The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_resource.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)kern_resource.c     8.5 (Berkeley) 1/21/94
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD$");
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/sysproto.h>
   45 #include <sys/file.h>
   46 #include <sys/kernel.h>
   47 #include <sys/lock.h>
   48 #include <sys/malloc.h>
   49 #include <sys/mutex.h>
   50 #include <sys/priv.h>
   51 #include <sys/proc.h>
   52 #include <sys/refcount.h>
   53 #include <sys/racct.h>
   54 #include <sys/resourcevar.h>
   55 #include <sys/rwlock.h>
   56 #include <sys/sched.h>
   57 #include <sys/sx.h>
   58 #include <sys/syscallsubr.h>
   59 #include <sys/sysctl.h>
   60 #include <sys/sysent.h>
   61 #include <sys/time.h>
   62 #include <sys/umtxvar.h>
   63 
   64 #include <vm/vm.h>
   65 #include <vm/vm_param.h>
   66 #include <vm/pmap.h>
   67 #include <vm/vm_map.h>
   68 
   69 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
   70 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
   71 #define UIHASH(uid)     (&uihashtbl[(uid) & uihash])
   72 static struct rwlock uihashtbl_lock;
   73 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
   74 static u_long uihash;           /* size of hash table - 1 */
   75 
   76 static void     calcru1(struct proc *p, struct rusage_ext *ruxp,
   77                     struct timeval *up, struct timeval *sp);
   78 static int      donice(struct thread *td, struct proc *chgp, int n);
   79 static struct uidinfo *uilookup(uid_t uid);
   80 static void     ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td);
   81 
   82 /*
   83  * Resource controls and accounting.
   84  */
   85 #ifndef _SYS_SYSPROTO_H_
   86 struct getpriority_args {
   87         int     which;
   88         int     who;
   89 };
   90 #endif
   91 int
   92 sys_getpriority(struct thread *td, struct getpriority_args *uap)
   93 {
   94 
   95         return (kern_getpriority(td, uap->which, uap->who));
   96 }
   97 
   98 int
   99 kern_getpriority(struct thread *td, int which, int who)
  100 {
  101         struct proc *p;
  102         struct pgrp *pg;
  103         int error, low;
  104 
  105         error = 0;
  106         low = PRIO_MAX + 1;
  107         switch (which) {
  108         case PRIO_PROCESS:
  109                 if (who == 0)
  110                         low = td->td_proc->p_nice;
  111                 else {
  112                         p = pfind(who);
  113                         if (p == NULL)
  114                                 break;
  115                         if (p_cansee(td, p) == 0)
  116                                 low = p->p_nice;
  117                         PROC_UNLOCK(p);
  118                 }
  119                 break;
  120 
  121         case PRIO_PGRP:
  122                 sx_slock(&proctree_lock);
  123                 if (who == 0) {
  124                         pg = td->td_proc->p_pgrp;
  125                         PGRP_LOCK(pg);
  126                 } else {
  127                         pg = pgfind(who);
  128                         if (pg == NULL) {
  129                                 sx_sunlock(&proctree_lock);
  130                                 break;
  131                         }
  132                 }
  133                 sx_sunlock(&proctree_lock);
  134                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  135                         PROC_LOCK(p);
  136                         if (p->p_state == PRS_NORMAL &&
  137                             p_cansee(td, p) == 0) {
  138                                 if (p->p_nice < low)
  139                                         low = p->p_nice;
  140                         }
  141                         PROC_UNLOCK(p);
  142                 }
  143                 PGRP_UNLOCK(pg);
  144                 break;
  145 
  146         case PRIO_USER:
  147                 if (who == 0)
  148                         who = td->td_ucred->cr_uid;
  149                 sx_slock(&allproc_lock);
  150                 FOREACH_PROC_IN_SYSTEM(p) {
  151                         PROC_LOCK(p);
  152                         if (p->p_state == PRS_NORMAL &&
  153                             p_cansee(td, p) == 0 &&
  154                             p->p_ucred->cr_uid == who) {
  155                                 if (p->p_nice < low)
  156                                         low = p->p_nice;
  157                         }
  158                         PROC_UNLOCK(p);
  159                 }
  160                 sx_sunlock(&allproc_lock);
  161                 break;
  162 
  163         default:
  164                 error = EINVAL;
  165                 break;
  166         }
  167         if (low == PRIO_MAX + 1 && error == 0)
  168                 error = ESRCH;
  169         td->td_retval[0] = low;
  170         return (error);
  171 }
  172 
  173 #ifndef _SYS_SYSPROTO_H_
  174 struct setpriority_args {
  175         int     which;
  176         int     who;
  177         int     prio;
  178 };
  179 #endif
  180 int
  181 sys_setpriority(struct thread *td, struct setpriority_args *uap)
  182 {
  183 
  184         return (kern_setpriority(td, uap->which, uap->who, uap->prio));
  185 }
  186 
  187 int
  188 kern_setpriority(struct thread *td, int which, int who, int prio)
  189 {
  190         struct proc *curp, *p;
  191         struct pgrp *pg;
  192         int found = 0, error = 0;
  193 
  194         curp = td->td_proc;
  195         switch (which) {
  196         case PRIO_PROCESS:
  197                 if (who == 0) {
  198                         PROC_LOCK(curp);
  199                         error = donice(td, curp, prio);
  200                         PROC_UNLOCK(curp);
  201                 } else {
  202                         p = pfind(who);
  203                         if (p == NULL)
  204                                 break;
  205                         error = p_cansee(td, p);
  206                         if (error == 0)
  207                                 error = donice(td, p, prio);
  208                         PROC_UNLOCK(p);
  209                 }
  210                 found++;
  211                 break;
  212 
  213         case PRIO_PGRP:
  214                 sx_slock(&proctree_lock);
  215                 if (who == 0) {
  216                         pg = curp->p_pgrp;
  217                         PGRP_LOCK(pg);
  218                 } else {
  219                         pg = pgfind(who);
  220                         if (pg == NULL) {
  221                                 sx_sunlock(&proctree_lock);
  222                                 break;
  223                         }
  224                 }
  225                 sx_sunlock(&proctree_lock);
  226                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  227                         PROC_LOCK(p);
  228                         if (p->p_state == PRS_NORMAL &&
  229                             p_cansee(td, p) == 0) {
  230                                 error = donice(td, p, prio);
  231                                 found++;
  232                         }
  233                         PROC_UNLOCK(p);
  234                 }
  235                 PGRP_UNLOCK(pg);
  236                 break;
  237 
  238         case PRIO_USER:
  239                 if (who == 0)
  240                         who = td->td_ucred->cr_uid;
  241                 sx_slock(&allproc_lock);
  242                 FOREACH_PROC_IN_SYSTEM(p) {
  243                         PROC_LOCK(p);
  244                         if (p->p_state == PRS_NORMAL &&
  245                             p->p_ucred->cr_uid == who &&
  246                             p_cansee(td, p) == 0) {
  247                                 error = donice(td, p, prio);
  248                                 found++;
  249                         }
  250                         PROC_UNLOCK(p);
  251                 }
  252                 sx_sunlock(&allproc_lock);
  253                 break;
  254 
  255         default:
  256                 error = EINVAL;
  257                 break;
  258         }
  259         if (found == 0 && error == 0)
  260                 error = ESRCH;
  261         return (error);
  262 }
  263 
  264 /*
  265  * Set "nice" for a (whole) process.
  266  */
  267 static int
  268 donice(struct thread *td, struct proc *p, int n)
  269 {
  270         int error;
  271 
  272         PROC_LOCK_ASSERT(p, MA_OWNED);
  273         if ((error = p_cansched(td, p)))
  274                 return (error);
  275         if (n > PRIO_MAX)
  276                 n = PRIO_MAX;
  277         if (n < PRIO_MIN)
  278                 n = PRIO_MIN;
  279         if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
  280                 return (EACCES);
  281         sched_nice(p, n);
  282         return (0);
  283 }
  284 
  285 static int unprivileged_idprio;
  286 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,
  287     &unprivileged_idprio, 0,
  288     "Allow non-root users to set an idle priority (deprecated)");
  289 
  290 /*
  291  * Set realtime priority for LWP.
  292  */
  293 #ifndef _SYS_SYSPROTO_H_
  294 struct rtprio_thread_args {
  295         int             function;
  296         lwpid_t         lwpid;
  297         struct rtprio   *rtp;
  298 };
  299 #endif
  300 int
  301 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
  302 {
  303         struct proc *p;
  304         struct rtprio rtp;
  305         struct thread *td1;
  306         int cierror, error;
  307 
  308         /* Perform copyin before acquiring locks if needed. */
  309         if (uap->function == RTP_SET)
  310                 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
  311         else
  312                 cierror = 0;
  313 
  314         if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
  315                 p = td->td_proc;
  316                 td1 = td;
  317                 PROC_LOCK(p);
  318         } else {
  319                 td1 = tdfind(uap->lwpid, -1);
  320                 if (td1 == NULL)
  321                         return (ESRCH);
  322                 p = td1->td_proc;
  323         }
  324 
  325         switch (uap->function) {
  326         case RTP_LOOKUP:
  327                 if ((error = p_cansee(td, p)))
  328                         break;
  329                 pri_to_rtp(td1, &rtp);
  330                 PROC_UNLOCK(p);
  331                 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
  332         case RTP_SET:
  333                 if ((error = p_cansched(td, p)) || (error = cierror))
  334                         break;
  335 
  336                 /* Disallow setting rtprio in most cases if not superuser. */
  337 
  338                 /*
  339                  * Realtime priority has to be restricted for reasons which
  340                  * should be obvious.  However, for idleprio processes, there is
  341                  * a potential for system deadlock if an idleprio process gains
  342                  * a lock on a resource that other processes need (and the
  343                  * idleprio process can't run due to a CPU-bound normal
  344                  * process).  Fix me!  XXX
  345                  *
  346                  * This problem is not only related to idleprio process.
  347                  * A user level program can obtain a file lock and hold it
  348                  * indefinitely.  Additionally, without idleprio processes it is
  349                  * still conceivable that a program with low priority will never
  350                  * get to run.  In short, allowing this feature might make it
  351                  * easier to lock a resource indefinitely, but it is not the
  352                  * only thing that makes it possible.
  353                  */
  354                 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME &&
  355                     (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0)
  356                         break;
  357                 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
  358                     unprivileged_idprio == 0 &&
  359                     (error = priv_check(td, PRIV_SCHED_IDPRIO)) != 0)
  360                         break;
  361                 error = rtp_to_pri(&rtp, td1);
  362                 break;
  363         default:
  364                 error = EINVAL;
  365                 break;
  366         }
  367         PROC_UNLOCK(p);
  368         return (error);
  369 }
  370 
  371 /*
  372  * Set realtime priority.
  373  */
  374 #ifndef _SYS_SYSPROTO_H_
  375 struct rtprio_args {
  376         int             function;
  377         pid_t           pid;
  378         struct rtprio   *rtp;
  379 };
  380 #endif
  381 int
  382 sys_rtprio(struct thread *td, struct rtprio_args *uap)
  383 {
  384         struct proc *p;
  385         struct thread *tdp;
  386         struct rtprio rtp;
  387         int cierror, error;
  388 
  389         /* Perform copyin before acquiring locks if needed. */
  390         if (uap->function == RTP_SET)
  391                 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
  392         else
  393                 cierror = 0;
  394 
  395         if (uap->pid == 0) {
  396                 p = td->td_proc;
  397                 PROC_LOCK(p);
  398         } else {
  399                 p = pfind(uap->pid);
  400                 if (p == NULL)
  401                         return (ESRCH);
  402         }
  403 
  404         switch (uap->function) {
  405         case RTP_LOOKUP:
  406                 if ((error = p_cansee(td, p)))
  407                         break;
  408                 /*
  409                  * Return OUR priority if no pid specified,
  410                  * or if one is, report the highest priority
  411                  * in the process.  There isn't much more you can do as
  412                  * there is only room to return a single priority.
  413                  * Note: specifying our own pid is not the same
  414                  * as leaving it zero.
  415                  */
  416                 if (uap->pid == 0) {
  417                         pri_to_rtp(td, &rtp);
  418                 } else {
  419                         struct rtprio rtp2;
  420 
  421                         rtp.type = RTP_PRIO_IDLE;
  422                         rtp.prio = RTP_PRIO_MAX;
  423                         FOREACH_THREAD_IN_PROC(p, tdp) {
  424                                 pri_to_rtp(tdp, &rtp2);
  425                                 if (rtp2.type <  rtp.type ||
  426                                     (rtp2.type == rtp.type &&
  427                                     rtp2.prio < rtp.prio)) {
  428                                         rtp.type = rtp2.type;
  429                                         rtp.prio = rtp2.prio;
  430                                 }
  431                         }
  432                 }
  433                 PROC_UNLOCK(p);
  434                 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
  435         case RTP_SET:
  436                 if ((error = p_cansched(td, p)) || (error = cierror))
  437                         break;
  438 
  439                 /*
  440                  * Disallow setting rtprio in most cases if not superuser.
  441                  * See the comment in sys_rtprio_thread about idprio
  442                  * threads holding a lock.
  443                  */
  444                 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME &&
  445                     (error = priv_check(td, PRIV_SCHED_RTPRIO)) != 0)
  446                         break;
  447                 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
  448                     unprivileged_idprio == 0 &&
  449                     (error = priv_check(td, PRIV_SCHED_IDPRIO)) != 0)
  450                         break;
  451 
  452                 /*
  453                  * If we are setting our own priority, set just our
  454                  * thread but if we are doing another process,
  455                  * do all the threads on that process. If we
  456                  * specify our own pid we do the latter.
  457                  */
  458                 if (uap->pid == 0) {
  459                         error = rtp_to_pri(&rtp, td);
  460                 } else {
  461                         FOREACH_THREAD_IN_PROC(p, td) {
  462                                 if ((error = rtp_to_pri(&rtp, td)) != 0)
  463                                         break;
  464                         }
  465                 }
  466                 break;
  467         default:
  468                 error = EINVAL;
  469                 break;
  470         }
  471         PROC_UNLOCK(p);
  472         return (error);
  473 }
  474 
  475 int
  476 rtp_to_pri(struct rtprio *rtp, struct thread *td)
  477 {
  478         u_char  newpri, oldclass, oldpri;
  479 
  480         switch (RTP_PRIO_BASE(rtp->type)) {
  481         case RTP_PRIO_REALTIME:
  482                 if (rtp->prio > RTP_PRIO_MAX)
  483                         return (EINVAL);
  484                 newpri = PRI_MIN_REALTIME + rtp->prio;
  485                 break;
  486         case RTP_PRIO_NORMAL:
  487                 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
  488                         return (EINVAL);
  489                 newpri = PRI_MIN_TIMESHARE + rtp->prio;
  490                 break;
  491         case RTP_PRIO_IDLE:
  492                 if (rtp->prio > RTP_PRIO_MAX)
  493                         return (EINVAL);
  494                 newpri = PRI_MIN_IDLE + rtp->prio;
  495                 break;
  496         default:
  497                 return (EINVAL);
  498         }
  499 
  500         thread_lock(td);
  501         oldclass = td->td_pri_class;
  502         sched_class(td, rtp->type);     /* XXX fix */
  503         oldpri = td->td_user_pri;
  504         sched_user_prio(td, newpri);
  505         if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL ||
  506             td->td_pri_class != RTP_PRIO_NORMAL))
  507                 sched_prio(td, td->td_user_pri);
  508         if (TD_ON_UPILOCK(td) && oldpri != newpri) {
  509                 critical_enter();
  510                 thread_unlock(td);
  511                 umtx_pi_adjust(td, oldpri);
  512                 critical_exit();
  513         } else
  514                 thread_unlock(td);
  515         return (0);
  516 }
  517 
  518 void
  519 pri_to_rtp(struct thread *td, struct rtprio *rtp)
  520 {
  521 
  522         thread_lock(td);
  523         switch (PRI_BASE(td->td_pri_class)) {
  524         case PRI_REALTIME:
  525                 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
  526                 break;
  527         case PRI_TIMESHARE:
  528                 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
  529                 break;
  530         case PRI_IDLE:
  531                 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
  532                 break;
  533         default:
  534                 break;
  535         }
  536         rtp->type = td->td_pri_class;
  537         thread_unlock(td);
  538 }
  539 
  540 #if defined(COMPAT_43)
  541 #ifndef _SYS_SYSPROTO_H_
  542 struct osetrlimit_args {
  543         u_int   which;
  544         struct  orlimit *rlp;
  545 };
  546 #endif
  547 int
  548 osetrlimit(struct thread *td, struct osetrlimit_args *uap)
  549 {
  550         struct orlimit olim;
  551         struct rlimit lim;
  552         int error;
  553 
  554         if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
  555                 return (error);
  556         lim.rlim_cur = olim.rlim_cur;
  557         lim.rlim_max = olim.rlim_max;
  558         error = kern_setrlimit(td, uap->which, &lim);
  559         return (error);
  560 }
  561 
  562 #ifndef _SYS_SYSPROTO_H_
  563 struct ogetrlimit_args {
  564         u_int   which;
  565         struct  orlimit *rlp;
  566 };
  567 #endif
  568 int
  569 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap)
  570 {
  571         struct orlimit olim;
  572         struct rlimit rl;
  573         int error;
  574 
  575         if (uap->which >= RLIM_NLIMITS)
  576                 return (EINVAL);
  577         lim_rlimit(td, uap->which, &rl);
  578 
  579         /*
  580          * XXX would be more correct to convert only RLIM_INFINITY to the
  581          * old RLIM_INFINITY and fail with EOVERFLOW for other larger
  582          * values.  Most 64->32 and 32->16 conversions, including not
  583          * unimportant ones of uids are even more broken than what we
  584          * do here (they blindly truncate).  We don't do this correctly
  585          * here since we have little experience with EOVERFLOW yet.
  586          * Elsewhere, getuid() can't fail...
  587          */
  588         olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
  589         olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
  590         error = copyout(&olim, uap->rlp, sizeof(olim));
  591         return (error);
  592 }
  593 #endif /* COMPAT_43 */
  594 
  595 #ifndef _SYS_SYSPROTO_H_
  596 struct setrlimit_args {
  597         u_int   which;
  598         struct  rlimit *rlp;
  599 };
  600 #endif
  601 int
  602 sys_setrlimit(struct thread *td, struct setrlimit_args *uap)
  603 {
  604         struct rlimit alim;
  605         int error;
  606 
  607         if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
  608                 return (error);
  609         error = kern_setrlimit(td, uap->which, &alim);
  610         return (error);
  611 }
  612 
  613 static void
  614 lim_cb(void *arg)
  615 {
  616         struct rlimit rlim;
  617         struct thread *td;
  618         struct proc *p;
  619 
  620         p = arg;
  621         PROC_LOCK_ASSERT(p, MA_OWNED);
  622         /*
  623          * Check if the process exceeds its cpu resource allocation.  If
  624          * it reaches the max, arrange to kill the process in ast().
  625          */
  626         if (p->p_cpulimit == RLIM_INFINITY)
  627                 return;
  628         PROC_STATLOCK(p);
  629         FOREACH_THREAD_IN_PROC(p, td) {
  630                 ruxagg(p, td);
  631         }
  632         PROC_STATUNLOCK(p);
  633         if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
  634                 lim_rlimit_proc(p, RLIMIT_CPU, &rlim);
  635                 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
  636                         killproc(p, "exceeded maximum CPU limit");
  637                 } else {
  638                         if (p->p_cpulimit < rlim.rlim_max)
  639                                 p->p_cpulimit += 5;
  640                         kern_psignal(p, SIGXCPU);
  641                 }
  642         }
  643         if ((p->p_flag & P_WEXIT) == 0)
  644                 callout_reset_sbt(&p->p_limco, SBT_1S, 0,
  645                     lim_cb, p, C_PREL(1));
  646 }
  647 
  648 int
  649 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
  650 {
  651 
  652         return (kern_proc_setrlimit(td, td->td_proc, which, limp));
  653 }
  654 
  655 int
  656 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which,
  657     struct rlimit *limp)
  658 {
  659         struct plimit *newlim, *oldlim, *oldlim_td;
  660         struct rlimit *alimp;
  661         struct rlimit oldssiz;
  662         int error;
  663 
  664         if (which >= RLIM_NLIMITS)
  665                 return (EINVAL);
  666 
  667         /*
  668          * Preserve historical bugs by treating negative limits as unsigned.
  669          */
  670         if (limp->rlim_cur < 0)
  671                 limp->rlim_cur = RLIM_INFINITY;
  672         if (limp->rlim_max < 0)
  673                 limp->rlim_max = RLIM_INFINITY;
  674 
  675         oldssiz.rlim_cur = 0;
  676         newlim = lim_alloc();
  677         PROC_LOCK(p);
  678         oldlim = p->p_limit;
  679         alimp = &oldlim->pl_rlimit[which];
  680         if (limp->rlim_cur > alimp->rlim_max ||
  681             limp->rlim_max > alimp->rlim_max)
  682                 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
  683                         PROC_UNLOCK(p);
  684                         lim_free(newlim);
  685                         return (error);
  686                 }
  687         if (limp->rlim_cur > limp->rlim_max)
  688                 limp->rlim_cur = limp->rlim_max;
  689         lim_copy(newlim, oldlim);
  690         alimp = &newlim->pl_rlimit[which];
  691 
  692         switch (which) {
  693         case RLIMIT_CPU:
  694                 if (limp->rlim_cur != RLIM_INFINITY &&
  695                     p->p_cpulimit == RLIM_INFINITY)
  696                         callout_reset_sbt(&p->p_limco, SBT_1S, 0,
  697                             lim_cb, p, C_PREL(1));
  698                 p->p_cpulimit = limp->rlim_cur;
  699                 break;
  700         case RLIMIT_DATA:
  701                 if (limp->rlim_cur > maxdsiz)
  702                         limp->rlim_cur = maxdsiz;
  703                 if (limp->rlim_max > maxdsiz)
  704                         limp->rlim_max = maxdsiz;
  705                 break;
  706 
  707         case RLIMIT_STACK:
  708                 if (limp->rlim_cur > maxssiz)
  709                         limp->rlim_cur = maxssiz;
  710                 if (limp->rlim_max > maxssiz)
  711                         limp->rlim_max = maxssiz;
  712                 oldssiz = *alimp;
  713                 if (p->p_sysent->sv_fixlimit != NULL)
  714                         p->p_sysent->sv_fixlimit(&oldssiz,
  715                             RLIMIT_STACK);
  716                 break;
  717 
  718         case RLIMIT_NOFILE:
  719                 if (limp->rlim_cur > maxfilesperproc)
  720                         limp->rlim_cur = maxfilesperproc;
  721                 if (limp->rlim_max > maxfilesperproc)
  722                         limp->rlim_max = maxfilesperproc;
  723                 break;
  724 
  725         case RLIMIT_NPROC:
  726                 if (limp->rlim_cur > maxprocperuid)
  727                         limp->rlim_cur = maxprocperuid;
  728                 if (limp->rlim_max > maxprocperuid)
  729                         limp->rlim_max = maxprocperuid;
  730                 if (limp->rlim_cur < 1)
  731                         limp->rlim_cur = 1;
  732                 if (limp->rlim_max < 1)
  733                         limp->rlim_max = 1;
  734                 break;
  735         }
  736         if (p->p_sysent->sv_fixlimit != NULL)
  737                 p->p_sysent->sv_fixlimit(limp, which);
  738         *alimp = *limp;
  739         p->p_limit = newlim;
  740         PROC_UPDATE_COW(p);
  741         oldlim_td = NULL;
  742         if (td == curthread && PROC_COW_CHANGECOUNT(td, p) == 1) {
  743                 oldlim_td = lim_cowsync();
  744                 thread_cow_synced(td);
  745         }
  746         PROC_UNLOCK(p);
  747         if (oldlim_td != NULL) {
  748                 MPASS(oldlim_td == oldlim);
  749                 lim_freen(oldlim, 2);
  750         } else {
  751                 lim_free(oldlim);
  752         }
  753 
  754         if (which == RLIMIT_STACK &&
  755             /*
  756              * Skip calls from exec_new_vmspace(), done when stack is
  757              * not mapped yet.
  758              */
  759             (td != curthread || (p->p_flag & P_INEXEC) == 0)) {
  760                 /*
  761                  * Stack is allocated to the max at exec time with only
  762                  * "rlim_cur" bytes accessible.  If stack limit is going
  763                  * up make more accessible, if going down make inaccessible.
  764                  */
  765                 if (limp->rlim_cur != oldssiz.rlim_cur) {
  766                         vm_offset_t addr;
  767                         vm_size_t size;
  768                         vm_prot_t prot;
  769 
  770                         if (limp->rlim_cur > oldssiz.rlim_cur) {
  771                                 prot = p->p_sysent->sv_stackprot;
  772                                 size = limp->rlim_cur - oldssiz.rlim_cur;
  773                                 addr = round_page(p->p_vmspace->vm_stacktop) -
  774                                     limp->rlim_cur;
  775                         } else {
  776                                 prot = VM_PROT_NONE;
  777                                 size = oldssiz.rlim_cur - limp->rlim_cur;
  778                                 addr = round_page(p->p_vmspace->vm_stacktop) -
  779                                     oldssiz.rlim_cur;
  780                         }
  781                         addr = trunc_page(addr);
  782                         size = round_page(size);
  783                         (void)vm_map_protect(&p->p_vmspace->vm_map,
  784                             addr, addr + size, prot, 0,
  785                             VM_MAP_PROTECT_SET_PROT);
  786                 }
  787         }
  788 
  789         return (0);
  790 }
  791 
  792 #ifndef _SYS_SYSPROTO_H_
  793 struct getrlimit_args {
  794         u_int   which;
  795         struct  rlimit *rlp;
  796 };
  797 #endif
  798 /* ARGSUSED */
  799 int
  800 sys_getrlimit(struct thread *td, struct getrlimit_args *uap)
  801 {
  802         struct rlimit rlim;
  803         int error;
  804 
  805         if (uap->which >= RLIM_NLIMITS)
  806                 return (EINVAL);
  807         lim_rlimit(td, uap->which, &rlim);
  808         error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
  809         return (error);
  810 }
  811 
  812 /*
  813  * Transform the running time and tick information for children of proc p
  814  * into user and system time usage.
  815  */
  816 void
  817 calccru(struct proc *p, struct timeval *up, struct timeval *sp)
  818 {
  819 
  820         PROC_LOCK_ASSERT(p, MA_OWNED);
  821         calcru1(p, &p->p_crux, up, sp);
  822 }
  823 
  824 /*
  825  * Transform the running time and tick information in proc p into user
  826  * and system time usage.  If appropriate, include the current time slice
  827  * on this CPU.
  828  */
  829 void
  830 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
  831 {
  832         struct thread *td;
  833         uint64_t runtime, u;
  834 
  835         PROC_LOCK_ASSERT(p, MA_OWNED);
  836         PROC_STATLOCK_ASSERT(p, MA_OWNED);
  837         /*
  838          * If we are getting stats for the current process, then add in the
  839          * stats that this thread has accumulated in its current time slice.
  840          * We reset the thread and CPU state as if we had performed a context
  841          * switch right here.
  842          */
  843         td = curthread;
  844         if (td->td_proc == p) {
  845                 u = cpu_ticks();
  846                 runtime = u - PCPU_GET(switchtime);
  847                 td->td_runtime += runtime;
  848                 td->td_incruntime += runtime;
  849                 PCPU_SET(switchtime, u);
  850         }
  851         /* Make sure the per-thread stats are current. */
  852         FOREACH_THREAD_IN_PROC(p, td) {
  853                 if (td->td_incruntime == 0)
  854                         continue;
  855                 ruxagg(p, td);
  856         }
  857         calcru1(p, &p->p_rux, up, sp);
  858 }
  859 
  860 /* Collect resource usage for a single thread. */
  861 void
  862 rufetchtd(struct thread *td, struct rusage *ru)
  863 {
  864         struct proc *p;
  865         uint64_t runtime, u;
  866 
  867         p = td->td_proc;
  868         PROC_STATLOCK_ASSERT(p, MA_OWNED);
  869         THREAD_LOCK_ASSERT(td, MA_OWNED);
  870         /*
  871          * If we are getting stats for the current thread, then add in the
  872          * stats that this thread has accumulated in its current time slice.
  873          * We reset the thread and CPU state as if we had performed a context
  874          * switch right here.
  875          */
  876         if (td == curthread) {
  877                 u = cpu_ticks();
  878                 runtime = u - PCPU_GET(switchtime);
  879                 td->td_runtime += runtime;
  880                 td->td_incruntime += runtime;
  881                 PCPU_SET(switchtime, u);
  882         }
  883         ruxagg_locked(p, td);
  884         *ru = td->td_ru;
  885         calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
  886 }
  887 
  888 /* XXX: the MI version is too slow to use: */
  889 #ifndef __HAVE_INLINE_FLSLL
  890 #define flsll(x)        (fls((x) >> 32) != 0 ? fls((x) >> 32) + 32 : fls(x))
  891 #endif
  892 
  893 static uint64_t
  894 mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c)
  895 {
  896         uint64_t acc, bh, bl;
  897         int i, s, sa, sb;
  898 
  899         /*
  900          * Calculate (a * b) / c accurately enough without overflowing.  c
  901          * must be nonzero, and its top bit must be 0.  a or b must be
  902          * <= c, and the implementation is tuned for b <= c.
  903          *
  904          * The comments about times are for use in calcru1() with units of
  905          * microseconds for 'a' and stathz ticks at 128 Hz for b and c.
  906          *
  907          * Let n be the number of top zero bits in c.  Each iteration
  908          * either returns, or reduces b by right shifting it by at least n.
  909          * The number of iterations is at most 1 + 64 / n, and the error is
  910          * at most the number of iterations.
  911          *
  912          * It is very unusual to need even 2 iterations.  Previous
  913          * implementations overflowed essentially by returning early in the
  914          * first iteration, with n = 38 giving overflow at 105+ hours and
  915          * n = 32 giving overlow at at 388+ days despite a more careful
  916          * calculation.  388 days is a reasonable uptime, and the calculation
  917          * needs to work for the uptime times the number of CPUs since 'a'
  918          * is per-process.
  919          */
  920         if (a >= (uint64_t)1 << 63)
  921                 return (0);             /* Unsupported arg -- can't happen. */
  922         acc = 0;
  923         for (i = 0; i < 128; i++) {
  924                 sa = flsll(a);
  925                 sb = flsll(b);
  926                 if (sa + sb <= 64)
  927                         /* Up to 105 hours on first iteration. */
  928                         return (acc + (a * b) / c);
  929                 if (a >= c) {
  930                         /*
  931                          * This reduction is based on a = q * c + r, with the
  932                          * remainder r < c.  'a' may be large to start, and
  933                          * moving bits from b into 'a' at the end of the loop
  934                          * sets the top bit of 'a', so the reduction makes
  935                          * significant progress.
  936                          */
  937                         acc += (a / c) * b;
  938                         a %= c;
  939                         sa = flsll(a);
  940                         if (sa + sb <= 64)
  941                                 /* Up to 388 days on first iteration. */
  942                                 return (acc + (a * b) / c);
  943                 }
  944 
  945                 /*
  946                  * This step writes a * b as a * ((bh << s) + bl) =
  947                  * a * (bh << s) + a * bl = (a << s) * bh + a * bl.  The 2
  948                  * additive terms are handled separately.  Splitting in
  949                  * this way is linear except for rounding errors.
  950                  *
  951                  * s = 64 - sa is the maximum such that a << s fits in 64
  952                  * bits.  Since a < c and c has at least 1 zero top bit,
  953                  * sa < 64 and s > 0.  Thus this step makes progress by
  954                  * reducing b (it increases 'a', but taking remainders on
  955                  * the next iteration completes the reduction).
  956                  *
  957                  * Finally, the choice for s is just what is needed to keep
  958                  * a * bl from overflowing, so we don't need complications
  959                  * like a recursive call mul64_by_fraction(a, bl, c) to
  960                  * handle the second additive term.
  961                  */
  962                 s = 64 - sa;
  963                 bh = b >> s;
  964                 bl = b - (bh << s);
  965                 acc += (a * bl) / c;
  966                 a <<= s;
  967                 b = bh;
  968         }
  969         return (0);             /* Algorithm failure -- can't happen. */
  970 }
  971 
  972 static void
  973 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
  974     struct timeval *sp)
  975 {
  976         /* {user, system, interrupt, total} {ticks, usec}: */
  977         uint64_t ut, uu, st, su, it, tt, tu;
  978 
  979         ut = ruxp->rux_uticks;
  980         st = ruxp->rux_sticks;
  981         it = ruxp->rux_iticks;
  982         tt = ut + st + it;
  983         if (tt == 0) {
  984                 /* Avoid divide by zero */
  985                 st = 1;
  986                 tt = 1;
  987         }
  988         tu = cputick2usec(ruxp->rux_runtime);
  989         if ((int64_t)tu < 0) {
  990                 /* XXX: this should be an assert /phk */
  991                 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
  992                     (intmax_t)tu, p->p_pid, p->p_comm);
  993                 tu = ruxp->rux_tu;
  994         }
  995 
  996         /* Subdivide tu.  Avoid overflow in the multiplications. */
  997         if (__predict_true(tu <= ((uint64_t)1 << 38) && tt <= (1 << 26))) {
  998                 /* Up to 76 hours when stathz is 128. */
  999                 uu = (tu * ut) / tt;
 1000                 su = (tu * st) / tt;
 1001         } else {
 1002                 uu = mul64_by_fraction(tu, ut, tt);
 1003                 su = mul64_by_fraction(tu, st, tt);
 1004         }
 1005 
 1006         if (tu >= ruxp->rux_tu) {
 1007                 /*
 1008                  * The normal case, time increased.
 1009                  * Enforce monotonicity of bucketed numbers.
 1010                  */
 1011                 if (uu < ruxp->rux_uu)
 1012                         uu = ruxp->rux_uu;
 1013                 if (su < ruxp->rux_su)
 1014                         su = ruxp->rux_su;
 1015         } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
 1016                 /*
 1017                  * When we calibrate the cputicker, it is not uncommon to
 1018                  * see the presumably fixed frequency increase slightly over
 1019                  * time as a result of thermal stabilization and NTP
 1020                  * discipline (of the reference clock).  We therefore ignore
 1021                  * a bit of backwards slop because we  expect to catch up
 1022                  * shortly.  We use a 3 microsecond limit to catch low
 1023                  * counts and a 1% limit for high counts.
 1024                  */
 1025                 uu = ruxp->rux_uu;
 1026                 su = ruxp->rux_su;
 1027                 tu = ruxp->rux_tu;
 1028         } else if (vm_guest == VM_GUEST_NO) {  /* tu < ruxp->rux_tu */
 1029                 /*
 1030                  * What happened here was likely that a laptop, which ran at
 1031                  * a reduced clock frequency at boot, kicked into high gear.
 1032                  * The wisdom of spamming this message in that case is
 1033                  * dubious, but it might also be indicative of something
 1034                  * serious, so lets keep it and hope laptops can be made
 1035                  * more truthful about their CPU speed via ACPI.
 1036                  */
 1037                 printf("calcru: runtime went backwards from %ju usec "
 1038                     "to %ju usec for pid %d (%s)\n",
 1039                     (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
 1040                     p->p_pid, p->p_comm);
 1041         }
 1042 
 1043         ruxp->rux_uu = uu;
 1044         ruxp->rux_su = su;
 1045         ruxp->rux_tu = tu;
 1046 
 1047         up->tv_sec = uu / 1000000;
 1048         up->tv_usec = uu % 1000000;
 1049         sp->tv_sec = su / 1000000;
 1050         sp->tv_usec = su % 1000000;
 1051 }
 1052 
 1053 #ifndef _SYS_SYSPROTO_H_
 1054 struct getrusage_args {
 1055         int     who;
 1056         struct  rusage *rusage;
 1057 };
 1058 #endif
 1059 int
 1060 sys_getrusage(struct thread *td, struct getrusage_args *uap)
 1061 {
 1062         struct rusage ru;
 1063         int error;
 1064 
 1065         error = kern_getrusage(td, uap->who, &ru);
 1066         if (error == 0)
 1067                 error = copyout(&ru, uap->rusage, sizeof(struct rusage));
 1068         return (error);
 1069 }
 1070 
 1071 int
 1072 kern_getrusage(struct thread *td, int who, struct rusage *rup)
 1073 {
 1074         struct proc *p;
 1075         int error;
 1076 
 1077         error = 0;
 1078         p = td->td_proc;
 1079         PROC_LOCK(p);
 1080         switch (who) {
 1081         case RUSAGE_SELF:
 1082                 rufetchcalc(p, rup, &rup->ru_utime,
 1083                     &rup->ru_stime);
 1084                 break;
 1085 
 1086         case RUSAGE_CHILDREN:
 1087                 *rup = p->p_stats->p_cru;
 1088                 calccru(p, &rup->ru_utime, &rup->ru_stime);
 1089                 break;
 1090 
 1091         case RUSAGE_THREAD:
 1092                 PROC_STATLOCK(p);
 1093                 thread_lock(td);
 1094                 rufetchtd(td, rup);
 1095                 thread_unlock(td);
 1096                 PROC_STATUNLOCK(p);
 1097                 break;
 1098 
 1099         default:
 1100                 error = EINVAL;
 1101         }
 1102         PROC_UNLOCK(p);
 1103         return (error);
 1104 }
 1105 
 1106 void
 1107 rucollect(struct rusage *ru, struct rusage *ru2)
 1108 {
 1109         long *ip, *ip2;
 1110         int i;
 1111 
 1112         if (ru->ru_maxrss < ru2->ru_maxrss)
 1113                 ru->ru_maxrss = ru2->ru_maxrss;
 1114         ip = &ru->ru_first;
 1115         ip2 = &ru2->ru_first;
 1116         for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
 1117                 *ip++ += *ip2++;
 1118 }
 1119 
 1120 void
 1121 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
 1122     struct rusage_ext *rux2)
 1123 {
 1124 
 1125         rux->rux_runtime += rux2->rux_runtime;
 1126         rux->rux_uticks += rux2->rux_uticks;
 1127         rux->rux_sticks += rux2->rux_sticks;
 1128         rux->rux_iticks += rux2->rux_iticks;
 1129         rux->rux_uu += rux2->rux_uu;
 1130         rux->rux_su += rux2->rux_su;
 1131         rux->rux_tu += rux2->rux_tu;
 1132         rucollect(ru, ru2);
 1133 }
 1134 
 1135 /*
 1136  * Aggregate tick counts into the proc's rusage_ext.
 1137  */
 1138 static void
 1139 ruxagg_ext_locked(struct rusage_ext *rux, struct thread *td)
 1140 {
 1141 
 1142         rux->rux_runtime += td->td_incruntime;
 1143         rux->rux_uticks += td->td_uticks;
 1144         rux->rux_sticks += td->td_sticks;
 1145         rux->rux_iticks += td->td_iticks;
 1146 }
 1147 
 1148 void
 1149 ruxagg_locked(struct proc *p, struct thread *td)
 1150 {
 1151         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1152         PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED);
 1153 
 1154         ruxagg_ext_locked(&p->p_rux, td);
 1155         ruxagg_ext_locked(&td->td_rux, td);
 1156         td->td_incruntime = 0;
 1157         td->td_uticks = 0;
 1158         td->td_iticks = 0;
 1159         td->td_sticks = 0;
 1160 }
 1161 
 1162 void
 1163 ruxagg(struct proc *p, struct thread *td)
 1164 {
 1165 
 1166         thread_lock(td);
 1167         ruxagg_locked(p, td);
 1168         thread_unlock(td);
 1169 }
 1170 
 1171 /*
 1172  * Update the rusage_ext structure and fetch a valid aggregate rusage
 1173  * for proc p if storage for one is supplied.
 1174  */
 1175 void
 1176 rufetch(struct proc *p, struct rusage *ru)
 1177 {
 1178         struct thread *td;
 1179 
 1180         PROC_STATLOCK_ASSERT(p, MA_OWNED);
 1181 
 1182         *ru = p->p_ru;
 1183         if (p->p_numthreads > 0)  {
 1184                 FOREACH_THREAD_IN_PROC(p, td) {
 1185                         ruxagg(p, td);
 1186                         rucollect(ru, &td->td_ru);
 1187                 }
 1188         }
 1189 }
 1190 
 1191 /*
 1192  * Atomically perform a rufetch and a calcru together.
 1193  * Consumers, can safely assume the calcru is executed only once
 1194  * rufetch is completed.
 1195  */
 1196 void
 1197 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
 1198     struct timeval *sp)
 1199 {
 1200 
 1201         PROC_STATLOCK(p);
 1202         rufetch(p, ru);
 1203         calcru(p, up, sp);
 1204         PROC_STATUNLOCK(p);
 1205 }
 1206 
 1207 /*
 1208  * Allocate a new resource limits structure and initialize its
 1209  * reference count and mutex pointer.
 1210  */
 1211 struct plimit *
 1212 lim_alloc(void)
 1213 {
 1214         struct plimit *limp;
 1215 
 1216         limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
 1217         refcount_init(&limp->pl_refcnt, 1);
 1218         return (limp);
 1219 }
 1220 
 1221 struct plimit *
 1222 lim_hold(struct plimit *limp)
 1223 {
 1224 
 1225         refcount_acquire(&limp->pl_refcnt);
 1226         return (limp);
 1227 }
 1228 
 1229 struct plimit *
 1230 lim_cowsync(void)
 1231 {
 1232         struct thread *td;
 1233         struct proc *p;
 1234         struct plimit *oldlimit;
 1235 
 1236         td = curthread;
 1237         p = td->td_proc;
 1238         PROC_LOCK_ASSERT(p, MA_OWNED);
 1239 
 1240         if (td->td_limit == p->p_limit)
 1241                 return (NULL);
 1242 
 1243         oldlimit = td->td_limit;
 1244         td->td_limit = lim_hold(p->p_limit);
 1245 
 1246         return (oldlimit);
 1247 }
 1248 
 1249 void
 1250 lim_fork(struct proc *p1, struct proc *p2)
 1251 {
 1252 
 1253         PROC_LOCK_ASSERT(p1, MA_OWNED);
 1254         PROC_LOCK_ASSERT(p2, MA_OWNED);
 1255 
 1256         p2->p_limit = lim_hold(p1->p_limit);
 1257         callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
 1258         if (p1->p_cpulimit != RLIM_INFINITY)
 1259                 callout_reset_sbt(&p2->p_limco, SBT_1S, 0,
 1260                     lim_cb, p2, C_PREL(1));
 1261 }
 1262 
 1263 void
 1264 lim_free(struct plimit *limp)
 1265 {
 1266 
 1267         if (refcount_release(&limp->pl_refcnt))
 1268                 free((void *)limp, M_PLIMIT);
 1269 }
 1270 
 1271 void
 1272 lim_freen(struct plimit *limp, int n)
 1273 {
 1274 
 1275         if (refcount_releasen(&limp->pl_refcnt, n))
 1276                 free((void *)limp, M_PLIMIT);
 1277 }
 1278 
 1279 /*
 1280  * Make a copy of the plimit structure.
 1281  * We share these structures copy-on-write after fork.
 1282  */
 1283 void
 1284 lim_copy(struct plimit *dst, struct plimit *src)
 1285 {
 1286 
 1287         KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit"));
 1288         bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
 1289 }
 1290 
 1291 /*
 1292  * Return the hard limit for a particular system resource.  The
 1293  * which parameter specifies the index into the rlimit array.
 1294  */
 1295 rlim_t
 1296 lim_max(struct thread *td, int which)
 1297 {
 1298         struct rlimit rl;
 1299 
 1300         lim_rlimit(td, which, &rl);
 1301         return (rl.rlim_max);
 1302 }
 1303 
 1304 rlim_t
 1305 lim_max_proc(struct proc *p, int which)
 1306 {
 1307         struct rlimit rl;
 1308 
 1309         lim_rlimit_proc(p, which, &rl);
 1310         return (rl.rlim_max);
 1311 }
 1312 
 1313 /*
 1314  * Return the current (soft) limit for a particular system resource.
 1315  * The which parameter which specifies the index into the rlimit array
 1316  */
 1317 rlim_t
 1318 (lim_cur)(struct thread *td, int which)
 1319 {
 1320         struct rlimit rl;
 1321 
 1322         lim_rlimit(td, which, &rl);
 1323         return (rl.rlim_cur);
 1324 }
 1325 
 1326 rlim_t
 1327 lim_cur_proc(struct proc *p, int which)
 1328 {
 1329         struct rlimit rl;
 1330 
 1331         lim_rlimit_proc(p, which, &rl);
 1332         return (rl.rlim_cur);
 1333 }
 1334 
 1335 /*
 1336  * Return a copy of the entire rlimit structure for the system limit
 1337  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
 1338  */
 1339 void
 1340 lim_rlimit(struct thread *td, int which, struct rlimit *rlp)
 1341 {
 1342         struct proc *p = td->td_proc;
 1343 
 1344         MPASS(td == curthread);
 1345         KASSERT(which >= 0 && which < RLIM_NLIMITS,
 1346             ("request for invalid resource limit"));
 1347         *rlp = td->td_limit->pl_rlimit[which];
 1348         if (p->p_sysent->sv_fixlimit != NULL)
 1349                 p->p_sysent->sv_fixlimit(rlp, which);
 1350 }
 1351 
 1352 void
 1353 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp)
 1354 {
 1355 
 1356         PROC_LOCK_ASSERT(p, MA_OWNED);
 1357         KASSERT(which >= 0 && which < RLIM_NLIMITS,
 1358             ("request for invalid resource limit"));
 1359         *rlp = p->p_limit->pl_rlimit[which];
 1360         if (p->p_sysent->sv_fixlimit != NULL)
 1361                 p->p_sysent->sv_fixlimit(rlp, which);
 1362 }
 1363 
 1364 void
 1365 uihashinit(void)
 1366 {
 1367 
 1368         uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
 1369         rw_init(&uihashtbl_lock, "uidinfo hash");
 1370 }
 1371 
 1372 /*
 1373  * Look up a uidinfo struct for the parameter uid.
 1374  * uihashtbl_lock must be locked.
 1375  * Increase refcount on uidinfo struct returned.
 1376  */
 1377 static struct uidinfo *
 1378 uilookup(uid_t uid)
 1379 {
 1380         struct uihashhead *uipp;
 1381         struct uidinfo *uip;
 1382 
 1383         rw_assert(&uihashtbl_lock, RA_LOCKED);
 1384         uipp = UIHASH(uid);
 1385         LIST_FOREACH(uip, uipp, ui_hash)
 1386                 if (uip->ui_uid == uid) {
 1387                         uihold(uip);
 1388                         break;
 1389                 }
 1390 
 1391         return (uip);
 1392 }
 1393 
 1394 /*
 1395  * Find or allocate a struct uidinfo for a particular uid.
 1396  * Returns with uidinfo struct referenced.
 1397  * uifree() should be called on a struct uidinfo when released.
 1398  */
 1399 struct uidinfo *
 1400 uifind(uid_t uid)
 1401 {
 1402         struct uidinfo *new_uip, *uip;
 1403         struct ucred *cred;
 1404 
 1405         cred = curthread->td_ucred;
 1406         if (cred->cr_uidinfo->ui_uid == uid) {
 1407                 uip = cred->cr_uidinfo;
 1408                 uihold(uip);
 1409                 return (uip);
 1410         } else if (cred->cr_ruidinfo->ui_uid == uid) {
 1411                 uip = cred->cr_ruidinfo;
 1412                 uihold(uip);
 1413                 return (uip);
 1414         }
 1415 
 1416         rw_rlock(&uihashtbl_lock);
 1417         uip = uilookup(uid);
 1418         rw_runlock(&uihashtbl_lock);
 1419         if (uip != NULL)
 1420                 return (uip);
 1421 
 1422         new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO);
 1423         racct_create(&new_uip->ui_racct);
 1424         refcount_init(&new_uip->ui_ref, 1);
 1425         new_uip->ui_uid = uid;
 1426 
 1427         rw_wlock(&uihashtbl_lock);
 1428         /*
 1429          * There's a chance someone created our uidinfo while we
 1430          * were in malloc and not holding the lock, so we have to
 1431          * make sure we don't insert a duplicate uidinfo.
 1432          */
 1433         if ((uip = uilookup(uid)) == NULL) {
 1434                 LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash);
 1435                 rw_wunlock(&uihashtbl_lock);
 1436                 uip = new_uip;
 1437         } else {
 1438                 rw_wunlock(&uihashtbl_lock);
 1439                 racct_destroy(&new_uip->ui_racct);
 1440                 free(new_uip, M_UIDINFO);
 1441         }
 1442         return (uip);
 1443 }
 1444 
 1445 /*
 1446  * Place another refcount on a uidinfo struct.
 1447  */
 1448 void
 1449 uihold(struct uidinfo *uip)
 1450 {
 1451 
 1452         refcount_acquire(&uip->ui_ref);
 1453 }
 1454 
 1455 /*-
 1456  * Since uidinfo structs have a long lifetime, we use an
 1457  * opportunistic refcounting scheme to avoid locking the lookup hash
 1458  * for each release.
 1459  *
 1460  * If the refcount hits 0, we need to free the structure,
 1461  * which means we need to lock the hash.
 1462  * Optimal case:
 1463  *   After locking the struct and lowering the refcount, if we find
 1464  *   that we don't need to free, simply unlock and return.
 1465  * Suboptimal case:
 1466  *   If refcount lowering results in need to free, bump the count
 1467  *   back up, lose the lock and acquire the locks in the proper
 1468  *   order to try again.
 1469  */
 1470 void
 1471 uifree(struct uidinfo *uip)
 1472 {
 1473 
 1474         if (refcount_release_if_not_last(&uip->ui_ref))
 1475                 return;
 1476 
 1477         rw_wlock(&uihashtbl_lock);
 1478         if (refcount_release(&uip->ui_ref) == 0) {
 1479                 rw_wunlock(&uihashtbl_lock);
 1480                 return;
 1481         }
 1482 
 1483         racct_destroy(&uip->ui_racct);
 1484         LIST_REMOVE(uip, ui_hash);
 1485         rw_wunlock(&uihashtbl_lock);
 1486 
 1487         if (uip->ui_sbsize != 0)
 1488                 printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
 1489                     uip->ui_uid, uip->ui_sbsize);
 1490         if (uip->ui_proccnt != 0)
 1491                 printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
 1492                     uip->ui_uid, uip->ui_proccnt);
 1493         if (uip->ui_vmsize != 0)
 1494                 printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
 1495                     uip->ui_uid, (unsigned long long)uip->ui_vmsize);
 1496         free(uip, M_UIDINFO);
 1497 }
 1498 
 1499 #ifdef RACCT
 1500 void
 1501 ui_racct_foreach(void (*callback)(struct racct *racct,
 1502     void *arg2, void *arg3), void (*pre)(void), void (*post)(void),
 1503     void *arg2, void *arg3)
 1504 {
 1505         struct uidinfo *uip;
 1506         struct uihashhead *uih;
 1507 
 1508         rw_rlock(&uihashtbl_lock);
 1509         if (pre != NULL)
 1510                 (pre)();
 1511         for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
 1512                 LIST_FOREACH(uip, uih, ui_hash) {
 1513                         (callback)(uip->ui_racct, arg2, arg3);
 1514                 }
 1515         }
 1516         if (post != NULL)
 1517                 (post)();
 1518         rw_runlock(&uihashtbl_lock);
 1519 }
 1520 #endif
 1521 
 1522 static inline int
 1523 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name)
 1524 {
 1525         long new;
 1526 
 1527         /* Don't allow them to exceed max, but allow subtraction. */
 1528         new = atomic_fetchadd_long(limit, (long)diff) + diff;
 1529         if (diff > 0 && max != 0) {
 1530                 if (new < 0 || new > max) {
 1531                         atomic_subtract_long(limit, (long)diff);
 1532                         return (0);
 1533                 }
 1534         } else if (new < 0)
 1535                 printf("negative %s for uid = %d\n", name, uip->ui_uid);
 1536         return (1);
 1537 }
 1538 
 1539 /*
 1540  * Change the count associated with number of processes
 1541  * a given user is using.  When 'max' is 0, don't enforce a limit
 1542  */
 1543 int
 1544 chgproccnt(struct uidinfo *uip, int diff, rlim_t max)
 1545 {
 1546 
 1547         return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt"));
 1548 }
 1549 
 1550 /*
 1551  * Change the total socket buffer size a user has used.
 1552  */
 1553 int
 1554 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
 1555 {
 1556         int diff, rv;
 1557 
 1558         diff = to - *hiwat;
 1559         if (diff > 0 && max == 0) {
 1560                 rv = 0;
 1561         } else {
 1562                 rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize");
 1563                 if (rv != 0)
 1564                         *hiwat = to;
 1565         }
 1566         return (rv);
 1567 }
 1568 
 1569 /*
 1570  * Change the count associated with number of pseudo-terminals
 1571  * a given user is using.  When 'max' is 0, don't enforce a limit
 1572  */
 1573 int
 1574 chgptscnt(struct uidinfo *uip, int diff, rlim_t max)
 1575 {
 1576 
 1577         return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt"));
 1578 }
 1579 
 1580 int
 1581 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max)
 1582 {
 1583 
 1584         return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt"));
 1585 }
 1586 
 1587 int
 1588 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max)
 1589 {
 1590 
 1591         return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt"));
 1592 }

Cache object: e4ae55a6d189226e6bfd7d6406e72ab1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.