The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_resource.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_resource.c     8.5 (Berkeley) 1/21/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/10.0/sys/kern/kern_resource.c 247905 2013-03-07 02:53:29Z ian $");
   39 
   40 #include "opt_compat.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/sysproto.h>
   45 #include <sys/file.h>
   46 #include <sys/kernel.h>
   47 #include <sys/lock.h>
   48 #include <sys/malloc.h>
   49 #include <sys/mutex.h>
   50 #include <sys/priv.h>
   51 #include <sys/proc.h>
   52 #include <sys/refcount.h>
   53 #include <sys/racct.h>
   54 #include <sys/resourcevar.h>
   55 #include <sys/rwlock.h>
   56 #include <sys/sched.h>
   57 #include <sys/sx.h>
   58 #include <sys/syscallsubr.h>
   59 #include <sys/sysctl.h>
   60 #include <sys/sysent.h>
   61 #include <sys/time.h>
   62 #include <sys/umtx.h>
   63 
   64 #include <vm/vm.h>
   65 #include <vm/vm_param.h>
   66 #include <vm/pmap.h>
   67 #include <vm/vm_map.h>
   68 
   69 
   70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
   71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
   72 #define UIHASH(uid)     (&uihashtbl[(uid) & uihash])
   73 static struct rwlock uihashtbl_lock;
   74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
   75 static u_long uihash;           /* size of hash table - 1 */
   76 
   77 static void     calcru1(struct proc *p, struct rusage_ext *ruxp,
   78                     struct timeval *up, struct timeval *sp);
   79 static int      donice(struct thread *td, struct proc *chgp, int n);
   80 static struct uidinfo *uilookup(uid_t uid);
   81 static void     ruxagg_locked(struct rusage_ext *rux, struct thread *td);
   82 
   83 /*
   84  * Resource controls and accounting.
   85  */
   86 #ifndef _SYS_SYSPROTO_H_
   87 struct getpriority_args {
   88         int     which;
   89         int     who;
   90 };
   91 #endif
   92 int
   93 sys_getpriority(td, uap)
   94         struct thread *td;
   95         register struct getpriority_args *uap;
   96 {
   97         struct proc *p;
   98         struct pgrp *pg;
   99         int error, low;
  100 
  101         error = 0;
  102         low = PRIO_MAX + 1;
  103         switch (uap->which) {
  104 
  105         case PRIO_PROCESS:
  106                 if (uap->who == 0)
  107                         low = td->td_proc->p_nice;
  108                 else {
  109                         p = pfind(uap->who);
  110                         if (p == NULL)
  111                                 break;
  112                         if (p_cansee(td, p) == 0)
  113                                 low = p->p_nice;
  114                         PROC_UNLOCK(p);
  115                 }
  116                 break;
  117 
  118         case PRIO_PGRP:
  119                 sx_slock(&proctree_lock);
  120                 if (uap->who == 0) {
  121                         pg = td->td_proc->p_pgrp;
  122                         PGRP_LOCK(pg);
  123                 } else {
  124                         pg = pgfind(uap->who);
  125                         if (pg == NULL) {
  126                                 sx_sunlock(&proctree_lock);
  127                                 break;
  128                         }
  129                 }
  130                 sx_sunlock(&proctree_lock);
  131                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  132                         PROC_LOCK(p);
  133                         if (p->p_state == PRS_NORMAL &&
  134                             p_cansee(td, p) == 0) {
  135                                 if (p->p_nice < low)
  136                                         low = p->p_nice;
  137                         }
  138                         PROC_UNLOCK(p);
  139                 }
  140                 PGRP_UNLOCK(pg);
  141                 break;
  142 
  143         case PRIO_USER:
  144                 if (uap->who == 0)
  145                         uap->who = td->td_ucred->cr_uid;
  146                 sx_slock(&allproc_lock);
  147                 FOREACH_PROC_IN_SYSTEM(p) {
  148                         PROC_LOCK(p);
  149                         if (p->p_state == PRS_NORMAL &&
  150                             p_cansee(td, p) == 0 &&
  151                             p->p_ucred->cr_uid == uap->who) {
  152                                 if (p->p_nice < low)
  153                                         low = p->p_nice;
  154                         }
  155                         PROC_UNLOCK(p);
  156                 }
  157                 sx_sunlock(&allproc_lock);
  158                 break;
  159 
  160         default:
  161                 error = EINVAL;
  162                 break;
  163         }
  164         if (low == PRIO_MAX + 1 && error == 0)
  165                 error = ESRCH;
  166         td->td_retval[0] = low;
  167         return (error);
  168 }
  169 
  170 #ifndef _SYS_SYSPROTO_H_
  171 struct setpriority_args {
  172         int     which;
  173         int     who;
  174         int     prio;
  175 };
  176 #endif
  177 int
  178 sys_setpriority(td, uap)
  179         struct thread *td;
  180         struct setpriority_args *uap;
  181 {
  182         struct proc *curp, *p;
  183         struct pgrp *pg;
  184         int found = 0, error = 0;
  185 
  186         curp = td->td_proc;
  187         switch (uap->which) {
  188         case PRIO_PROCESS:
  189                 if (uap->who == 0) {
  190                         PROC_LOCK(curp);
  191                         error = donice(td, curp, uap->prio);
  192                         PROC_UNLOCK(curp);
  193                 } else {
  194                         p = pfind(uap->who);
  195                         if (p == NULL)
  196                                 break;
  197                         error = p_cansee(td, p);
  198                         if (error == 0)
  199                                 error = donice(td, p, uap->prio);
  200                         PROC_UNLOCK(p);
  201                 }
  202                 found++;
  203                 break;
  204 
  205         case PRIO_PGRP:
  206                 sx_slock(&proctree_lock);
  207                 if (uap->who == 0) {
  208                         pg = curp->p_pgrp;
  209                         PGRP_LOCK(pg);
  210                 } else {
  211                         pg = pgfind(uap->who);
  212                         if (pg == NULL) {
  213                                 sx_sunlock(&proctree_lock);
  214                                 break;
  215                         }
  216                 }
  217                 sx_sunlock(&proctree_lock);
  218                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  219                         PROC_LOCK(p);
  220                         if (p->p_state == PRS_NORMAL &&
  221                             p_cansee(td, p) == 0) {
  222                                 error = donice(td, p, uap->prio);
  223                                 found++;
  224                         }
  225                         PROC_UNLOCK(p);
  226                 }
  227                 PGRP_UNLOCK(pg);
  228                 break;
  229 
  230         case PRIO_USER:
  231                 if (uap->who == 0)
  232                         uap->who = td->td_ucred->cr_uid;
  233                 sx_slock(&allproc_lock);
  234                 FOREACH_PROC_IN_SYSTEM(p) {
  235                         PROC_LOCK(p);
  236                         if (p->p_state == PRS_NORMAL &&
  237                             p->p_ucred->cr_uid == uap->who &&
  238                             p_cansee(td, p) == 0) {
  239                                 error = donice(td, p, uap->prio);
  240                                 found++;
  241                         }
  242                         PROC_UNLOCK(p);
  243                 }
  244                 sx_sunlock(&allproc_lock);
  245                 break;
  246 
  247         default:
  248                 error = EINVAL;
  249                 break;
  250         }
  251         if (found == 0 && error == 0)
  252                 error = ESRCH;
  253         return (error);
  254 }
  255 
  256 /*
  257  * Set "nice" for a (whole) process.
  258  */
  259 static int
  260 donice(struct thread *td, struct proc *p, int n)
  261 {
  262         int error;
  263 
  264         PROC_LOCK_ASSERT(p, MA_OWNED);
  265         if ((error = p_cansched(td, p)))
  266                 return (error);
  267         if (n > PRIO_MAX)
  268                 n = PRIO_MAX;
  269         if (n < PRIO_MIN)
  270                 n = PRIO_MIN;
  271         if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
  272                 return (EACCES);
  273         sched_nice(p, n);
  274         return (0);
  275 }
  276 
  277 static int unprivileged_idprio;
  278 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,
  279     &unprivileged_idprio, 0, "Allow non-root users to set an idle priority");
  280 
  281 /*
  282  * Set realtime priority for LWP.
  283  */
  284 #ifndef _SYS_SYSPROTO_H_
  285 struct rtprio_thread_args {
  286         int             function;
  287         lwpid_t         lwpid;
  288         struct rtprio   *rtp;
  289 };
  290 #endif
  291 int
  292 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
  293 {
  294         struct proc *p;
  295         struct rtprio rtp;
  296         struct thread *td1;
  297         int cierror, error;
  298 
  299         /* Perform copyin before acquiring locks if needed. */
  300         if (uap->function == RTP_SET)
  301                 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
  302         else
  303                 cierror = 0;
  304 
  305         if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
  306                 p = td->td_proc;
  307                 td1 = td;
  308                 PROC_LOCK(p);
  309         } else {
  310                 /* Only look up thread in current process */
  311                 td1 = tdfind(uap->lwpid, curproc->p_pid);
  312                 if (td1 == NULL)
  313                         return (ESRCH);
  314                 p = td1->td_proc;
  315         }
  316 
  317         switch (uap->function) {
  318         case RTP_LOOKUP:
  319                 if ((error = p_cansee(td, p)))
  320                         break;
  321                 pri_to_rtp(td1, &rtp);
  322                 PROC_UNLOCK(p);
  323                 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
  324         case RTP_SET:
  325                 if ((error = p_cansched(td, p)) || (error = cierror))
  326                         break;
  327 
  328                 /* Disallow setting rtprio in most cases if not superuser. */
  329 
  330                 /*
  331                  * Realtime priority has to be restricted for reasons which
  332                  * should be obvious.  However, for idleprio processes, there is
  333                  * a potential for system deadlock if an idleprio process gains
  334                  * a lock on a resource that other processes need (and the
  335                  * idleprio process can't run due to a CPU-bound normal
  336                  * process).  Fix me!  XXX
  337                  *
  338                  * This problem is not only related to idleprio process.
  339                  * A user level program can obtain a file lock and hold it
  340                  * indefinitely.  Additionally, without idleprio processes it is
  341                  * still conceivable that a program with low priority will never
  342                  * get to run.  In short, allowing this feature might make it
  343                  * easier to lock a resource indefinitely, but it is not the
  344                  * only thing that makes it possible.
  345                  */
  346                 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
  347                     (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
  348                     unprivileged_idprio == 0)) {
  349                         error = priv_check(td, PRIV_SCHED_RTPRIO);
  350                         if (error)
  351                                 break;
  352                 }
  353                 error = rtp_to_pri(&rtp, td1);
  354                 break;
  355         default:
  356                 error = EINVAL;
  357                 break;
  358         }
  359         PROC_UNLOCK(p);
  360         return (error);
  361 }
  362 
  363 /*
  364  * Set realtime priority.
  365  */
  366 #ifndef _SYS_SYSPROTO_H_
  367 struct rtprio_args {
  368         int             function;
  369         pid_t           pid;
  370         struct rtprio   *rtp;
  371 };
  372 #endif
  373 int
  374 sys_rtprio(td, uap)
  375         struct thread *td;              /* curthread */
  376         register struct rtprio_args *uap;
  377 {
  378         struct proc *p;
  379         struct thread *tdp;
  380         struct rtprio rtp;
  381         int cierror, error;
  382 
  383         /* Perform copyin before acquiring locks if needed. */
  384         if (uap->function == RTP_SET)
  385                 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
  386         else
  387                 cierror = 0;
  388 
  389         if (uap->pid == 0) {
  390                 p = td->td_proc;
  391                 PROC_LOCK(p);
  392         } else {
  393                 p = pfind(uap->pid);
  394                 if (p == NULL)
  395                         return (ESRCH);
  396         }
  397 
  398         switch (uap->function) {
  399         case RTP_LOOKUP:
  400                 if ((error = p_cansee(td, p)))
  401                         break;
  402                 /*
  403                  * Return OUR priority if no pid specified,
  404                  * or if one is, report the highest priority
  405                  * in the process.  There isn't much more you can do as
  406                  * there is only room to return a single priority.
  407                  * Note: specifying our own pid is not the same
  408                  * as leaving it zero.
  409                  */
  410                 if (uap->pid == 0) {
  411                         pri_to_rtp(td, &rtp);
  412                 } else {
  413                         struct rtprio rtp2;
  414 
  415                         rtp.type = RTP_PRIO_IDLE;
  416                         rtp.prio = RTP_PRIO_MAX;
  417                         FOREACH_THREAD_IN_PROC(p, tdp) {
  418                                 pri_to_rtp(tdp, &rtp2);
  419                                 if (rtp2.type <  rtp.type ||
  420                                     (rtp2.type == rtp.type &&
  421                                     rtp2.prio < rtp.prio)) {
  422                                         rtp.type = rtp2.type;
  423                                         rtp.prio = rtp2.prio;
  424                                 }
  425                         }
  426                 }
  427                 PROC_UNLOCK(p);
  428                 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
  429         case RTP_SET:
  430                 if ((error = p_cansched(td, p)) || (error = cierror))
  431                         break;
  432 
  433                 /*
  434                  * Disallow setting rtprio in most cases if not superuser.
  435                  * See the comment in sys_rtprio_thread about idprio
  436                  * threads holding a lock.
  437                  */
  438                 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
  439                     (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
  440                     !unprivileged_idprio)) {
  441                         error = priv_check(td, PRIV_SCHED_RTPRIO);
  442                         if (error)
  443                                 break;
  444                 }
  445 
  446                 /*
  447                  * If we are setting our own priority, set just our
  448                  * thread but if we are doing another process,
  449                  * do all the threads on that process. If we
  450                  * specify our own pid we do the latter.
  451                  */
  452                 if (uap->pid == 0) {
  453                         error = rtp_to_pri(&rtp, td);
  454                 } else {
  455                         FOREACH_THREAD_IN_PROC(p, td) {
  456                                 if ((error = rtp_to_pri(&rtp, td)) != 0)
  457                                         break;
  458                         }
  459                 }
  460                 break;
  461         default:
  462                 error = EINVAL;
  463                 break;
  464         }
  465         PROC_UNLOCK(p);
  466         return (error);
  467 }
  468 
  469 int
  470 rtp_to_pri(struct rtprio *rtp, struct thread *td)
  471 {
  472         u_char  newpri, oldclass, oldpri;
  473 
  474         switch (RTP_PRIO_BASE(rtp->type)) {
  475         case RTP_PRIO_REALTIME:
  476                 if (rtp->prio > RTP_PRIO_MAX)
  477                         return (EINVAL);
  478                 newpri = PRI_MIN_REALTIME + rtp->prio;
  479                 break;
  480         case RTP_PRIO_NORMAL:
  481                 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
  482                         return (EINVAL);
  483                 newpri = PRI_MIN_TIMESHARE + rtp->prio;
  484                 break;
  485         case RTP_PRIO_IDLE:
  486                 if (rtp->prio > RTP_PRIO_MAX)
  487                         return (EINVAL);
  488                 newpri = PRI_MIN_IDLE + rtp->prio;
  489                 break;
  490         default:
  491                 return (EINVAL);
  492         }
  493 
  494         thread_lock(td);
  495         oldclass = td->td_pri_class;
  496         sched_class(td, rtp->type);     /* XXX fix */
  497         oldpri = td->td_user_pri;
  498         sched_user_prio(td, newpri);
  499         if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL ||
  500             td->td_pri_class != RTP_PRIO_NORMAL))
  501                 sched_prio(td, td->td_user_pri);
  502         if (TD_ON_UPILOCK(td) && oldpri != newpri) {
  503                 critical_enter();
  504                 thread_unlock(td);
  505                 umtx_pi_adjust(td, oldpri);
  506                 critical_exit();
  507         } else
  508                 thread_unlock(td);
  509         return (0);
  510 }
  511 
  512 void
  513 pri_to_rtp(struct thread *td, struct rtprio *rtp)
  514 {
  515 
  516         thread_lock(td);
  517         switch (PRI_BASE(td->td_pri_class)) {
  518         case PRI_REALTIME:
  519                 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
  520                 break;
  521         case PRI_TIMESHARE:
  522                 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
  523                 break;
  524         case PRI_IDLE:
  525                 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
  526                 break;
  527         default:
  528                 break;
  529         }
  530         rtp->type = td->td_pri_class;
  531         thread_unlock(td);
  532 }
  533 
  534 #if defined(COMPAT_43)
  535 #ifndef _SYS_SYSPROTO_H_
  536 struct osetrlimit_args {
  537         u_int   which;
  538         struct  orlimit *rlp;
  539 };
  540 #endif
  541 int
  542 osetrlimit(td, uap)
  543         struct thread *td;
  544         register struct osetrlimit_args *uap;
  545 {
  546         struct orlimit olim;
  547         struct rlimit lim;
  548         int error;
  549 
  550         if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
  551                 return (error);
  552         lim.rlim_cur = olim.rlim_cur;
  553         lim.rlim_max = olim.rlim_max;
  554         error = kern_setrlimit(td, uap->which, &lim);
  555         return (error);
  556 }
  557 
  558 #ifndef _SYS_SYSPROTO_H_
  559 struct ogetrlimit_args {
  560         u_int   which;
  561         struct  orlimit *rlp;
  562 };
  563 #endif
  564 int
  565 ogetrlimit(td, uap)
  566         struct thread *td;
  567         register struct ogetrlimit_args *uap;
  568 {
  569         struct orlimit olim;
  570         struct rlimit rl;
  571         struct proc *p;
  572         int error;
  573 
  574         if (uap->which >= RLIM_NLIMITS)
  575                 return (EINVAL);
  576         p = td->td_proc;
  577         PROC_LOCK(p);
  578         lim_rlimit(p, uap->which, &rl);
  579         PROC_UNLOCK(p);
  580 
  581         /*
  582          * XXX would be more correct to convert only RLIM_INFINITY to the
  583          * old RLIM_INFINITY and fail with EOVERFLOW for other larger
  584          * values.  Most 64->32 and 32->16 conversions, including not
  585          * unimportant ones of uids are even more broken than what we
  586          * do here (they blindly truncate).  We don't do this correctly
  587          * here since we have little experience with EOVERFLOW yet.
  588          * Elsewhere, getuid() can't fail...
  589          */
  590         olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
  591         olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
  592         error = copyout(&olim, uap->rlp, sizeof(olim));
  593         return (error);
  594 }
  595 #endif /* COMPAT_43 */
  596 
  597 #ifndef _SYS_SYSPROTO_H_
  598 struct __setrlimit_args {
  599         u_int   which;
  600         struct  rlimit *rlp;
  601 };
  602 #endif
  603 int
  604 sys_setrlimit(td, uap)
  605         struct thread *td;
  606         register struct __setrlimit_args *uap;
  607 {
  608         struct rlimit alim;
  609         int error;
  610 
  611         if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
  612                 return (error);
  613         error = kern_setrlimit(td, uap->which, &alim);
  614         return (error);
  615 }
  616 
  617 static void
  618 lim_cb(void *arg)
  619 {
  620         struct rlimit rlim;
  621         struct thread *td;
  622         struct proc *p;
  623 
  624         p = arg;
  625         PROC_LOCK_ASSERT(p, MA_OWNED);
  626         /*
  627          * Check if the process exceeds its cpu resource allocation.  If
  628          * it reaches the max, arrange to kill the process in ast().
  629          */
  630         if (p->p_cpulimit == RLIM_INFINITY)
  631                 return;
  632         PROC_SLOCK(p);
  633         FOREACH_THREAD_IN_PROC(p, td) {
  634                 ruxagg(p, td);
  635         }
  636         PROC_SUNLOCK(p);
  637         if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
  638                 lim_rlimit(p, RLIMIT_CPU, &rlim);
  639                 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
  640                         killproc(p, "exceeded maximum CPU limit");
  641                 } else {
  642                         if (p->p_cpulimit < rlim.rlim_max)
  643                                 p->p_cpulimit += 5;
  644                         kern_psignal(p, SIGXCPU);
  645                 }
  646         }
  647         if ((p->p_flag & P_WEXIT) == 0)
  648                 callout_reset_sbt(&p->p_limco, SBT_1S, 0,
  649                     lim_cb, p, C_PREL(1));
  650 }
  651 
  652 int
  653 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
  654 {
  655 
  656         return (kern_proc_setrlimit(td, td->td_proc, which, limp));
  657 }
  658 
  659 int
  660 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which,
  661     struct rlimit *limp)
  662 {
  663         struct plimit *newlim, *oldlim;
  664         register struct rlimit *alimp;
  665         struct rlimit oldssiz;
  666         int error;
  667 
  668         if (which >= RLIM_NLIMITS)
  669                 return (EINVAL);
  670 
  671         /*
  672          * Preserve historical bugs by treating negative limits as unsigned.
  673          */
  674         if (limp->rlim_cur < 0)
  675                 limp->rlim_cur = RLIM_INFINITY;
  676         if (limp->rlim_max < 0)
  677                 limp->rlim_max = RLIM_INFINITY;
  678 
  679         oldssiz.rlim_cur = 0;
  680         newlim = lim_alloc();
  681         PROC_LOCK(p);
  682         oldlim = p->p_limit;
  683         alimp = &oldlim->pl_rlimit[which];
  684         if (limp->rlim_cur > alimp->rlim_max ||
  685             limp->rlim_max > alimp->rlim_max)
  686                 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
  687                         PROC_UNLOCK(p);
  688                         lim_free(newlim);
  689                         return (error);
  690                 }
  691         if (limp->rlim_cur > limp->rlim_max)
  692                 limp->rlim_cur = limp->rlim_max;
  693         lim_copy(newlim, oldlim);
  694         alimp = &newlim->pl_rlimit[which];
  695 
  696         switch (which) {
  697 
  698         case RLIMIT_CPU:
  699                 if (limp->rlim_cur != RLIM_INFINITY &&
  700                     p->p_cpulimit == RLIM_INFINITY)
  701                         callout_reset_sbt(&p->p_limco, SBT_1S, 0,
  702                             lim_cb, p, C_PREL(1));
  703                 p->p_cpulimit = limp->rlim_cur;
  704                 break;
  705         case RLIMIT_DATA:
  706                 if (limp->rlim_cur > maxdsiz)
  707                         limp->rlim_cur = maxdsiz;
  708                 if (limp->rlim_max > maxdsiz)
  709                         limp->rlim_max = maxdsiz;
  710                 break;
  711 
  712         case RLIMIT_STACK:
  713                 if (limp->rlim_cur > maxssiz)
  714                         limp->rlim_cur = maxssiz;
  715                 if (limp->rlim_max > maxssiz)
  716                         limp->rlim_max = maxssiz;
  717                 oldssiz = *alimp;
  718                 if (p->p_sysent->sv_fixlimit != NULL)
  719                         p->p_sysent->sv_fixlimit(&oldssiz,
  720                             RLIMIT_STACK);
  721                 break;
  722 
  723         case RLIMIT_NOFILE:
  724                 if (limp->rlim_cur > maxfilesperproc)
  725                         limp->rlim_cur = maxfilesperproc;
  726                 if (limp->rlim_max > maxfilesperproc)
  727                         limp->rlim_max = maxfilesperproc;
  728                 break;
  729 
  730         case RLIMIT_NPROC:
  731                 if (limp->rlim_cur > maxprocperuid)
  732                         limp->rlim_cur = maxprocperuid;
  733                 if (limp->rlim_max > maxprocperuid)
  734                         limp->rlim_max = maxprocperuid;
  735                 if (limp->rlim_cur < 1)
  736                         limp->rlim_cur = 1;
  737                 if (limp->rlim_max < 1)
  738                         limp->rlim_max = 1;
  739                 break;
  740         }
  741         if (p->p_sysent->sv_fixlimit != NULL)
  742                 p->p_sysent->sv_fixlimit(limp, which);
  743         *alimp = *limp;
  744         p->p_limit = newlim;
  745         PROC_UNLOCK(p);
  746         lim_free(oldlim);
  747 
  748         if (which == RLIMIT_STACK) {
  749                 /*
  750                  * Stack is allocated to the max at exec time with only
  751                  * "rlim_cur" bytes accessible.  If stack limit is going
  752                  * up make more accessible, if going down make inaccessible.
  753                  */
  754                 if (limp->rlim_cur != oldssiz.rlim_cur) {
  755                         vm_offset_t addr;
  756                         vm_size_t size;
  757                         vm_prot_t prot;
  758 
  759                         if (limp->rlim_cur > oldssiz.rlim_cur) {
  760                                 prot = p->p_sysent->sv_stackprot;
  761                                 size = limp->rlim_cur - oldssiz.rlim_cur;
  762                                 addr = p->p_sysent->sv_usrstack -
  763                                     limp->rlim_cur;
  764                         } else {
  765                                 prot = VM_PROT_NONE;
  766                                 size = oldssiz.rlim_cur - limp->rlim_cur;
  767                                 addr = p->p_sysent->sv_usrstack -
  768                                     oldssiz.rlim_cur;
  769                         }
  770                         addr = trunc_page(addr);
  771                         size = round_page(size);
  772                         (void)vm_map_protect(&p->p_vmspace->vm_map,
  773                             addr, addr + size, prot, FALSE);
  774                 }
  775         }
  776 
  777         return (0);
  778 }
  779 
  780 #ifndef _SYS_SYSPROTO_H_
  781 struct __getrlimit_args {
  782         u_int   which;
  783         struct  rlimit *rlp;
  784 };
  785 #endif
  786 /* ARGSUSED */
  787 int
  788 sys_getrlimit(td, uap)
  789         struct thread *td;
  790         register struct __getrlimit_args *uap;
  791 {
  792         struct rlimit rlim;
  793         struct proc *p;
  794         int error;
  795 
  796         if (uap->which >= RLIM_NLIMITS)
  797                 return (EINVAL);
  798         p = td->td_proc;
  799         PROC_LOCK(p);
  800         lim_rlimit(p, uap->which, &rlim);
  801         PROC_UNLOCK(p);
  802         error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
  803         return (error);
  804 }
  805 
  806 /*
  807  * Transform the running time and tick information for children of proc p
  808  * into user and system time usage.
  809  */
  810 void
  811 calccru(p, up, sp)
  812         struct proc *p;
  813         struct timeval *up;
  814         struct timeval *sp;
  815 {
  816 
  817         PROC_LOCK_ASSERT(p, MA_OWNED);
  818         calcru1(p, &p->p_crux, up, sp);
  819 }
  820 
  821 /*
  822  * Transform the running time and tick information in proc p into user
  823  * and system time usage.  If appropriate, include the current time slice
  824  * on this CPU.
  825  */
  826 void
  827 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
  828 {
  829         struct thread *td;
  830         uint64_t runtime, u;
  831 
  832         PROC_LOCK_ASSERT(p, MA_OWNED);
  833         PROC_SLOCK_ASSERT(p, MA_OWNED);
  834         /*
  835          * If we are getting stats for the current process, then add in the
  836          * stats that this thread has accumulated in its current time slice.
  837          * We reset the thread and CPU state as if we had performed a context
  838          * switch right here.
  839          */
  840         td = curthread;
  841         if (td->td_proc == p) {
  842                 u = cpu_ticks();
  843                 runtime = u - PCPU_GET(switchtime);
  844                 td->td_runtime += runtime;
  845                 td->td_incruntime += runtime;
  846                 PCPU_SET(switchtime, u);
  847         }
  848         /* Make sure the per-thread stats are current. */
  849         FOREACH_THREAD_IN_PROC(p, td) {
  850                 if (td->td_incruntime == 0)
  851                         continue;
  852                 ruxagg(p, td);
  853         }
  854         calcru1(p, &p->p_rux, up, sp);
  855 }
  856 
  857 /* Collect resource usage for a single thread. */
  858 void
  859 rufetchtd(struct thread *td, struct rusage *ru)
  860 {
  861         struct proc *p;
  862         uint64_t runtime, u;
  863 
  864         p = td->td_proc;
  865         PROC_SLOCK_ASSERT(p, MA_OWNED);
  866         THREAD_LOCK_ASSERT(td, MA_OWNED);
  867         /*
  868          * If we are getting stats for the current thread, then add in the
  869          * stats that this thread has accumulated in its current time slice.
  870          * We reset the thread and CPU state as if we had performed a context
  871          * switch right here.
  872          */
  873         if (td == curthread) {
  874                 u = cpu_ticks();
  875                 runtime = u - PCPU_GET(switchtime);
  876                 td->td_runtime += runtime;
  877                 td->td_incruntime += runtime;
  878                 PCPU_SET(switchtime, u);
  879         }
  880         ruxagg(p, td);
  881         *ru = td->td_ru;
  882         calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
  883 }
  884 
  885 static void
  886 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
  887     struct timeval *sp)
  888 {
  889         /* {user, system, interrupt, total} {ticks, usec}: */
  890         uint64_t ut, uu, st, su, it, tt, tu;
  891 
  892         ut = ruxp->rux_uticks;
  893         st = ruxp->rux_sticks;
  894         it = ruxp->rux_iticks;
  895         tt = ut + st + it;
  896         if (tt == 0) {
  897                 /* Avoid divide by zero */
  898                 st = 1;
  899                 tt = 1;
  900         }
  901         tu = cputick2usec(ruxp->rux_runtime);
  902         if ((int64_t)tu < 0) {
  903                 /* XXX: this should be an assert /phk */
  904                 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
  905                     (intmax_t)tu, p->p_pid, p->p_comm);
  906                 tu = ruxp->rux_tu;
  907         }
  908 
  909         if (tu >= ruxp->rux_tu) {
  910                 /*
  911                  * The normal case, time increased.
  912                  * Enforce monotonicity of bucketed numbers.
  913                  */
  914                 uu = (tu * ut) / tt;
  915                 if (uu < ruxp->rux_uu)
  916                         uu = ruxp->rux_uu;
  917                 su = (tu * st) / tt;
  918                 if (su < ruxp->rux_su)
  919                         su = ruxp->rux_su;
  920         } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
  921                 /*
  922                  * When we calibrate the cputicker, it is not uncommon to
  923                  * see the presumably fixed frequency increase slightly over
  924                  * time as a result of thermal stabilization and NTP
  925                  * discipline (of the reference clock).  We therefore ignore
  926                  * a bit of backwards slop because we  expect to catch up
  927                  * shortly.  We use a 3 microsecond limit to catch low
  928                  * counts and a 1% limit for high counts.
  929                  */
  930                 uu = ruxp->rux_uu;
  931                 su = ruxp->rux_su;
  932                 tu = ruxp->rux_tu;
  933         } else { /* tu < ruxp->rux_tu */
  934                 /*
  935                  * What happened here was likely that a laptop, which ran at
  936                  * a reduced clock frequency at boot, kicked into high gear.
  937                  * The wisdom of spamming this message in that case is
  938                  * dubious, but it might also be indicative of something
  939                  * serious, so lets keep it and hope laptops can be made
  940                  * more truthful about their CPU speed via ACPI.
  941                  */
  942                 printf("calcru: runtime went backwards from %ju usec "
  943                     "to %ju usec for pid %d (%s)\n",
  944                     (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
  945                     p->p_pid, p->p_comm);
  946                 uu = (tu * ut) / tt;
  947                 su = (tu * st) / tt;
  948         }
  949 
  950         ruxp->rux_uu = uu;
  951         ruxp->rux_su = su;
  952         ruxp->rux_tu = tu;
  953 
  954         up->tv_sec = uu / 1000000;
  955         up->tv_usec = uu % 1000000;
  956         sp->tv_sec = su / 1000000;
  957         sp->tv_usec = su % 1000000;
  958 }
  959 
  960 #ifndef _SYS_SYSPROTO_H_
  961 struct getrusage_args {
  962         int     who;
  963         struct  rusage *rusage;
  964 };
  965 #endif
  966 int
  967 sys_getrusage(td, uap)
  968         register struct thread *td;
  969         register struct getrusage_args *uap;
  970 {
  971         struct rusage ru;
  972         int error;
  973 
  974         error = kern_getrusage(td, uap->who, &ru);
  975         if (error == 0)
  976                 error = copyout(&ru, uap->rusage, sizeof(struct rusage));
  977         return (error);
  978 }
  979 
  980 int
  981 kern_getrusage(struct thread *td, int who, struct rusage *rup)
  982 {
  983         struct proc *p;
  984         int error;
  985 
  986         error = 0;
  987         p = td->td_proc;
  988         PROC_LOCK(p);
  989         switch (who) {
  990         case RUSAGE_SELF:
  991                 rufetchcalc(p, rup, &rup->ru_utime,
  992                     &rup->ru_stime);
  993                 break;
  994 
  995         case RUSAGE_CHILDREN:
  996                 *rup = p->p_stats->p_cru;
  997                 calccru(p, &rup->ru_utime, &rup->ru_stime);
  998                 break;
  999 
 1000         case RUSAGE_THREAD:
 1001                 PROC_SLOCK(p);
 1002                 thread_lock(td);
 1003                 rufetchtd(td, rup);
 1004                 thread_unlock(td);
 1005                 PROC_SUNLOCK(p);
 1006                 break;
 1007 
 1008         default:
 1009                 error = EINVAL;
 1010         }
 1011         PROC_UNLOCK(p);
 1012         return (error);
 1013 }
 1014 
 1015 void
 1016 rucollect(struct rusage *ru, struct rusage *ru2)
 1017 {
 1018         long *ip, *ip2;
 1019         int i;
 1020 
 1021         if (ru->ru_maxrss < ru2->ru_maxrss)
 1022                 ru->ru_maxrss = ru2->ru_maxrss;
 1023         ip = &ru->ru_first;
 1024         ip2 = &ru2->ru_first;
 1025         for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
 1026                 *ip++ += *ip2++;
 1027 }
 1028 
 1029 void
 1030 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
 1031     struct rusage_ext *rux2)
 1032 {
 1033 
 1034         rux->rux_runtime += rux2->rux_runtime;
 1035         rux->rux_uticks += rux2->rux_uticks;
 1036         rux->rux_sticks += rux2->rux_sticks;
 1037         rux->rux_iticks += rux2->rux_iticks;
 1038         rux->rux_uu += rux2->rux_uu;
 1039         rux->rux_su += rux2->rux_su;
 1040         rux->rux_tu += rux2->rux_tu;
 1041         rucollect(ru, ru2);
 1042 }
 1043 
 1044 /*
 1045  * Aggregate tick counts into the proc's rusage_ext.
 1046  */
 1047 static void
 1048 ruxagg_locked(struct rusage_ext *rux, struct thread *td)
 1049 {
 1050 
 1051         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1052         PROC_SLOCK_ASSERT(td->td_proc, MA_OWNED);
 1053         rux->rux_runtime += td->td_incruntime;
 1054         rux->rux_uticks += td->td_uticks;
 1055         rux->rux_sticks += td->td_sticks;
 1056         rux->rux_iticks += td->td_iticks;
 1057 }
 1058 
 1059 void
 1060 ruxagg(struct proc *p, struct thread *td)
 1061 {
 1062 
 1063         thread_lock(td);
 1064         ruxagg_locked(&p->p_rux, td);
 1065         ruxagg_locked(&td->td_rux, td);
 1066         td->td_incruntime = 0;
 1067         td->td_uticks = 0;
 1068         td->td_iticks = 0;
 1069         td->td_sticks = 0;
 1070         thread_unlock(td);
 1071 }
 1072 
 1073 /*
 1074  * Update the rusage_ext structure and fetch a valid aggregate rusage
 1075  * for proc p if storage for one is supplied.
 1076  */
 1077 void
 1078 rufetch(struct proc *p, struct rusage *ru)
 1079 {
 1080         struct thread *td;
 1081 
 1082         PROC_SLOCK_ASSERT(p, MA_OWNED);
 1083 
 1084         *ru = p->p_ru;
 1085         if (p->p_numthreads > 0)  {
 1086                 FOREACH_THREAD_IN_PROC(p, td) {
 1087                         ruxagg(p, td);
 1088                         rucollect(ru, &td->td_ru);
 1089                 }
 1090         }
 1091 }
 1092 
 1093 /*
 1094  * Atomically perform a rufetch and a calcru together.
 1095  * Consumers, can safely assume the calcru is executed only once
 1096  * rufetch is completed.
 1097  */
 1098 void
 1099 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
 1100     struct timeval *sp)
 1101 {
 1102 
 1103         PROC_SLOCK(p);
 1104         rufetch(p, ru);
 1105         calcru(p, up, sp);
 1106         PROC_SUNLOCK(p);
 1107 }
 1108 
 1109 /*
 1110  * Allocate a new resource limits structure and initialize its
 1111  * reference count and mutex pointer.
 1112  */
 1113 struct plimit *
 1114 lim_alloc()
 1115 {
 1116         struct plimit *limp;
 1117 
 1118         limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
 1119         refcount_init(&limp->pl_refcnt, 1);
 1120         return (limp);
 1121 }
 1122 
 1123 struct plimit *
 1124 lim_hold(limp)
 1125         struct plimit *limp;
 1126 {
 1127 
 1128         refcount_acquire(&limp->pl_refcnt);
 1129         return (limp);
 1130 }
 1131 
 1132 void
 1133 lim_fork(struct proc *p1, struct proc *p2)
 1134 {
 1135 
 1136         PROC_LOCK_ASSERT(p1, MA_OWNED);
 1137         PROC_LOCK_ASSERT(p2, MA_OWNED);
 1138 
 1139         p2->p_limit = lim_hold(p1->p_limit);
 1140         callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
 1141         if (p1->p_cpulimit != RLIM_INFINITY)
 1142                 callout_reset_sbt(&p2->p_limco, SBT_1S, 0,
 1143                     lim_cb, p2, C_PREL(1));
 1144 }
 1145 
 1146 void
 1147 lim_free(limp)
 1148         struct plimit *limp;
 1149 {
 1150 
 1151         KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
 1152         if (refcount_release(&limp->pl_refcnt))
 1153                 free((void *)limp, M_PLIMIT);
 1154 }
 1155 
 1156 /*
 1157  * Make a copy of the plimit structure.
 1158  * We share these structures copy-on-write after fork.
 1159  */
 1160 void
 1161 lim_copy(dst, src)
 1162         struct plimit *dst, *src;
 1163 {
 1164 
 1165         KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
 1166         bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
 1167 }
 1168 
 1169 /*
 1170  * Return the hard limit for a particular system resource.  The
 1171  * which parameter specifies the index into the rlimit array.
 1172  */
 1173 rlim_t
 1174 lim_max(struct proc *p, int which)
 1175 {
 1176         struct rlimit rl;
 1177 
 1178         lim_rlimit(p, which, &rl);
 1179         return (rl.rlim_max);
 1180 }
 1181 
 1182 /*
 1183  * Return the current (soft) limit for a particular system resource.
 1184  * The which parameter which specifies the index into the rlimit array
 1185  */
 1186 rlim_t
 1187 lim_cur(struct proc *p, int which)
 1188 {
 1189         struct rlimit rl;
 1190 
 1191         lim_rlimit(p, which, &rl);
 1192         return (rl.rlim_cur);
 1193 }
 1194 
 1195 /*
 1196  * Return a copy of the entire rlimit structure for the system limit
 1197  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
 1198  */
 1199 void
 1200 lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
 1201 {
 1202 
 1203         PROC_LOCK_ASSERT(p, MA_OWNED);
 1204         KASSERT(which >= 0 && which < RLIM_NLIMITS,
 1205             ("request for invalid resource limit"));
 1206         *rlp = p->p_limit->pl_rlimit[which];
 1207         if (p->p_sysent->sv_fixlimit != NULL)
 1208                 p->p_sysent->sv_fixlimit(rlp, which);
 1209 }
 1210 
 1211 void
 1212 uihashinit()
 1213 {
 1214 
 1215         uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
 1216         rw_init(&uihashtbl_lock, "uidinfo hash");
 1217 }
 1218 
 1219 /*
 1220  * Look up a uidinfo struct for the parameter uid.
 1221  * uihashtbl_lock must be locked.
 1222  */
 1223 static struct uidinfo *
 1224 uilookup(uid)
 1225         uid_t uid;
 1226 {
 1227         struct uihashhead *uipp;
 1228         struct uidinfo *uip;
 1229 
 1230         rw_assert(&uihashtbl_lock, RA_LOCKED);
 1231         uipp = UIHASH(uid);
 1232         LIST_FOREACH(uip, uipp, ui_hash)
 1233                 if (uip->ui_uid == uid)
 1234                         break;
 1235 
 1236         return (uip);
 1237 }
 1238 
 1239 /*
 1240  * Find or allocate a struct uidinfo for a particular uid.
 1241  * Increase refcount on uidinfo struct returned.
 1242  * uifree() should be called on a struct uidinfo when released.
 1243  */
 1244 struct uidinfo *
 1245 uifind(uid)
 1246         uid_t uid;
 1247 {
 1248         struct uidinfo *old_uip, *uip;
 1249 
 1250         rw_rlock(&uihashtbl_lock);
 1251         uip = uilookup(uid);
 1252         if (uip == NULL) {
 1253                 rw_runlock(&uihashtbl_lock);
 1254                 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
 1255                 racct_create(&uip->ui_racct);
 1256                 rw_wlock(&uihashtbl_lock);
 1257                 /*
 1258                  * There's a chance someone created our uidinfo while we
 1259                  * were in malloc and not holding the lock, so we have to
 1260                  * make sure we don't insert a duplicate uidinfo.
 1261                  */
 1262                 if ((old_uip = uilookup(uid)) != NULL) {
 1263                         /* Someone else beat us to it. */
 1264                         racct_destroy(&uip->ui_racct);
 1265                         free(uip, M_UIDINFO);
 1266                         uip = old_uip;
 1267                 } else {
 1268                         refcount_init(&uip->ui_ref, 0);
 1269                         uip->ui_uid = uid;
 1270                         mtx_init(&uip->ui_vmsize_mtx, "ui_vmsize", NULL,
 1271                             MTX_DEF);
 1272                         LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
 1273                 }
 1274         }
 1275         uihold(uip);
 1276         rw_unlock(&uihashtbl_lock);
 1277         return (uip);
 1278 }
 1279 
 1280 /*
 1281  * Place another refcount on a uidinfo struct.
 1282  */
 1283 void
 1284 uihold(uip)
 1285         struct uidinfo *uip;
 1286 {
 1287 
 1288         refcount_acquire(&uip->ui_ref);
 1289 }
 1290 
 1291 /*-
 1292  * Since uidinfo structs have a long lifetime, we use an
 1293  * opportunistic refcounting scheme to avoid locking the lookup hash
 1294  * for each release.
 1295  *
 1296  * If the refcount hits 0, we need to free the structure,
 1297  * which means we need to lock the hash.
 1298  * Optimal case:
 1299  *   After locking the struct and lowering the refcount, if we find
 1300  *   that we don't need to free, simply unlock and return.
 1301  * Suboptimal case:
 1302  *   If refcount lowering results in need to free, bump the count
 1303  *   back up, lose the lock and acquire the locks in the proper
 1304  *   order to try again.
 1305  */
 1306 void
 1307 uifree(uip)
 1308         struct uidinfo *uip;
 1309 {
 1310         int old;
 1311 
 1312         /* Prepare for optimal case. */
 1313         old = uip->ui_ref;
 1314         if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1))
 1315                 return;
 1316 
 1317         /* Prepare for suboptimal case. */
 1318         rw_wlock(&uihashtbl_lock);
 1319         if (refcount_release(&uip->ui_ref)) {
 1320                 racct_destroy(&uip->ui_racct);
 1321                 LIST_REMOVE(uip, ui_hash);
 1322                 rw_wunlock(&uihashtbl_lock);
 1323                 if (uip->ui_sbsize != 0)
 1324                         printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
 1325                             uip->ui_uid, uip->ui_sbsize);
 1326                 if (uip->ui_proccnt != 0)
 1327                         printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
 1328                             uip->ui_uid, uip->ui_proccnt);
 1329                 if (uip->ui_vmsize != 0)
 1330                         printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
 1331                             uip->ui_uid, (unsigned long long)uip->ui_vmsize);
 1332                 mtx_destroy(&uip->ui_vmsize_mtx);
 1333                 free(uip, M_UIDINFO);
 1334                 return;
 1335         }
 1336         /*
 1337          * Someone added a reference between atomic_cmpset_int() and
 1338          * rw_wlock(&uihashtbl_lock).
 1339          */
 1340         rw_wunlock(&uihashtbl_lock);
 1341 }
 1342 
 1343 void
 1344 ui_racct_foreach(void (*callback)(struct racct *racct,
 1345     void *arg2, void *arg3), void *arg2, void *arg3)
 1346 {
 1347         struct uidinfo *uip;
 1348         struct uihashhead *uih;
 1349 
 1350         rw_rlock(&uihashtbl_lock);
 1351         for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
 1352                 LIST_FOREACH(uip, uih, ui_hash) {
 1353                         (callback)(uip->ui_racct, arg2, arg3);
 1354                 }
 1355         }
 1356         rw_runlock(&uihashtbl_lock);
 1357 }
 1358 
 1359 /*
 1360  * Change the count associated with number of processes
 1361  * a given user is using.  When 'max' is 0, don't enforce a limit
 1362  */
 1363 int
 1364 chgproccnt(uip, diff, max)
 1365         struct  uidinfo *uip;
 1366         int     diff;
 1367         rlim_t  max;
 1368 {
 1369 
 1370         /* Don't allow them to exceed max, but allow subtraction. */
 1371         if (diff > 0 && max != 0) {
 1372                 if (atomic_fetchadd_long(&uip->ui_proccnt, (long)diff) + diff > max) {
 1373                         atomic_subtract_long(&uip->ui_proccnt, (long)diff);
 1374                         return (0);
 1375                 }
 1376         } else {
 1377                 atomic_add_long(&uip->ui_proccnt, (long)diff);
 1378                 if (uip->ui_proccnt < 0)
 1379                         printf("negative proccnt for uid = %d\n", uip->ui_uid);
 1380         }
 1381         return (1);
 1382 }
 1383 
 1384 /*
 1385  * Change the total socket buffer size a user has used.
 1386  */
 1387 int
 1388 chgsbsize(uip, hiwat, to, max)
 1389         struct  uidinfo *uip;
 1390         u_int  *hiwat;
 1391         u_int   to;
 1392         rlim_t  max;
 1393 {
 1394         int diff;
 1395 
 1396         diff = to - *hiwat;
 1397         if (diff > 0) {
 1398                 if (atomic_fetchadd_long(&uip->ui_sbsize, (long)diff) + diff > max) {
 1399                         atomic_subtract_long(&uip->ui_sbsize, (long)diff);
 1400                         return (0);
 1401                 }
 1402         } else {
 1403                 atomic_add_long(&uip->ui_sbsize, (long)diff);
 1404                 if (uip->ui_sbsize < 0)
 1405                         printf("negative sbsize for uid = %d\n", uip->ui_uid);
 1406         }
 1407         *hiwat = to;
 1408         return (1);
 1409 }
 1410 
 1411 /*
 1412  * Change the count associated with number of pseudo-terminals
 1413  * a given user is using.  When 'max' is 0, don't enforce a limit
 1414  */
 1415 int
 1416 chgptscnt(uip, diff, max)
 1417         struct  uidinfo *uip;
 1418         int     diff;
 1419         rlim_t  max;
 1420 {
 1421 
 1422         /* Don't allow them to exceed max, but allow subtraction. */
 1423         if (diff > 0 && max != 0) {
 1424                 if (atomic_fetchadd_long(&uip->ui_ptscnt, (long)diff) + diff > max) {
 1425                         atomic_subtract_long(&uip->ui_ptscnt, (long)diff);
 1426                         return (0);
 1427                 }
 1428         } else {
 1429                 atomic_add_long(&uip->ui_ptscnt, (long)diff);
 1430                 if (uip->ui_ptscnt < 0)
 1431                         printf("negative ptscnt for uid = %d\n", uip->ui_uid);
 1432         }
 1433         return (1);
 1434 }

Cache object: 64ee8c1a394289cac38f3e74d8cfdfe4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.