sys/syscallsubr.h>
   70 #include <sys/sysctl.h>
   71 
   72 #if defined(INET) || defined(INET6)
   73 #include <netinet/in.h>
   74 #include <netinet/in_pcb.h>
   75 #endif
   76 
   77 #include <security/audit/audit.h>
   78 #include <security/mac/mac_framework.h>
   79 
   80 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
   81 
   82 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW, 0, "BSD security policy");
   83 
   84 static void crextend(struct ucred *cr, int n);
   85 static void crsetgroups_locked(struct ucred *cr, int ngrp,
   86     gid_t *groups);
   87 
   88 #ifndef _SYS_SYSPROTO_H_
   89 struct getpid_args {
   90         int     dummy;
   91 };
   92 #endif
   93 /* ARGSUSED */
   94 int
   95 getpid(struct thread *td, struct getpid_args *uap)
   96 {
   97         struct proc *p = td->td_proc;
   98 
   99         td->td_retval[0] = p->p_pid;
  100 #if defined(COMPAT_43)
  101         PROC_LOCK(p);
  102         td->td_retval[1] = p->p_pptr->p_pid;
  103         PROC_UNLOCK(p);
  104 #endif
  105         return (0);
  106 }
  107 
  108 #ifndef _SYS_SYSPROTO_H_
  109 struct getppid_args {
  110         int     dummy;
  111 };
  112 #endif
  113 /* ARGSUSED */
  114 int
  115 getppid(struct thread *td, struct getppid_args *uap)
  116 {
  117         struct proc *p = td->td_proc;
  118 
  119         PROC_LOCK(p);
  120         td->td_retval[0] = p->p_pptr->p_pid;
  121         PROC_UNLOCK(p);
  122         return (0);
  123 }
  124 
  125 /*
  126  * Get process group ID; note that POSIX getpgrp takes no parameter.
  127  */
  128 #ifndef _SYS_SYSPROTO_H_
  129 struct getpgrp_args {
  130         int     dummy;
  131 };
  132 #endif
  133 int
  134 getpgrp(struct thread *td, struct getpgrp_args *uap)
  135 {
  136         struct proc *p = td->td_proc;
  137 
  138         PROC_LOCK(p);
  139         td->td_retval[0] = p->p_pgrp->pg_id;
  140         PROC_UNLOCK(p);
  141         return (0);
  142 }
  143 
  144 /* Get an arbitary pid's process group id */
  145 #ifndef _SYS_SYSPROTO_H_
  146 struct getpgid_args {
  147         pid_t   pid;
  148 };
  149 #endif
  150 int
  151 getpgid(struct thread *td, struct getpgid_args *uap)
  152 {
  153         struct proc *p;
  154         int error;
  155 
  156         if (uap->pid == 0) {
  157                 p = td->td_proc;
  158                 PROC_LOCK(p);
  159         } else {
  160                 p = pfind(uap->pid);
  161                 if (p == NULL)
  162                         return (ESRCH);
  163                 error = p_cansee(td, p);
  164                 if (error) {
  165                         PROC_UNLOCK(p);
  166                         return (error);
  167                 }
  168         }
  169         td->td_retval[0] = p->p_pgrp->pg_id;
  170         PROC_UNLOCK(p);
  171         return (0);
  172 }
  173 
  174 /*
  175  * Get an arbitary pid's session id.
  176  */
  177 #ifndef _SYS_SYSPROTO_H_
  178 struct getsid_args {
  179         pid_t   pid;
  180 };
  181 #endif
  182 int
  183 getsid(struct thread *td, struct getsid_args *uap)
  184 {
  185         struct proc *p;
  186         int error;
  187 
  188         if (uap->pid == 0) {
  189                 p = td->td_proc;
  190                 PROC_LOCK(p);
  191         } else {
  192                 p = pfind(uap->pid);
  193                 if (p == NULL)
  194                         return (ESRCH);
  195                 error = p_cansee(td, p);
  196                 if (error) {
  197                         PROC_UNLOCK(p);
  198                         return (error);
  199                 }
  200         }
  201         td->td_retval[0] = p->p_session->s_sid;
  202         PROC_UNLOCK(p);
  203         return (0);
  204 }
  205 
  206 #ifndef _SYS_SYSPROTO_H_
  207 struct getuid_args {
  208         int     dummy;
  209 };
  210 #endif
  211 /* ARGSUSED */
  212 int
  213 getuid(struct thread *td, struct getuid_args *uap)
  214 {
  215 
  216         td->td_retval[0] = td->td_ucred->cr_ruid;
  217 #if defined(COMPAT_43)
  218         td->td_retval[1] = td->td_ucred->cr_uid;
  219 #endif
  220         return (0);
  221 }
  222 
  223 #ifndef _SYS_SYSPROTO_H_
  224 struct geteuid_args {
  225         int     dummy;
  226 };
  227 #endif
  228 /* ARGSUSED */
  229 int
  230 geteuid(struct thread *td, struct geteuid_args *uap)
  231 {
  232 
  233         td->td_retval[0] = td->td_ucred->cr_uid;
  234         return (0);
  235 }
  236 
  237 #ifndef _SYS_SYSPROTO_H_
  238 struct getgid_args {
  239         int     dummy;
  240 };
  241 #endif
  242 /* ARGSUSED */
  243 int
  244 getgid(struct thread *td, struct getgid_args *uap)
  245 {
  246 
  247         td->td_retval[0] = td->td_ucred->cr_rgid;
  248 #if defined(COMPAT_43)
  249         td->td_retval[1] = td->td_ucred->cr_groups[0];
  250 #endif
  251         return (0);
  252 }
  253 
  254 /*
  255  * Get effective group ID.  The "egid" is groups[0], and could be obtained
  256  * via getgroups.  This syscall exists because it is somewhat painful to do
  257  * correctly in a library function.
  258  */
  259 #ifndef _SYS_SYSPROTO_H_
  260 struct getegid_args {
  261         int     dummy;
  262 };
  263 #endif
  264 /* ARGSUSED */
  265 int
  266 getegid(struct thread *td, struct getegid_args *uap)
  267 {
  268 
  269         td->td_retval[0] = td->td_ucred->cr_groups[0];
  270         return (0);
  271 }
  272 
  273 #ifndef _SYS_SYSPROTO_H_
  274 struct getgroups_args {
  275         u_int   gidsetsize;
  276         gid_t   *gidset;
  277 };
  278 #endif
  279 int
  280 getgroups(struct thread *td, register struct getgroups_args *uap)
  281 {
  282         gid_t *groups;
  283         u_int ngrp;
  284         int error;
  285 
  286         if (uap->gidsetsize < td->td_ucred->cr_ngroups) {
  287                 if (uap->gidsetsize == 0)
  288                         ngrp = 0;
  289                 else
  290                         return (EINVAL);
  291         } else
  292                 ngrp = td->td_ucred->cr_ngroups;
  293         groups = malloc(ngrp * sizeof(*groups), M_TEMP, M_WAITOK);
  294         error = kern_getgroups(td, &ngrp, groups);
  295         if (error)
  296                 goto out;
  297         if (uap->gidsetsize > 0)
  298                 error = copyout(groups, uap->gidset, ngrp * sizeof(gid_t));
  299         if (error == 0)
  300                 td->td_retval[0] = ngrp;
  301 out:
  302         free(groups, M_TEMP);
  303         return (error);
  304 }
  305 
  306 int
  307 kern_getgroups(struct thread *td, u_int *ngrp, gid_t *groups)
  308 {
  309         struct ucred *cred;
  310 
  311         cred = td->td_ucred;
  312         if (*ngrp == 0) {
  313                 *ngrp = cred->cr_ngroups;
  314                 return (0);
  315         }
  316         if (*ngrp < cred->cr_ngroups)
  317                 return (EINVAL);
  318         *ngrp = cred->cr_ngroups;
  319         bcopy(cred->cr_groups, groups, *ngrp * sizeof(gid_t));
  320         return (0);
  321 }
  322 
  323 #ifndef _SYS_SYSPROTO_H_
  324 struct setsid_args {
  325         int     dummy;
  326 };
  327 #endif
  328 /* ARGSUSED */
  329 int
  330 setsid(register struct thread *td, struct setsid_args *uap)
  331 {
  332         struct pgrp *pgrp;
  333         int error;
  334         struct proc *p = td->td_proc;
  335         struct pgrp *newpgrp;
  336         struct session *newsess;
  337 
  338         error = 0;
  339         pgrp = NULL;
  340 
  341         newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
  342         newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
  343 
  344         sx_xlock(&proctree_lock);
  345 
  346         if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
  347                 if (pgrp != NULL)
  348                         PGRP_UNLOCK(pgrp);
  349                 error = EPERM;
  350         } else {
  351                 (void)enterpgrp(p, p->p_pid, newpgrp, newsess);
  352                 td->td_retval[0] = p->p_pid;
  353                 newpgrp = NULL;
  354                 newsess = NULL;
  355         }
  356 
  357         sx_xunlock(&proctree_lock);
  358 
  359         if (newpgrp != NULL)
  360                 free(newpgrp, M_PGRP);
  361         if (newsess != NULL)
  362                 free(newsess, M_SESSION);
  363 
  364         return (error);
  365 }
  366 
  367 /*
  368  * set process group (setpgid/old setpgrp)
  369  *
  370  * caller does setpgid(targpid, targpgid)
  371  *
  372  * pid must be caller or child of caller (ESRCH)
  373  * if a child
  374  *      pid must be in same session (EPERM)
  375  *      pid can't have done an exec (EACCES)
  376  * if pgid != pid
  377  *      there must exist some pid in same session having pgid (EPERM)
  378  * pid must not be session leader (EPERM)
  379  */
  380 #ifndef _SYS_SYSPROTO_H_
  381 struct setpgid_args {
  382         int     pid;            /* target process id */
  383         int     pgid;           /* target pgrp id */
  384 };
  385 #endif
  386 /* ARGSUSED */
  387 int
  388 setpgid(struct thread *td, register struct setpgid_args *uap)
  389 {
  390         struct proc *curp = td->td_proc;
  391         register struct proc *targp;    /* target process */
  392         register struct pgrp *pgrp;     /* target pgrp */
  393         int error;
  394         struct pgrp *newpgrp;
  395 
  396         if (uap->pgid < 0)
  397                 return (EINVAL);
  398 
  399         error = 0;
  400 
  401         newpgrp = malloc(sizeof(struct pgrp), M_PGRP, M_WAITOK | M_ZERO);
  402 
  403         sx_xlock(&proctree_lock);
  404         if (uap->pid != 0 && uap->pid != curp->p_pid) {
  405                 if ((targp = pfind(uap->pid)) == NULL) {
  406                         error = ESRCH;
  407                         goto done;
  408                 }
  409                 if (!inferior(targp)) {
  410                         PROC_UNLOCK(targp);
  411                         error = ESRCH;
  412                         goto done;
  413                 }
  414                 if ((error = p_cansee(td, targp))) {
  415                         PROC_UNLOCK(targp);
  416                         goto done;
  417                 }
  418                 if (targp->p_pgrp == NULL ||
  419                     targp->p_session != curp->p_session) {
  420                         PROC_UNLOCK(targp);
  421                         error = EPERM;
  422                         goto done;
  423                 }
  424                 if (targp->p_flag & P_EXEC) {
  425                         PROC_UNLOCK(targp);
  426                         error = EACCES;
  427                         goto done;
  428                 }
  429                 PROC_UNLOCK(targp);
  430         } else
  431                 targp = curp;
  432         if (SESS_LEADER(targp)) {
  433                 error = EPERM;
  434                 goto done;
  435         }
  436         if (uap->pgid == 0)
  437                 uap->pgid = targp->p_pid;
  438         if ((pgrp = pgfind(uap->pgid)) == NULL) {
  439                 if (uap->pgid == targp->p_pid) {
  440                         error = enterpgrp(targp, uap->pgid, newpgrp,
  441                             NULL);
  442                         if (error == 0)
  443                                 newpgrp = NULL;
  444                 } else
  445                         error = EPERM;
  446         } else {
  447                 if (pgrp == targp->p_pgrp) {
  448                         PGRP_UNLOCK(pgrp);
  449                         goto done;
  450                 }
  451                 if (pgrp->pg_id != targp->p_pid &&
  452                     pgrp->pg_session != curp->p_session) {
  453                         PGRP_UNLOCK(pgrp);
  454                         error = EPERM;
  455                         goto done;
  456                 }
  457                 PGRP_UNLOCK(pgrp);
  458                 error = enterthispgrp(targp, pgrp);
  459         }
  460 done:
  461         sx_xunlock(&proctree_lock);
  462         KASSERT((error == 0) || (newpgrp != NULL),
  463             ("setpgid failed and newpgrp is NULL"));
  464         if (newpgrp != NULL)
  465                 free(newpgrp, M_PGRP);
  466         return (error);
  467 }
  468 
  469 /*
  470  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
  471  * compatible.  It says that setting the uid/gid to euid/egid is a special
  472  * case of "appropriate privilege".  Once the rules are expanded out, this
  473  * basically means that setuid(nnn) sets all three id's, in all permitted
  474  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
  475  * does not set the saved id - this is dangerous for traditional BSD
  476  * programs.  For this reason, we *really* do not want to set
  477  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
  478  */
  479 #define POSIX_APPENDIX_B_4_2_2
  480 
  481 #ifndef _SYS_SYSPROTO_H_
  482 struct setuid_args {
  483         uid_t   uid;
  484 };
  485 #endif
  486 /* ARGSUSED */
  487 int
  488 setuid(struct thread *td, struct setuid_args *uap)
  489 {
  490         struct proc *p = td->td_proc;
  491         struct ucred *newcred, *oldcred;
  492         uid_t uid;
  493         struct uidinfo *uip;
  494         int error;
  495 
  496         uid = uap->uid;
  497         AUDIT_ARG_UID(uid);
  498         newcred = crget();
  499         uip = uifind(uid);
  500         PROC_LOCK(p);
  501         /*
  502          * Copy credentials so other references do not see our changes.
  503          */
  504         oldcred = crcopysafe(p, newcred);
  505 
  506 #ifdef MAC
  507         error = mac_cred_check_setuid(oldcred, uid);
  508         if (error)
  509                 goto fail;
  510 #endif
  511 
  512         /*
  513          * See if we have "permission" by POSIX 1003.1 rules.
  514          *
  515          * Note that setuid(geteuid()) is a special case of
  516          * "appropriate privileges" in appendix B.4.2.2.  We need
  517          * to use this clause to be compatible with traditional BSD
  518          * semantics.  Basically, it means that "setuid(xx)" sets all
  519          * three id's (assuming you have privs).
  520          *
  521          * Notes on the logic.  We do things in three steps.
  522          * 1: We determine if the euid is going to change, and do EPERM
  523          *    right away.  We unconditionally change the euid later if this
  524          *    test is satisfied, simplifying that part of the logic.
  525          * 2: We determine if the real and/or saved uids are going to
  526          *    change.  Determined by compile options.
  527          * 3: Change euid last. (after tests in #2 for "appropriate privs")
  528          */
  529         if (uid != oldcred->cr_ruid &&          /* allow setuid(getuid()) */
  530 #ifdef _POSIX_SAVED_IDS
  531             uid != oldcred->cr_svuid &&         /* allow setuid(saved gid) */
  532 #endif
  533 #ifdef POSIX_APPENDIX_B_4_2_2   /* Use BSD-compat clause from B.4.2.2 */
  534             uid != oldcred->cr_uid &&           /* allow setuid(geteuid()) */
  535 #endif
  536             (error = priv_check_cred(oldcred, PRIV_CRED_SETUID, 0)) != 0)
  537                 goto fail;
  538 
  539 #ifdef _POSIX_SAVED_IDS
  540         /*
  541          * Do we have "appropriate privileges" (are we root or uid == euid)
  542          * If so, we are changing the real uid and/or saved uid.
  543          */
  544         if (
  545 #ifdef POSIX_APPENDIX_B_4_2_2   /* Use the clause from B.4.2.2 */
  546             uid == oldcred->cr_uid ||
  547 #endif
  548             /* We are using privs. */
  549             priv_check_cred(oldcred, PRIV_CRED_SETUID, 0) == 0)
  550 #endif
  551         {
  552                 /*
  553                  * Set the real uid and transfer proc count to new user.
  554                  */
  555                 if (uid != oldcred->cr_ruid) {
  556                         change_ruid(newcred, uip);
  557                         setsugid(p);
  558                 }
  559                 /*
  560                  * Set saved uid
  561                  *
  562                  * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
  563                  * the security of seteuid() depends on it.  B.4.2.2 says it
  564                  * is important that we should do this.
  565                  */
  566                 if (uid != oldcred->cr_svuid) {
  567                         change_svuid(newcred, uid);
  568                         setsugid(p);
  569                 }
  570         }
  571 
  572         /*
  573          * In all permitted cases, we are changing the euid.
  574          */
  575         if (uid != oldcred->cr_uid) {
  576                 change_euid(newcred, uip);
  577                 setsugid(p);
  578         }
  579         p->p_ucred = newcred;
  580         PROC_UNLOCK(p);
  581         uifree(uip);
  582         crfree(oldcred);
  583         return (0);
  584 
  585 fail:
  586         PROC_UNLOCK(p);
  587         uifree(uip);
  588         crfree(newcred);
  589         return (error);
  590 }
  591 
  592 #ifndef _SYS_SYSPROTO_H_
  593 struct seteuid_args {
  594         uid_t   euid;
  595 };
  596 #endif
  597 /* ARGSUSED */
  598 int
  599 seteuid(struct thread *td, struct seteuid_args *uap)
  600 {
  601         struct proc *p = td->td_proc;
  602         struct ucred *newcred, *oldcred;
  603         uid_t euid;
  604         struct uidinfo *euip;
  605         int error;
  606 
  607         euid = uap->euid;
  608         AUDIT_ARG_EUID(euid);
  609         newcred = crget();
  610         euip = uifind(euid);
  611         PROC_LOCK(p);
  612         /*
  613          * Copy credentials so other references do not see our changes.
  614          */
  615         oldcred = crcopysafe(p, newcred);
  616 
  617 #ifdef MAC
  618         error = mac_cred_check_seteuid(oldcred, euid);
  619         if (error)
  620                 goto fail;
  621 #endif
  622 
  623         if (euid != oldcred->cr_ruid &&         /* allow seteuid(getuid()) */
  624             euid != oldcred->cr_svuid &&        /* allow seteuid(saved uid) */
  625             (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID, 0)) != 0)
  626                 goto fail;
  627 
  628         /*
  629          * Everything's okay, do it.
  630          */
  631         if (oldcred->cr_uid != euid) {
  632                 change_euid(newcred, euip);
  633                 setsugid(p);
  634         }
  635         p->p_ucred = newcred;
  636         PROC_UNLOCK(p);
  637         uifree(euip);
  638         crfree(oldcred);
  639         return (0);
  640 
  641 fail:
  642         PROC_UNLOCK(p);
  643         uifree(euip);
  644         crfree(newcred);
  645         return (error);
  646 }
  647 
  648 #ifndef _SYS_SYSPROTO_H_
  649 struct setgid_args {
  650         gid_t   gid;
  651 };
  652 #endif
  653 /* ARGSUSED */
  654 int
  655 setgid(struct thread *td, struct setgid_args *uap)
  656 {
  657         struct proc *p = td->td_proc;
  658         struct ucred *newcred, *oldcred;
  659         gid_t gid;
  660         int error;
  661 
  662         gid = uap->gid;
  663         AUDIT_ARG_GID(gid);
  664         newcred = crget();
  665         PROC_LOCK(p);
  666         oldcred = crcopysafe(p, newcred);
  667 
  668 #ifdef MAC
  669         error = mac_cred_check_setgid(oldcred, gid);
  670         if (error)
  671                 goto fail;
  672 #endif
  673 
  674         /*
  675          * See if we have "permission" by POSIX 1003.1 rules.
  676          *
  677          * Note that setgid(getegid()) is a special case of
  678          * "appropriate privileges" in appendix B.4.2.2.  We need
  679          * to use this clause to be compatible with traditional BSD
  680          * semantics.  Basically, it means that "setgid(xx)" sets all
  681          * three id's (assuming you have privs).
  682          *
  683          * For notes on the logic here, see setuid() above.
  684          */
  685         if (gid != oldcred->cr_rgid &&          /* allow setgid(getgid()) */
  686 #ifdef _POSIX_SAVED_IDS
  687             gid != oldcred->cr_svgid &&         /* allow setgid(saved gid) */
  688 #endif
  689 #ifdef POSIX_APPENDIX_B_4_2_2   /* Use BSD-compat clause from B.4.2.2 */
  690             gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
  691 #endif
  692             (error = priv_check_cred(oldcred, PRIV_CRED_SETGID, 0)) != 0)
  693                 goto fail;
  694 
  695 #ifdef _POSIX_SAVED_IDS
  696         /*
  697          * Do we have "appropriate privileges" (are we root or gid == egid)
  698          * If so, we are changing the real uid and saved gid.
  699          */
  700         if (
  701 #ifdef POSIX_APPENDIX_B_4_2_2   /* use the clause from B.4.2.2 */
  702             gid == oldcred->cr_groups[0] ||
  703 #endif
  704             /* We are using privs. */
  705             priv_check_cred(oldcred, PRIV_CRED_SETGID, 0) == 0)
  706 #endif
  707         {
  708                 /*
  709                  * Set real gid
  710                  */
  711                 if (oldcred->cr_rgid != gid) {
  712                         change_rgid(newcred, gid);
  713                         setsugid(p);
  714                 }
  715                 /*
  716                  * Set saved gid
  717                  *
  718                  * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
  719                  * the security of setegid() depends on it.  B.4.2.2 says it
  720                  * is important that we should do this.
  721                  */
  722                 if (oldcred->cr_svgid != gid) {
  723                         change_svgid(newcred, gid);
  724                         setsugid(p);
  725                 }
  726         }
  727         /*
  728          * In all cases permitted cases, we are changing the egid.
  729          * Copy credentials so other references do not see our changes.
  730          */
  731         if (oldcred->cr_groups[0] != gid) {
  732                 change_egid(newcred, gid);
  733                 setsugid(p);
  734         }
  735         p->p_ucred = newcred;
  736         PROC_UNLOCK(p);
  737         crfree(oldcred);
  738         return (0);
  739 
  740 fail:
  741         PROC_UNLOCK(p);
  742         crfree(newcred);
  743         return (error);
  744 }
  745 
  746 #ifndef _SYS_SYSPROTO_H_
  747 struct setegid_args {
  748         gid_t   egid;
  749 };
  750 #endif
  751 /* ARGSUSED */
  752 int
  753 setegid(struct thread *td, struct setegid_args *uap)
  754 {
  755         struct proc *p = td->td_proc;
  756         struct ucred *newcred, *oldcred;
  757         gid_t egid;
  758         int error;
  759 
  760         egid = uap->egid;
  761         AUDIT_ARG_EGID(egid);
  762         newcred = crget();
  763         PROC_LOCK(p);
  764         oldcred = crcopysafe(p, newcred);
  765 
  766 #ifdef MAC
  767         error = mac_cred_check_setegid(oldcred, egid);
  768         if (error)
  769                 goto fail;
  770 #endif
  771 
  772         if (egid != oldcred->cr_rgid &&         /* allow setegid(getgid()) */
  773             egid != oldcred->cr_svgid &&        /* allow setegid(saved gid) */
  774             (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID, 0)) != 0)
  775                 goto fail;
  776 
  777         if (oldcred->cr_groups[0] != egid) {
  778                 change_egid(newcred, egid);
  779                 setsugid(p);
  780         }
  781         p->p_ucred = newcred;
  782         PROC_UNLOCK(p);
  783         crfree(oldcred);
  784         return (0);
  785 
  786 fail:
  787         PROC_UNLOCK(p);
  788         crfree(newcred);
  789         return (error);
  790 }
  791 
  792 #ifndef _SYS_SYSPROTO_H_
  793 struct setgroups_args {
  794         u_int   gidsetsize;
  795         gid_t   *gidset;
  796 };
  797 #endif
  798 /* ARGSUSED */
  799 int
  800 setgroups(struct thread *td, struct setgroups_args *uap)
  801 {
  802         gid_t *groups = NULL;
  803         int error;
  804 
  805         if (uap->gidsetsize > ngroups_max + 1)
  806                 return (EINVAL);
  807         groups = malloc(uap->gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
  808         error = copyin(uap->gidset, groups, uap->gidsetsize * sizeof(gid_t));
  809         if (error)
  810                 goto out;
  811         error = kern_setgroups(td, uap->gidsetsize, groups);
  812 out:
  813         free(groups, M_TEMP);
  814         return (error);
  815 }
  816 
  817 int
  818 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
  819 {
  820         struct proc *p = td->td_proc;
  821         struct ucred *newcred, *oldcred;
  822         int error;
  823 
  824         if (ngrp > ngroups_max + 1)
  825                 return (EINVAL);
  826         AUDIT_ARG_GROUPSET(groups, ngrp);
  827         newcred = crget();
  828         crextend(newcred, ngrp);
  829         PROC_LOCK(p);
  830         oldcred = crcopysafe(p, newcred);
  831 
  832 #ifdef MAC
  833         error = mac_cred_check_setgroups(oldcred, ngrp, groups);
  834         if (error)
  835                 goto fail;
  836 #endif
  837 
  838         error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS, 0);
  839         if (error)
  840                 goto fail;
  841 
  842         if (ngrp < 1) {
  843                 /*
  844                  * setgroups(0, NULL) is a legitimate way of clearing the
  845                  * groups vector on non-BSD systems (which generally do not
  846                  * have the egid in the groups[0]).  We risk security holes
  847                  * when running non-BSD software if we do not do the same.
  848                  */
  849                 newcred->cr_ngroups = 1;
  850         } else {
  851                 crsetgroups_locked(newcred, ngrp, groups);
  852         }
  853         setsugid(p);
  854         p->p_ucred = newcred;
  855         PROC_UNLOCK(p);
  856         crfree(oldcred);
  857         return (0);
  858 
  859 fail:
  860         PROC_UNLOCK(p);
  861         crfree(newcred);
  862         return (error);
  863 }
  864 
  865 #ifndef _SYS_SYSPROTO_H_
  866 struct setreuid_args {
  867         uid_t   ruid;
  868         uid_t   euid;
  869 };
  870 #endif
  871 /* ARGSUSED */
  872 int
  873 setreuid(register struct thread *td, struct setreuid_args *uap)
  874 {
  875         struct proc *p = td->td_proc;
  876         struct ucred *newcred, *oldcred;
  877         uid_t euid, ruid;
  878         struct uidinfo *euip, *ruip;
  879         int error;
  880 
  881         euid = uap->euid;
  882         ruid = uap->ruid;
  883         AUDIT_ARG_EUID(euid);
  884         AUDIT_ARG_RUID(ruid);
  885         newcred = crget();
  886         euip = uifind(euid);
  887         ruip = uifind(ruid);
  888         PROC_LOCK(p);
  889         oldcred = crcopysafe(p, newcred);
  890 
  891 #ifdef MAC
  892         error = mac_cred_check_setreuid(oldcred, ruid, euid);
  893         if (error)
  894                 goto fail;
  895 #endif
  896 
  897         if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
  898               ruid != oldcred->cr_svuid) ||
  899              (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
  900               euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
  901             (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID, 0)) != 0)
  902                 goto fail;
  903 
  904         if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
  905                 change_euid(newcred, euip);
  906                 setsugid(p);
  907         }
  908         if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
  909                 change_ruid(newcred, ruip);
  910                 setsugid(p);
  911         }
  912         if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
  913             newcred->cr_svuid != newcred->cr_uid) {
  914                 change_svuid(newcred, newcred->cr_uid);
  915                 setsugid(p);
  916         }
  917         p->p_ucred = newcred;
  918         PROC_UNLOCK(p);
  919         uifree(ruip);
  920         uifree(euip);
  921         crfree(oldcred);
  922         return (0);
  923 
  924 fail:
  925         PROC_UNLOCK(p);
  926         uifree(ruip);
  927         uifree(euip);
  928         crfree(newcred);
  929         return (error);
  930 }
  931 
  932 #ifndef _SYS_SYSPROTO_H_
  933 struct setregid_args {
  934         gid_t   rgid;
  935         gid_t   egid;
  936 };
  937 #endif
  938 /* ARGSUSED */
  939 int
  940 setregid(register struct thread *td, struct setregid_args *uap)
  941 {
  942         struct proc *p = td->td_proc;
  943         struct ucred *newcred, *oldcred;
  944         gid_t egid, rgid;
  945         int error;
  946 
  947         egid = uap->egid;
  948         rgid = uap->rgid;
  949         AUDIT_ARG_EGID(egid);
  950         AUDIT_ARG_RGID(rgid);
  951         newcred = crget();
  952         PROC_LOCK(p);
  953         oldcred = crcopysafe(p, newcred);
  954 
  955 #ifdef MAC
  956         error = mac_cred_check_setregid(oldcred, rgid, egid);
  957         if (error)
  958                 goto fail;
  959 #endif
  960 
  961         if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
  962             rgid != oldcred->cr_svgid) ||
  963              (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
  964              egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
  965             (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID, 0)) != 0)
  966                 goto fail;
  967 
  968         if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
  969                 change_egid(newcred, egid);
  970                 setsugid(p);
  971         }
  972         if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
  973                 change_rgid(newcred, rgid);
  974                 setsugid(p);
  975         }
  976         if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
  977             newcred->cr_svgid != newcred->cr_groups[0]) {
  978                 change_svgid(newcred, newcred->cr_groups[0]);
  979                 setsugid(p);
  980         }
  981         p->p_ucred = newcred;
  982         PROC_UNLOCK(p);
  983         crfree(oldcred);
  984         return (0);
  985 
  986 fail:
  987         PROC_UNLOCK(p);
  988         crfree(newcred);
  989         return (error);
  990 }
  991 
  992 /*
  993  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
  994  * uid is explicit.
  995  */
  996 #ifndef _SYS_SYSPROTO_H_
  997 struct setresuid_args {
  998         uid_t   ruid;
  999         uid_t   euid;
 1000         uid_t   suid;
 1001 };
 1002 #endif
 1003 /* ARGSUSED */
 1004 int
 1005 setresuid(register struct thread *td, struct setresuid_args *uap)
 1006 {
 1007         struct proc *p = td->td_proc;
 1008         struct ucred *newcred, *oldcred;
 1009         uid_t euid, ruid, suid;
 1010         struct uidinfo *euip, *ruip;
 1011         int error;
 1012 
 1013         euid = uap->euid;
 1014         ruid = uap->ruid;
 1015         suid = uap->suid;
 1016         AUDIT_ARG_EUID(euid);
 1017         AUDIT_ARG_RUID(ruid);
 1018         AUDIT_ARG_SUID(suid);
 1019         newcred = crget();
 1020         euip = uifind(euid);
 1021         ruip = uifind(ruid);
 1022         PROC_LOCK(p);
 1023         oldcred = crcopysafe(p, newcred);
 1024 
 1025 #ifdef MAC
 1026         error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
 1027         if (error)
 1028                 goto fail;
 1029 #endif
 1030 
 1031         if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
 1032              ruid != oldcred->cr_svuid &&
 1033               ruid != oldcred->cr_uid) ||
 1034              (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
 1035             euid != oldcred->cr_svuid &&
 1036               euid != oldcred->cr_uid) ||
 1037              (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
 1038             suid != oldcred->cr_svuid &&
 1039               suid != oldcred->cr_uid)) &&
 1040             (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID, 0)) != 0)
 1041                 goto fail;
 1042 
 1043         if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
 1044                 change_euid(newcred, euip);
 1045                 setsugid(p);
 1046         }
 1047         if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
 1048                 change_ruid(newcred, ruip);
 1049                 setsugid(p);
 1050         }
 1051         if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
 1052                 change_svuid(newcred, suid);
 1053                 setsugid(p);
 1054         }
 1055         p->p_ucred = newcred;
 1056         PROC_UNLOCK(p);
 1057         uifree(ruip);
 1058         uifree(euip);
 1059         crfree(oldcred);
 1060         return (0);
 1061 
 1062 fail:
 1063         PROC_UNLOCK(p);
 1064         uifree(ruip);
 1065         uifree(euip);
 1066         crfree(newcred);
 1067         return (error);
 1068 
 1069 }
 1070 
 1071 /*
 1072  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
 1073  * gid is explicit.
 1074  */
 1075 #ifndef _SYS_SYSPROTO_H_
 1076 struct setresgid_args {
 1077         gid_t   rgid;
 1078         gid_t   egid;
 1079         gid_t   sgid;
 1080 };
 1081 #endif
 1082 /* ARGSUSED */
 1083 int
 1084 setresgid(register struct thread *td, struct setresgid_args *uap)
 1085 {
 1086         struct proc *p = td->td_proc;
 1087         struct ucred *newcred, *oldcred;
 1088         gid_t egid, rgid, sgid;
 1089         int error;
 1090 
 1091         egid = uap->egid;
 1092         rgid = uap->rgid;
 1093         sgid = uap->sgid;
 1094         AUDIT_ARG_EGID(egid);
 1095         AUDIT_ARG_RGID(rgid);
 1096         AUDIT_ARG_SGID(sgid);
 1097         newcred = crget();
 1098         PROC_LOCK(p);
 1099         oldcred = crcopysafe(p, newcred);
 1100 
 1101 #ifdef MAC
 1102         error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
 1103         if (error)
 1104                 goto fail;
 1105 #endif
 1106 
 1107         if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
 1108               rgid != oldcred->cr_svgid &&
 1109               rgid != oldcred->cr_groups[0]) ||
 1110              (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
 1111               egid != oldcred->cr_svgid &&
 1112               egid != oldcred->cr_groups[0]) ||
 1113              (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
 1114               sgid != oldcred->cr_svgid &&
 1115               sgid != oldcred->cr_groups[0])) &&
 1116             (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID, 0)) != 0)
 1117                 goto fail;
 1118 
 1119         if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
 1120                 change_egid(newcred, egid);
 1121                 setsugid(p);
 1122         }
 1123         if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
 1124                 change_rgid(newcred, rgid);
 1125                 setsugid(p);
 1126         }
 1127         if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
 1128                 change_svgid(newcred, sgid);
 1129                 setsugid(p);
 1130         }
 1131         p->p_ucred = newcred;
 1132         PROC_UNLOCK(p);
 1133         crfree(oldcred);
 1134         return (0);
 1135 
 1136 fail:
 1137         PROC_UNLOCK(p);
 1138         crfree(newcred);
 1139         return (error);
 1140 }
 1141 
 1142 #ifndef _SYS_SYSPROTO_H_
 1143 struct getresuid_args {
 1144         uid_t   *ruid;
 1145         uid_t   *euid;
 1146         uid_t   *suid;
 1147 };
 1148 #endif
 1149 /* ARGSUSED */
 1150 int
 1151 getresuid(register struct thread *td, struct getresuid_args *uap)
 1152 {
 1153         struct ucred *cred;
 1154         int error1 = 0, error2 = 0, error3 = 0;
 1155 
 1156         cred = td->td_ucred;
 1157         if (uap->ruid)
 1158                 error1 = copyout(&cred->cr_ruid,
 1159                     uap->ruid, sizeof(cred->cr_ruid));
 1160         if (uap->euid)
 1161                 error2 = copyout(&cred->cr_uid,
 1162                     uap->euid, sizeof(cred->cr_uid));
 1163         if (uap->suid)
 1164                 error3 = copyout(&cred->cr_svuid,
 1165                     uap->suid, sizeof(cred->cr_svuid));
 1166         return (error1 ? error1 : error2 ? error2 : error3);
 1167 }
 1168 
 1169 #ifndef _SYS_SYSPROTO_H_
 1170 struct getresgid_args {
 1171         gid_t   *rgid;
 1172         gid_t   *egid;
 1173         gid_t   *sgid;
 1174 };
 1175 #endif
 1176 /* ARGSUSED */
 1177 int
 1178 getresgid(register struct thread *td, struct getresgid_args *uap)
 1179 {
 1180         struct ucred *cred;
 1181         int error1 = 0, error2 = 0, error3 = 0;
 1182 
 1183         cred = td->td_ucred;
 1184         if (uap->rgid)
 1185                 error1 = copyout(&cred->cr_rgid,
 1186                     uap->rgid, sizeof(cred->cr_rgid));
 1187         if (uap->egid)
 1188                 error2 = copyout(&cred->cr_groups[0],
 1189                     uap->egid, sizeof(cred->cr_groups[0]));
 1190         if (uap->sgid)
 1191                 error3 = copyout(&cred->cr_svgid,
 1192                     uap->sgid, sizeof(cred->cr_svgid));
 1193         return (error1 ? error1 : error2 ? error2 : error3);
 1194 }
 1195 
 1196 #ifndef _SYS_SYSPROTO_H_
 1197 struct issetugid_args {
 1198         int dummy;
 1199 };
 1200 #endif
 1201 /* ARGSUSED */
 1202 int
 1203 issetugid(register struct thread *td, struct issetugid_args *uap)
 1204 {
 1205         struct proc *p = td->td_proc;
 1206 
 1207         /*
 1208          * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
 1209          * we use P_SUGID because we consider changing the owners as
 1210          * "tainting" as well.
 1211          * This is significant for procs that start as root and "become"
 1212          * a user without an exec - programs cannot know *everything*
 1213          * that libc *might* have put in their data segment.
 1214          */
 1215         PROC_LOCK(p);
 1216         td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
 1217         PROC_UNLOCK(p);
 1218         return (0);
 1219 }
 1220 
 1221 int
 1222 __setugid(struct thread *td, struct __setugid_args *uap)
 1223 {
 1224 #ifdef REGRESSION
 1225         struct proc *p;
 1226 
 1227         p = td->td_proc;
 1228         switch (uap->flag) {
 1229         case 0:
 1230                 PROC_LOCK(p);
 1231                 p->p_flag &= ~P_SUGID;
 1232                 PROC_UNLOCK(p);
 1233                 return (0);
 1234         case 1:
 1235                 PROC_LOCK(p);
 1236                 p->p_flag |= P_SUGID;
 1237                 PROC_UNLOCK(p);
 1238                 return (0);
 1239         default:
 1240                 return (EINVAL);
 1241         }
 1242 #else /* !REGRESSION */
 1243 
 1244         return (ENOSYS);
 1245 #endif /* REGRESSION */
 1246 }
 1247 
 1248 /*
 1249  * Check if gid is a member of the group set.
 1250  */
 1251 int
 1252 groupmember(gid_t gid, struct ucred *cred)
 1253 {
 1254         int l;
 1255         int h;
 1256         int m;
 1257 
 1258         if (cred->cr_groups[0] == gid)
 1259                 return(1);
 1260 
 1261         /*
 1262          * If gid was not our primary group, perform a binary search
 1263          * of the supplemental groups.  This is possible because we
 1264          * sort the groups in crsetgroups().
 1265          */
 1266         l = 1;
 1267         h = cred->cr_ngroups;
 1268         while (l < h) {
 1269                 m = l + ((h - l) / 2);
 1270                 if (cred->cr_groups[m] < gid)
 1271                         l = m + 1; 
 1272                 else
 1273                         h = m; 
 1274         }
 1275         if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
 1276                 return (1);
 1277 
 1278         return (0);
 1279 }
 1280 
 1281 /*
 1282  * Test the active securelevel against a given level.  securelevel_gt()
 1283  * implements (securelevel > level).  securelevel_ge() implements
 1284  * (securelevel >= level).  Note that the logic is inverted -- these
 1285  * functions return EPERM on "success" and 0 on "failure".
 1286  *
 1287  * Due to care taken when setting the securelevel, we know that no jail will
 1288  * be less secure that its parent (or the physical system), so it is sufficient
 1289  * to test the current jail only.
 1290  *
 1291  * XXXRW: Possibly since this has to do with privilege, it should move to
 1292  * kern_priv.c.
 1293  */
 1294 int
 1295 securelevel_gt(struct ucred *cr, int level)
 1296 {
 1297 
 1298         return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
 1299 }
 1300 
 1301 int
 1302 securelevel_ge(struct ucred *cr, int level)
 1303 {
 1304 
 1305         return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
 1306 }
 1307 
 1308 /*
 1309  * 'see_other_uids' determines whether or not visibility of processes
 1310  * and sockets with credentials holding different real uids is possible
 1311  * using a variety of system MIBs.
 1312  * XXX: data declarations should be together near the beginning of the file.
 1313  */
 1314 static int      see_other_uids = 1;
 1315 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
 1316     &see_other_uids, 0,
 1317     "Unprivileged processes may see subjects/objects with different real uid");
 1318 
 1319 /*-
 1320  * Determine if u1 "can see" the subject specified by u2, according to the
 1321  * 'see_other_uids' policy.
 1322  * Returns: 0 for permitted, ESRCH otherwise
 1323  * Locks: none
 1324  * References: *u1 and *u2 must not change during the call
 1325  *             u1 may equal u2, in which case only one reference is required
 1326  */
 1327 static int
 1328 cr_seeotheruids(struct ucred *u1, struct ucred *u2)
 1329 {
 1330 
 1331         if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
 1332                 if (priv_check_cred(u1, PRIV_SEEOTHERUIDS, 0) != 0)
 1333                         return (ESRCH);
 1334         }
 1335         return (0);
 1336 }
 1337 
 1338 /*
 1339  * 'see_other_gids' determines whether or not visibility of processes
 1340  * and sockets with credentials holding different real gids is possible
 1341  * using a variety of system MIBs.
 1342  * XXX: data declarations should be together near the beginning of the file.
 1343  */
 1344 static int      see_other_gids = 1;
 1345 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
 1346     &see_other_gids, 0,
 1347     "Unprivileged processes may see subjects/objects with different real gid");
 1348 
 1349 /*
 1350  * Determine if u1 can "see" the subject specified by u2, according to the
 1351  * 'see_other_gids' policy.
 1352  * Returns: 0 for permitted, ESRCH otherwise
 1353  * Locks: none
 1354  * References: *u1 and *u2 must not change during the call
 1355  *             u1 may equal u2, in which case only one reference is required
 1356  */
 1357 static int
 1358 cr_seeothergids(struct ucred *u1, struct ucred *u2)
 1359 {
 1360         int i, match;
 1361         
 1362         if (!see_other_gids) {
 1363                 match = 0;
 1364                 for (i = 0; i < u1->cr_ngroups; i++) {
 1365                         if (groupmember(u1->cr_groups[i], u2))
 1366                                 match = 1;
 1367                         if (match)
 1368                                 break;
 1369                 }
 1370                 if (!match) {
 1371                         if (priv_check_cred(u1, PRIV_SEEOTHERGIDS, 0) != 0)
 1372                                 return (ESRCH);
 1373                 }
 1374         }
 1375         return (0);
 1376 }
 1377 
 1378 /*-
 1379  * Determine if u1 "can see" the subject specified by u2.
 1380  * Returns: 0 for permitted, an errno value otherwise
 1381  * Locks: none
 1382  * References: *u1 and *u2 must not change during the call
 1383  *             u1 may equal u2, in which case only one reference is required
 1384  */
 1385 int
 1386 cr_cansee(struct ucred *u1, struct ucred *u2)
 1387 {
 1388         int error;
 1389 
 1390         if ((error = prison_check(u1, u2)))
 1391                 return (error);
 1392 #ifdef MAC
 1393         if ((error = mac_cred_check_visible(u1, u2)))
 1394                 return (error);
 1395 #endif
 1396         if ((error = cr_seeotheruids(u1, u2)))
 1397                 return (error);
 1398         if ((error = cr_seeothergids(u1, u2)))
 1399                 return (error);
 1400         return (0);
 1401 }
 1402 
 1403 /*-
 1404  * Determine if td "can see" the subject specified by p.
 1405  * Returns: 0 for permitted, an errno value otherwise
 1406  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
 1407  *        should be curthread.
 1408  * References: td and p must be valid for the lifetime of the call
 1409  */
 1410 int
 1411 p_cansee(struct thread *td, struct proc *p)
 1412 {
 1413 
 1414         /* Wrap cr_cansee() for all functionality. */
 1415         KASSERT(td == curthread, ("%s: td not curthread", __func__));
 1416         PROC_LOCK_ASSERT(p, MA_OWNED);
 1417         return (cr_cansee(td->td_ucred, p->p_ucred));
 1418 }
 1419 
 1420 /*
 1421  * 'conservative_signals' prevents the delivery of a broad class of
 1422  * signals by unprivileged processes to processes that have changed their
 1423  * credentials since the last invocation of execve().  This can prevent
 1424  * the leakage of cached information or retained privileges as a result
 1425  * of a common class of signal-related vulnerabilities.  However, this
 1426  * may interfere with some applications that expect to be able to
 1427  * deliver these signals to peer processes after having given up
 1428  * privilege.
 1429  */
 1430 static int      conservative_signals = 1;
 1431 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
 1432     &conservative_signals, 0, "Unprivileged processes prevented from "
 1433     "sending certain signals to processes whose credentials have changed");
 1434 /*-
 1435  * Determine whether cred may deliver the specified signal to proc.
 1436  * Returns: 0 for permitted, an errno value otherwise.
 1437  * Locks: A lock must be held for proc.
 1438  * References: cred and proc must be valid for the lifetime of the call.
 1439  */
 1440 int
 1441 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
 1442 {
 1443         int error;
 1444 
 1445         PROC_LOCK_ASSERT(proc, MA_OWNED);
 1446         /*
 1447          * Jail semantics limit the scope of signalling to proc in the
 1448          * same jail as cred, if cred is in jail.
 1449          */
 1450         error = prison_check(cred, proc->p_ucred);
 1451         if (error)
 1452                 return (error);
 1453 #ifdef MAC
 1454         if ((error = mac_proc_check_signal(cred, proc, signum)))
 1455                 return (error);
 1456 #endif
 1457         if ((error = cr_seeotheruids(cred, proc->p_ucred)))
 1458                 return (error);
 1459         if ((error = cr_seeothergids(cred, proc->p_ucred)))
 1460                 return (error);
 1461 
 1462         /*
 1463          * UNIX signal semantics depend on the status of the P_SUGID
 1464          * bit on the target process.  If the bit is set, then additional
 1465          * restrictions are placed on the set of available signals.
 1466          */
 1467         if (conservative_signals && (proc->p_flag & P_SUGID)) {
 1468                 switch (signum) {
 1469                 case 0:
 1470                 case SIGKILL:
 1471                 case SIGINT:
 1472                 case SIGTERM:
 1473                 case SIGALRM:
 1474                 case SIGSTOP:
 1475                 case SIGTTIN:
 1476                 case SIGTTOU:
 1477                 case SIGTSTP:
 1478                 case SIGHUP:
 1479                 case SIGUSR1:
 1480                 case SIGUSR2:
 1481                         /*
 1482                          * Generally, permit job and terminal control
 1483                          * signals.
 1484                          */
 1485                         break;
 1486                 default:
 1487                         /* Not permitted without privilege. */
 1488                         error = priv_check_cred(cred, PRIV_SIGNAL_SUGID, 0);
 1489                         if (error)
 1490                                 return (error);
 1491                 }
 1492         }
 1493 
 1494         /*
 1495          * Generally, the target credential's ruid or svuid must match the
 1496          * subject credential's ruid or euid.
 1497          */
 1498         if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
 1499             cred->cr_ruid != proc->p_ucred->cr_svuid &&
 1500             cred->cr_uid != proc->p_ucred->cr_ruid &&
 1501             cred->cr_uid != proc->p_ucred->cr_svuid) {
 1502                 error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED, 0);
 1503                 if (error)
 1504                         return (error);
 1505         }
 1506 
 1507         return (0);
 1508 }
 1509 
 1510 /*-
 1511  * Determine whether td may deliver the specified signal to p.
 1512  * Returns: 0 for permitted, an errno value otherwise
 1513  * Locks: Sufficient locks to protect various components of td and p
 1514  *        must be held.  td must be curthread, and a lock must be
 1515  *        held for p.
 1516  * References: td and p must be valid for the lifetime of the call
 1517  */
 1518 int
 1519 p_cansignal(struct thread *td, struct proc *p, int signum)
 1520 {
 1521 
 1522         KASSERT(td == curthread, ("%s: td not curthread", __func__));
 1523         PROC_LOCK_ASSERT(p, MA_OWNED);
 1524         if (td->td_proc == p)
 1525                 return (0);
 1526 
 1527         /*
 1528          * UNIX signalling semantics require that processes in the same
 1529          * session always be able to deliver SIGCONT to one another,
 1530          * overriding the remaining protections.
 1531          */
 1532         /* XXX: This will require an additional lock of some sort. */
 1533         if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
 1534                 return (0);
 1535         /*
 1536          * Some compat layers use SIGTHR and higher signals for
 1537          * communication between different kernel threads of the same
 1538          * process, so that they expect that it's always possible to
 1539          * deliver them, even for suid applications where cr_cansignal() can
 1540          * deny such ability for security consideration.  It should be
 1541          * pretty safe to do since the only way to create two processes
 1542          * with the same p_leader is via rfork(2).
 1543          */
 1544         if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
 1545             signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
 1546                 return (0);
 1547 
 1548         return (cr_cansignal(td->td_ucred, p, signum));
 1549 }
 1550 
 1551 /*-
 1552  * Determine whether td may reschedule p.
 1553  * Returns: 0 for permitted, an errno value otherwise
 1554  * Locks: Sufficient locks to protect various components of td and p
 1555  *        must be held.  td must be curthread, and a lock must
 1556  *        be held for p.
 1557  * References: td and p must be valid for the lifetime of the call
 1558  */
 1559 int
 1560 p_cansched(struct thread *td, struct proc *p)
 1561 {
 1562         int error;
 1563 
 1564         KASSERT(td == curthread, ("%s: td not curthread", __func__));
 1565         PROC_LOCK_ASSERT(p, MA_OWNED);
 1566         if (td->td_proc == p)
 1567                 return (0);
 1568         if ((error = prison_check(td->td_ucred, p->p_ucred)))
 1569                 return (error);
 1570 #ifdef MAC
 1571         if ((error = mac_proc_check_sched(td->td_ucred, p)))
 1572                 return (error);
 1573 #endif
 1574         if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
 1575                 return (error);
 1576         if ((error = cr_seeothergids(td->td_ucred, p->p_ucred)))
 1577                 return (error);
 1578         if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
 1579             td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
 1580                 error = priv_check(td, PRIV_SCHED_DIFFCRED);
 1581                 if (error)
 1582                         return (error);
 1583         }
 1584         return (0);
 1585 }
 1586 
 1587 /*
 1588  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
 1589  * unprivileged inter-process debugging services, including some procfs
 1590  * functionality, ptrace(), and ktrace().  In the past, inter-process
 1591  * debugging has been involved in a variety of security problems, and sites
 1592  * not requiring the service might choose to disable it when hardening
 1593  * systems.
 1594  *
 1595  * XXX: Should modifying and reading this variable require locking?
 1596  * XXX: data declarations should be together near the beginning of the file.
 1597  */
 1598 static int      unprivileged_proc_debug = 1;
 1599 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_proc_debug, CTLFLAG_RW,
 1600     &unprivileged_proc_debug, 0,
 1601     "Unprivileged processes may use process debugging facilities");
 1602 
 1603 /*-
 1604  * Determine whether td may debug p.
 1605  * Returns: 0 for permitted, an errno value otherwise
 1606  * Locks: Sufficient locks to protect various components of td and p
 1607  *        must be held.  td must be curthread, and a lock must
 1608  *        be held for p.
 1609  * References: td and p must be valid for the lifetime of the call
 1610  */
 1611 int
 1612 p_candebug(struct thread *td, struct proc *p)
 1613 {
 1614         int credentialchanged, error, grpsubset, i, uidsubset;
 1615 
 1616         KASSERT(td == curthread, ("%s: td not curthread", __func__));
 1617         PROC_LOCK_ASSERT(p, MA_OWNED);
 1618         if (!unprivileged_proc_debug) {
 1619                 error = priv_check(td, PRIV_DEBUG_UNPRIV);
 1620                 if (error)
 1621                         return (error);
 1622         }
 1623         if (td->td_proc == p)
 1624                 return (0);
 1625         if ((error = prison_check(td->td_ucred, p->p_ucred)))
 1626                 return (error);
 1627 #ifdef MAC
 1628         if ((error = mac_proc_check_debug(td->td_ucred, p)))
 1629                 return (error);
 1630 #endif
 1631         if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
 1632                 return (error);
 1633         if ((error = cr_seeothergids(td->td_ucred, p->p_ucred)))
 1634                 return (error);
 1635 
 1636         /*
 1637          * Is p's group set a subset of td's effective group set?  This
 1638          * includes p's egid, group access list, rgid, and svgid.
 1639          */
 1640         grpsubset = 1;
 1641         for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
 1642                 if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
 1643                         grpsubset = 0;
 1644                         break;
 1645                 }
 1646         }
 1647         grpsubset = grpsubset &&
 1648             groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
 1649             groupmember(p->p_ucred->cr_svgid, td->td_ucred);
 1650 
 1651         /*
 1652          * Are the uids present in p's credential equal to td's
 1653          * effective uid?  This includes p's euid, svuid, and ruid.
 1654          */
 1655         uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
 1656             td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
 1657             td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
 1658 
 1659         /*
 1660          * Has the credential of the process changed since the last exec()?
 1661          */
 1662         credentialchanged = (p->p_flag & P_SUGID);
 1663 
 1664         /*
 1665          * If p's gids aren't a subset, or the uids aren't a subset,
 1666          * or the credential has changed, require appropriate privilege
 1667          * for td to debug p.
 1668          */
 1669         if (!grpsubset || !uidsubset) {
 1670                 error = priv_check(td, PRIV_DEBUG_DIFFCRED);
 1671                 if (error)
 1672                         return (error);
 1673         }
 1674 
 1675         if (credentialchanged) {
 1676                 error = priv_check(td, PRIV_DEBUG_SUGID);
 1677                 if (error)
 1678                         return (error);
 1679         }
 1680 
 1681         /* Can't trace init when securelevel > 0. */
 1682         if (p == initproc) {
 1683                 error = securelevel_gt(td->td_ucred, 0);
 1684                 if (error)
 1685                         return (error);
 1686         }
 1687 
 1688         /*
 1689          * Can't trace a process that's currently exec'ing.
 1690          *
 1691          * XXX: Note, this is not a security policy decision, it's a
 1692          * basic correctness/functionality decision.  Therefore, this check
 1693          * should be moved to the caller's of p_candebug().
 1694          */
 1695         if ((p->p_flag & P_INEXEC) != 0)
 1696                 return (EBUSY);
 1697 
 1698         return (0);
 1699 }
 1700 
 1701 /*-
 1702  * Determine whether the subject represented by cred can "see" a socket.
 1703  * Returns: 0 for permitted, ENOENT otherwise.
 1704  */
 1705 int
 1706 cr_canseesocket(struct ucred *cred, struct socket *so)
 1707 {
 1708         int error;
 1709 
 1710         error = prison_check(cred, so->so_cred);
 1711         if (error)
 1712                 return (ENOENT);
 1713 #ifdef MAC
 1714         error = mac_socket_check_visible(cred, so);
 1715         if (error)
 1716                 return (error);
 1717 #endif
 1718         if (cr_seeotheruids(cred, so->so_cred))
 1719                 return (ENOENT);
 1720         if (cr_seeothergids(cred, so->so_cred))
 1721                 return (ENOENT);
 1722 
 1723         return (0);
 1724 }
 1725 
 1726 #if defined(INET) || defined(INET6)
 1727 /*-
 1728  * Determine whether the subject represented by cred can "see" a socket.
 1729  * Returns: 0 for permitted, ENOENT otherwise.
 1730  */
 1731 int
 1732 cr_canseeinpcb(struct ucred *cred, struct inpcb *inp)
 1733 {
 1734         int error;
 1735 
 1736         error = prison_check(cred, inp->inp_cred);
 1737         if (error)
 1738                 return (ENOENT);
 1739 #ifdef MAC
 1740         INP_LOCK_ASSERT(inp);
 1741         error = mac_inpcb_check_visible(cred, inp);
 1742         if (error)
 1743                 return (error);
 1744 #endif
 1745         if (cr_seeotheruids(cred, inp->inp_cred))
 1746                 return (ENOENT);
 1747         if (cr_seeothergids(cred, inp->inp_cred))
 1748                 return (ENOENT);
 1749 
 1750         return (0);
 1751 }
 1752 #endif
 1753 
 1754 /*-
 1755  * Determine whether td can wait for the exit of p.
 1756  * Returns: 0 for permitted, an errno value otherwise
 1757  * Locks: Sufficient locks to protect various components of td and p
 1758  *        must be held.  td must be curthread, and a lock must
 1759  *        be held for p.
 1760  * References: td and p must be valid for the lifetime of the call
 1761 
 1762  */
 1763 int
 1764 p_canwait(struct thread *td, struct proc *p)
 1765 {
 1766         int error;
 1767 
 1768         KASSERT(td == curthread, ("%s: td not curthread", __func__));
 1769         PROC_LOCK_ASSERT(p, MA_OWNED);
 1770         if ((error = prison_check(td->td_ucred, p->p_ucred)))
 1771                 return (error);
 1772 #ifdef MAC
 1773         if ((error = mac_proc_check_wait(td->td_ucred, p)))
 1774                 return (error);
 1775 #endif
 1776 #if 0
 1777         /* XXXMAC: This could have odd effects on some shells. */
 1778         if ((error = cr_seeotheruids(td->td_ucred, p->p_ucred)))
 1779                 return (error);
 1780 #endif
 1781 
 1782         return (0);
 1783 }
 1784 
 1785 /*
 1786  * Allocate a zeroed cred structure.
 1787  */
 1788 struct ucred *
 1789 crget(void)
 1790 {
 1791         register struct ucred *cr;
 1792 
 1793         cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
 1794         refcount_init(&cr->cr_ref, 1);
 1795 #ifdef AUDIT
 1796         audit_cred_init(cr);
 1797 #endif
 1798 #ifdef MAC
 1799         mac_cred_init(cr);
 1800 #endif
 1801         crextend(cr, XU_NGROUPS);
 1802         return (cr);
 1803 }
 1804 
 1805 /*
 1806  * Claim another reference to a ucred structure.
 1807  */
 1808 struct ucred *
 1809 crhold(struct ucred *cr)
 1810 {
 1811 
 1812         refcount_acquire(&cr->cr_ref);
 1813         return (cr);
 1814 }
 1815 
 1816 /*
 1817  * Free a cred structure.  Throws away space when ref count gets to 0.
 1818  */
 1819 void
 1820 crfree(struct ucred *cr)
 1821 {
 1822 
 1823         KASSERT(cr->cr_ref > 0, ("bad ucred refcount: %d", cr->cr_ref));
 1824         KASSERT(cr->cr_ref != 0xdeadc0de, ("dangling reference to ucred"));
 1825         if (refcount_release(&cr->cr_ref)) {
 1826                 /*
 1827                  * Some callers of crget(), such as nfs_statfs(),
 1828                  * allocate a temporary credential, but don't
 1829                  * allocate a uidinfo structure.
 1830                  */
 1831                 if (cr->cr_uidinfo != NULL)
 1832                         uifree(cr->cr_uidinfo);
 1833                 if (cr->cr_ruidinfo != NULL)
 1834                         uifree(cr->cr_ruidinfo);
 1835                 /*
 1836                  * Free a prison, if any.
 1837                  */
 1838                 if (cr->cr_prison != NULL)
 1839                         prison_free(cr->cr_prison);
 1840 #ifdef AUDIT
 1841                 audit_cred_destroy(cr);
 1842 #endif
 1843 #ifdef MAC
 1844                 mac_cred_destroy(cr);
 1845 #endif
 1846                 free(cr->cr_groups, M_CRED);
 1847                 free(cr, M_CRED);
 1848         }
 1849 }
 1850 
 1851 /*
 1852  * Check to see if this ucred is shared.
 1853  */
 1854 int
 1855 crshared(struct ucred *cr)
 1856 {
 1857 
 1858         return (cr->cr_ref > 1);
 1859 }
 1860 
 1861 /*
 1862  * Copy a ucred's contents from a template.  Does not block.
 1863  */
 1864 void
 1865 crcopy(struct ucred *dest, struct ucred *src)
 1866 {
 1867 
 1868         KASSERT(crshared(dest) == 0, ("crcopy of shared ucred"));
 1869         bcopy(&src->cr_startcopy, &dest->cr_startcopy,
 1870             (unsigned)((caddr_t)&src->cr_endcopy -
 1871                 (caddr_t)&src->cr_startcopy));
 1872         crsetgroups(dest, src->cr_ngroups, src->cr_groups);
 1873         uihold(dest->cr_uidinfo);
 1874         uihold(dest->cr_ruidinfo);
 1875         prison_hold(dest->cr_prison);
 1876 #ifdef AUDIT
 1877         audit_cred_copy(src, dest);
 1878 #endif
 1879 #ifdef MAC
 1880         mac_cred_copy(src, dest);
 1881 #endif
 1882 }
 1883 
 1884 /*
 1885  * Dup cred struct to a new held one.
 1886  */
 1887 struct ucred *
 1888 crdup(struct ucred *cr)
 1889 {
 1890         struct ucred *newcr;
 1891 
 1892         newcr = crget();
 1893         crcopy(newcr, cr);
 1894         return (newcr);
 1895 }
 1896 
 1897 /*
 1898  * Fill in a struct xucred based on a struct ucred.
 1899  */
 1900 void
 1901 cru2x(struct ucred *cr, struct xucred *xcr)
 1902 {
 1903         int ngroups;
 1904 
 1905         bzero(xcr, sizeof(*xcr));
 1906         xcr->cr_version = XUCRED_VERSION;
 1907         xcr->cr_uid = cr->cr_uid;
 1908 
 1909         ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
 1910         xcr->cr_ngroups = ngroups;
 1911         bcopy(cr->cr_groups, xcr->cr_groups,
 1912             ngroups * sizeof(*cr->cr_groups));
 1913 }
 1914 
 1915 /*
 1916  * small routine to swap a thread's current ucred for the correct one taken
 1917  * from the process.
 1918  */
 1919 void
 1920 cred_update_thread(struct thread *td)
 1921 {
 1922         struct proc *p;
 1923         struct ucred *cred;
 1924 
 1925         p = td->td_proc;
 1926         cred = td->td_ucred;
 1927         PROC_LOCK(p);
 1928         td->td_ucred = crhold(p->p_ucred);
 1929         PROC_UNLOCK(p);
 1930         if (cred != NULL)
 1931                 crfree(cred);
 1932 }
 1933 
 1934 struct ucred *
 1935 crcopysafe(struct proc *p, struct ucred *cr)
 1936 {
 1937         struct ucred *oldcred;
 1938         int groups;
 1939 
 1940         PROC_LOCK_ASSERT(p, MA_OWNED);
 1941 
 1942         oldcred = p->p_ucred;
 1943         while (cr->cr_agroups < oldcred->cr_agroups) {
 1944                 groups = oldcred->cr_agroups;
 1945                 PROC_UNLOCK(p);
 1946                 crextend(cr, groups);
 1947                 PROC_LOCK(p);
 1948                 oldcred = p->p_ucred;
 1949         }
 1950         crcopy(cr, oldcred);
 1951 
 1952         return (oldcred);
 1953 }
 1954 
 1955 /*
 1956  * Extend the passed in credential to hold n items.
 1957  */
 1958 static void
 1959 crextend(struct ucred *cr, int n)
 1960 {
 1961         int cnt;
 1962 
 1963         /* Truncate? */
 1964         if (n <= cr->cr_agroups)
 1965                 return;
 1966 
 1967         /*
 1968          * We extend by 2 each time since we're using a power of two
 1969          * allocator until we need enough groups to fill a page.
 1970          * Once we're allocating multiple pages, only allocate as many
 1971          * as we actually need.  The case of processes needing a
 1972          * non-power of two number of pages seems more likely than
 1973          * a real world process that adds thousands of groups one at a
 1974          * time.
 1975          */
 1976         if ( n < PAGE_SIZE / sizeof(gid_t) ) {
 1977                 if (cr->cr_agroups == 0)
 1978                         cnt = MINALLOCSIZE / sizeof(gid_t);
 1979                 else
 1980                         cnt = cr->cr_agroups * 2;
 1981 
 1982                 while (cnt < n)
 1983                         cnt *= 2;
 1984         } else
 1985                 cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
 1986 
 1987         /* Free the old array. */
 1988         if (cr->cr_groups)
 1989                 free(cr->cr_groups, M_CRED);
 1990 
 1991         cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
 1992         cr->cr_agroups = cnt;
 1993 }
 1994 
 1995 /*
 1996  * Copy groups in to a credential, preserving any necessary invariants.
 1997  * Currently this includes the sorting of all supplemental gids.
 1998  * crextend() must have been called before hand to ensure sufficient
 1999  * space is available.
 2000  */
 2001 static void
 2002 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
 2003 {
 2004         int i;
 2005         int j;
 2006         gid_t g;
 2007         
 2008         KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
 2009 
 2010         bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
 2011         cr->cr_ngroups = ngrp;
 2012 
 2013         /*
 2014          * Sort all groups except cr_groups[0] to allow groupmember to
 2015          * perform a binary search.
 2016          *
 2017          * XXX: If large numbers of groups become common this should
 2018          * be replaced with shell sort like linux uses or possibly
 2019          * heap sort.
 2020          */
 2021         for (i = 2; i < ngrp; i++) {
 2022                 g = cr->cr_groups[i];
 2023                 for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
 2024                         cr->cr_groups[j + 1] = cr->cr_groups[j];
 2025                 cr->cr_groups[j + 1] = g;
 2026         }
 2027 }
 2028 
 2029 /*
 2030  * Copy groups in to a credential after expanding it if required.
 2031  * Truncate the list to (ngroups_max + 1) if it is too large.
 2032  */
 2033 void
 2034 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
 2035 {
 2036 
 2037         if (ngrp > ngroups_max + 1)
 2038                 ngrp = ngroups_max + 1;
 2039 
 2040         crextend(cr, ngrp);
 2041         crsetgroups_locked(cr, ngrp, groups);
 2042 }
 2043 
 2044 /*
 2045  * Get login name, if available.
 2046  */
 2047 #ifndef _SYS_SYSPROTO_H_
 2048 struct getlogin_args {
 2049         char    *namebuf;
 2050         u_int   namelen;
 2051 };
 2052 #endif
 2053 /* ARGSUSED */
 2054 int
 2055 getlogin(struct thread *td, struct getlogin_args *uap)
 2056 {
 2057         char login[MAXLOGNAME];
 2058         struct proc *p = td->td_proc;
 2059         size_t len;
 2060 
 2061         if (uap->namelen > MAXLOGNAME)
 2062                 uap->namelen = MAXLOGNAME;
 2063         PROC_LOCK(p);
 2064         SESS_LOCK(p->p_session);
 2065         len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
 2066         SESS_UNLOCK(p->p_session);
 2067         PROC_UNLOCK(p);
 2068         if (len > uap->namelen)
 2069                 return (ERANGE);
 2070         return (copyout(login, uap->namebuf, len));
 2071 }
 2072 
 2073 /*
 2074  * Set login name.
 2075  */
 2076 #ifndef _SYS_SYSPROTO_H_
 2077 struct setlogin_args {
 2078         char    *namebuf;
 2079 };
 2080 #endif
 2081 /* ARGSUSED */
 2082 int
 2083 setlogin(struct thread *td, struct setlogin_args *uap)
 2084 {
 2085         struct proc *p = td->td_proc;
 2086         int error;
 2087         char logintmp[MAXLOGNAME];
 2088 
 2089         CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
 2090 
 2091         error = priv_check(td, PRIV_PROC_SETLOGIN);
 2092         if (error)
 2093                 return (error);
 2094         error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
 2095         if (error != 0) {
 2096                 if (error == ENAMETOOLONG)
 2097                         error = EINVAL;
 2098                 return (error);
 2099         }
 2100         PROC_LOCK(p);
 2101         SESS_LOCK(p->p_session);
 2102         strcpy(p->p_session->s_login, logintmp);
 2103         SESS_UNLOCK(p->p_session);
 2104         PROC_UNLOCK(p);
 2105         return (0);
 2106 }
 2107 
 2108 void
 2109 setsugid(struct proc *p)
 2110 {
 2111 
 2112         PROC_LOCK_ASSERT(p, MA_OWNED);
 2113         p->p_flag |= P_SUGID;
 2114         if (!(p->p_pfsflags & PF_ISUGID))
 2115                 p->p_stops = 0;
 2116 }
 2117 
 2118 /*-
 2119  * Change a process's effective uid.
 2120  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
 2121  * References: newcred must be an exclusive credential reference for the
 2122  *             duration of the call.
 2123  */
 2124 void
 2125 change_euid(struct ucred *newcred, struct uidinfo *euip)
 2126 {
 2127 
 2128         newcred->cr_uid = euip->ui_uid;
 2129         uihold(euip);
 2130         uifree(newcred->cr_uidinfo);
 2131         newcred->cr_uidinfo = euip;
 2132 }
 2133 
 2134 /*-
 2135  * Change a process's effective gid.
 2136  * Side effects: newcred->cr_gid will be modified.
 2137  * References: newcred must be an exclusive credential reference for the
 2138  *             duration of the call.
 2139  */
 2140 void
 2141 change_egid(struct ucred *newcred, gid_t egid)
 2142 {
 2143 
 2144         newcred->cr_groups[0] = egid;
 2145 }
 2146 
 2147 /*-
 2148  * Change a process's real uid.
 2149  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
 2150  *               will be updated, and the old and new cr_ruidinfo proc
 2151  *               counts will be updated.
 2152  * References: newcred must be an exclusive credential reference for the
 2153  *             duration of the call.
 2154  */
 2155 void
 2156 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
 2157 {
 2158 
 2159         (void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
 2160         newcred->cr_ruid = ruip->ui_uid;
 2161         uihold(ruip);
 2162         uifree(newcred->cr_ruidinfo);
 2163         newcred->cr_ruidinfo = ruip;
 2164         (void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
 2165 }
 2166 
 2167 /*-
 2168  * Change a process's real gid.
 2169  * Side effects: newcred->cr_rgid will be updated.
 2170  * References: newcred must be an exclusive credential reference for the
 2171  *             duration of the call.
 2172  */
 2173 void
 2174 change_rgid(struct ucred *newcred, gid_t rgid)
 2175 {
 2176 
 2177         newcred->cr_rgid = rgid;
 2178 }
 2179 
 2180 /*-
 2181  * Change a process's saved uid.
 2182  * Side effects: newcred->cr_svuid will be updated.
 2183  * References: newcred must be an exclusive credential reference for the
 2184  *             duration of the call.
 2185  */
 2186 void
 2187 change_svuid(struct ucred *newcred, uid_t svuid)
 2188 {
 2189 
 2190         newcred->cr_svuid = svuid;
 2191 }
 2192 
 2193 /*-
 2194  * Change a process's saved gid.
 2195  * Side effects: newcred->cr_svgid will be updated.
 2196  * References: newcred must be an exclusive credential reference for the
 2197  *             duration of the call.
 2198  */
 2199 void
 2200 change_svgid(struct ucred *newcred, gid_t svgid)
 2201 {
 2202 
 2203         newcred->cr_svgid = svgid;
 2204 }

Cache object: d70e580b9b974f8daea6eae21d873602


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.