1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD: releng/12.0/sys/kern/kern_resource.c 339187 2018-10-05 05:50:56Z mmacy $");
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/refcount.h>
53 #include <sys/racct.h>
54 #include <sys/resourcevar.h>
55 #include <sys/rwlock.h>
56 #include <sys/sched.h>
57 #include <sys/sx.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysent.h>
61 #include <sys/time.h>
62 #include <sys/umtx.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_map.h>
68
69
70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
72 #define UIHASH(uid) (&uihashtbl[(uid) & uihash])
73 static struct rwlock uihashtbl_lock;
74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
75 static u_long uihash; /* size of hash table - 1 */
76
77 static void calcru1(struct proc *p, struct rusage_ext *ruxp,
78 struct timeval *up, struct timeval *sp);
79 static int donice(struct thread *td, struct proc *chgp, int n);
80 static struct uidinfo *uilookup(uid_t uid);
81 static void ruxagg_locked(struct rusage_ext *rux, struct thread *td);
82
83 /*
84 * Resource controls and accounting.
85 */
86 #ifndef _SYS_SYSPROTO_H_
87 struct getpriority_args {
88 int which;
89 int who;
90 };
91 #endif
92 int
93 sys_getpriority(struct thread *td, struct getpriority_args *uap)
94 {
95 struct proc *p;
96 struct pgrp *pg;
97 int error, low;
98
99 error = 0;
100 low = PRIO_MAX + 1;
101 switch (uap->which) {
102
103 case PRIO_PROCESS:
104 if (uap->who == 0)
105 low = td->td_proc->p_nice;
106 else {
107 p = pfind(uap->who);
108 if (p == NULL)
109 break;
110 if (p_cansee(td, p) == 0)
111 low = p->p_nice;
112 PROC_UNLOCK(p);
113 }
114 break;
115
116 case PRIO_PGRP:
117 sx_slock(&proctree_lock);
118 if (uap->who == 0) {
119 pg = td->td_proc->p_pgrp;
120 PGRP_LOCK(pg);
121 } else {
122 pg = pgfind(uap->who);
123 if (pg == NULL) {
124 sx_sunlock(&proctree_lock);
125 break;
126 }
127 }
128 sx_sunlock(&proctree_lock);
129 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
130 PROC_LOCK(p);
131 if (p->p_state == PRS_NORMAL &&
132 p_cansee(td, p) == 0) {
133 if (p->p_nice < low)
134 low = p->p_nice;
135 }
136 PROC_UNLOCK(p);
137 }
138 PGRP_UNLOCK(pg);
139 break;
140
141 case PRIO_USER:
142 if (uap->who == 0)
143 uap->who = td->td_ucred->cr_uid;
144 sx_slock(&allproc_lock);
145 FOREACH_PROC_IN_SYSTEM(p) {
146 PROC_LOCK(p);
147 if (p->p_state == PRS_NORMAL &&
148 p_cansee(td, p) == 0 &&
149 p->p_ucred->cr_uid == uap->who) {
150 if (p->p_nice < low)
151 low = p->p_nice;
152 }
153 PROC_UNLOCK(p);
154 }
155 sx_sunlock(&allproc_lock);
156 break;
157
158 default:
159 error = EINVAL;
160 break;
161 }
162 if (low == PRIO_MAX + 1 && error == 0)
163 error = ESRCH;
164 td->td_retval[0] = low;
165 return (error);
166 }
167
168 #ifndef _SYS_SYSPROTO_H_
169 struct setpriority_args {
170 int which;
171 int who;
172 int prio;
173 };
174 #endif
175 int
176 sys_setpriority(struct thread *td, struct setpriority_args *uap)
177 {
178 struct proc *curp, *p;
179 struct pgrp *pg;
180 int found = 0, error = 0;
181
182 curp = td->td_proc;
183 switch (uap->which) {
184 case PRIO_PROCESS:
185 if (uap->who == 0) {
186 PROC_LOCK(curp);
187 error = donice(td, curp, uap->prio);
188 PROC_UNLOCK(curp);
189 } else {
190 p = pfind(uap->who);
191 if (p == NULL)
192 break;
193 error = p_cansee(td, p);
194 if (error == 0)
195 error = donice(td, p, uap->prio);
196 PROC_UNLOCK(p);
197 }
198 found++;
199 break;
200
201 case PRIO_PGRP:
202 sx_slock(&proctree_lock);
203 if (uap->who == 0) {
204 pg = curp->p_pgrp;
205 PGRP_LOCK(pg);
206 } else {
207 pg = pgfind(uap->who);
208 if (pg == NULL) {
209 sx_sunlock(&proctree_lock);
210 break;
211 }
212 }
213 sx_sunlock(&proctree_lock);
214 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
215 PROC_LOCK(p);
216 if (p->p_state == PRS_NORMAL &&
217 p_cansee(td, p) == 0) {
218 error = donice(td, p, uap->prio);
219 found++;
220 }
221 PROC_UNLOCK(p);
222 }
223 PGRP_UNLOCK(pg);
224 break;
225
226 case PRIO_USER:
227 if (uap->who == 0)
228 uap->who = td->td_ucred->cr_uid;
229 sx_slock(&allproc_lock);
230 FOREACH_PROC_IN_SYSTEM(p) {
231 PROC_LOCK(p);
232 if (p->p_state == PRS_NORMAL &&
233 p->p_ucred->cr_uid == uap->who &&
234 p_cansee(td, p) == 0) {
235 error = donice(td, p, uap->prio);
236 found++;
237 }
238 PROC_UNLOCK(p);
239 }
240 sx_sunlock(&allproc_lock);
241 break;
242
243 default:
244 error = EINVAL;
245 break;
246 }
247 if (found == 0 && error == 0)
248 error = ESRCH;
249 return (error);
250 }
251
252 /*
253 * Set "nice" for a (whole) process.
254 */
255 static int
256 donice(struct thread *td, struct proc *p, int n)
257 {
258 int error;
259
260 PROC_LOCK_ASSERT(p, MA_OWNED);
261 if ((error = p_cansched(td, p)))
262 return (error);
263 if (n > PRIO_MAX)
264 n = PRIO_MAX;
265 if (n < PRIO_MIN)
266 n = PRIO_MIN;
267 if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
268 return (EACCES);
269 sched_nice(p, n);
270 return (0);
271 }
272
273 static int unprivileged_idprio;
274 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,
275 &unprivileged_idprio, 0, "Allow non-root users to set an idle priority");
276
277 /*
278 * Set realtime priority for LWP.
279 */
280 #ifndef _SYS_SYSPROTO_H_
281 struct rtprio_thread_args {
282 int function;
283 lwpid_t lwpid;
284 struct rtprio *rtp;
285 };
286 #endif
287 int
288 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
289 {
290 struct proc *p;
291 struct rtprio rtp;
292 struct thread *td1;
293 int cierror, error;
294
295 /* Perform copyin before acquiring locks if needed. */
296 if (uap->function == RTP_SET)
297 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
298 else
299 cierror = 0;
300
301 if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
302 p = td->td_proc;
303 td1 = td;
304 PROC_LOCK(p);
305 } else {
306 /* Only look up thread in current process */
307 td1 = tdfind(uap->lwpid, curproc->p_pid);
308 if (td1 == NULL)
309 return (ESRCH);
310 p = td1->td_proc;
311 }
312
313 switch (uap->function) {
314 case RTP_LOOKUP:
315 if ((error = p_cansee(td, p)))
316 break;
317 pri_to_rtp(td1, &rtp);
318 PROC_UNLOCK(p);
319 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
320 case RTP_SET:
321 if ((error = p_cansched(td, p)) || (error = cierror))
322 break;
323
324 /* Disallow setting rtprio in most cases if not superuser. */
325
326 /*
327 * Realtime priority has to be restricted for reasons which
328 * should be obvious. However, for idleprio processes, there is
329 * a potential for system deadlock if an idleprio process gains
330 * a lock on a resource that other processes need (and the
331 * idleprio process can't run due to a CPU-bound normal
332 * process). Fix me! XXX
333 *
334 * This problem is not only related to idleprio process.
335 * A user level program can obtain a file lock and hold it
336 * indefinitely. Additionally, without idleprio processes it is
337 * still conceivable that a program with low priority will never
338 * get to run. In short, allowing this feature might make it
339 * easier to lock a resource indefinitely, but it is not the
340 * only thing that makes it possible.
341 */
342 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
343 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
344 unprivileged_idprio == 0)) {
345 error = priv_check(td, PRIV_SCHED_RTPRIO);
346 if (error)
347 break;
348 }
349 error = rtp_to_pri(&rtp, td1);
350 break;
351 default:
352 error = EINVAL;
353 break;
354 }
355 PROC_UNLOCK(p);
356 return (error);
357 }
358
359 /*
360 * Set realtime priority.
361 */
362 #ifndef _SYS_SYSPROTO_H_
363 struct rtprio_args {
364 int function;
365 pid_t pid;
366 struct rtprio *rtp;
367 };
368 #endif
369 int
370 sys_rtprio(struct thread *td, struct rtprio_args *uap)
371 {
372 struct proc *p;
373 struct thread *tdp;
374 struct rtprio rtp;
375 int cierror, error;
376
377 /* Perform copyin before acquiring locks if needed. */
378 if (uap->function == RTP_SET)
379 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
380 else
381 cierror = 0;
382
383 if (uap->pid == 0) {
384 p = td->td_proc;
385 PROC_LOCK(p);
386 } else {
387 p = pfind(uap->pid);
388 if (p == NULL)
389 return (ESRCH);
390 }
391
392 switch (uap->function) {
393 case RTP_LOOKUP:
394 if ((error = p_cansee(td, p)))
395 break;
396 /*
397 * Return OUR priority if no pid specified,
398 * or if one is, report the highest priority
399 * in the process. There isn't much more you can do as
400 * there is only room to return a single priority.
401 * Note: specifying our own pid is not the same
402 * as leaving it zero.
403 */
404 if (uap->pid == 0) {
405 pri_to_rtp(td, &rtp);
406 } else {
407 struct rtprio rtp2;
408
409 rtp.type = RTP_PRIO_IDLE;
410 rtp.prio = RTP_PRIO_MAX;
411 FOREACH_THREAD_IN_PROC(p, tdp) {
412 pri_to_rtp(tdp, &rtp2);
413 if (rtp2.type < rtp.type ||
414 (rtp2.type == rtp.type &&
415 rtp2.prio < rtp.prio)) {
416 rtp.type = rtp2.type;
417 rtp.prio = rtp2.prio;
418 }
419 }
420 }
421 PROC_UNLOCK(p);
422 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
423 case RTP_SET:
424 if ((error = p_cansched(td, p)) || (error = cierror))
425 break;
426
427 /*
428 * Disallow setting rtprio in most cases if not superuser.
429 * See the comment in sys_rtprio_thread about idprio
430 * threads holding a lock.
431 */
432 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
433 (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
434 !unprivileged_idprio)) {
435 error = priv_check(td, PRIV_SCHED_RTPRIO);
436 if (error)
437 break;
438 }
439
440 /*
441 * If we are setting our own priority, set just our
442 * thread but if we are doing another process,
443 * do all the threads on that process. If we
444 * specify our own pid we do the latter.
445 */
446 if (uap->pid == 0) {
447 error = rtp_to_pri(&rtp, td);
448 } else {
449 FOREACH_THREAD_IN_PROC(p, td) {
450 if ((error = rtp_to_pri(&rtp, td)) != 0)
451 break;
452 }
453 }
454 break;
455 default:
456 error = EINVAL;
457 break;
458 }
459 PROC_UNLOCK(p);
460 return (error);
461 }
462
463 int
464 rtp_to_pri(struct rtprio *rtp, struct thread *td)
465 {
466 u_char newpri, oldclass, oldpri;
467
468 switch (RTP_PRIO_BASE(rtp->type)) {
469 case RTP_PRIO_REALTIME:
470 if (rtp->prio > RTP_PRIO_MAX)
471 return (EINVAL);
472 newpri = PRI_MIN_REALTIME + rtp->prio;
473 break;
474 case RTP_PRIO_NORMAL:
475 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
476 return (EINVAL);
477 newpri = PRI_MIN_TIMESHARE + rtp->prio;
478 break;
479 case RTP_PRIO_IDLE:
480 if (rtp->prio > RTP_PRIO_MAX)
481 return (EINVAL);
482 newpri = PRI_MIN_IDLE + rtp->prio;
483 break;
484 default:
485 return (EINVAL);
486 }
487
488 thread_lock(td);
489 oldclass = td->td_pri_class;
490 sched_class(td, rtp->type); /* XXX fix */
491 oldpri = td->td_user_pri;
492 sched_user_prio(td, newpri);
493 if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL ||
494 td->td_pri_class != RTP_PRIO_NORMAL))
495 sched_prio(td, td->td_user_pri);
496 if (TD_ON_UPILOCK(td) && oldpri != newpri) {
497 critical_enter();
498 thread_unlock(td);
499 umtx_pi_adjust(td, oldpri);
500 critical_exit();
501 } else
502 thread_unlock(td);
503 return (0);
504 }
505
506 void
507 pri_to_rtp(struct thread *td, struct rtprio *rtp)
508 {
509
510 thread_lock(td);
511 switch (PRI_BASE(td->td_pri_class)) {
512 case PRI_REALTIME:
513 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
514 break;
515 case PRI_TIMESHARE:
516 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
517 break;
518 case PRI_IDLE:
519 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
520 break;
521 default:
522 break;
523 }
524 rtp->type = td->td_pri_class;
525 thread_unlock(td);
526 }
527
528 #if defined(COMPAT_43)
529 #ifndef _SYS_SYSPROTO_H_
530 struct osetrlimit_args {
531 u_int which;
532 struct orlimit *rlp;
533 };
534 #endif
535 int
536 osetrlimit(struct thread *td, struct osetrlimit_args *uap)
537 {
538 struct orlimit olim;
539 struct rlimit lim;
540 int error;
541
542 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
543 return (error);
544 lim.rlim_cur = olim.rlim_cur;
545 lim.rlim_max = olim.rlim_max;
546 error = kern_setrlimit(td, uap->which, &lim);
547 return (error);
548 }
549
550 #ifndef _SYS_SYSPROTO_H_
551 struct ogetrlimit_args {
552 u_int which;
553 struct orlimit *rlp;
554 };
555 #endif
556 int
557 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap)
558 {
559 struct orlimit olim;
560 struct rlimit rl;
561 int error;
562
563 if (uap->which >= RLIM_NLIMITS)
564 return (EINVAL);
565 lim_rlimit(td, uap->which, &rl);
566
567 /*
568 * XXX would be more correct to convert only RLIM_INFINITY to the
569 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
570 * values. Most 64->32 and 32->16 conversions, including not
571 * unimportant ones of uids are even more broken than what we
572 * do here (they blindly truncate). We don't do this correctly
573 * here since we have little experience with EOVERFLOW yet.
574 * Elsewhere, getuid() can't fail...
575 */
576 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
577 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
578 error = copyout(&olim, uap->rlp, sizeof(olim));
579 return (error);
580 }
581 #endif /* COMPAT_43 */
582
583 #ifndef _SYS_SYSPROTO_H_
584 struct __setrlimit_args {
585 u_int which;
586 struct rlimit *rlp;
587 };
588 #endif
589 int
590 sys_setrlimit(struct thread *td, struct __setrlimit_args *uap)
591 {
592 struct rlimit alim;
593 int error;
594
595 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
596 return (error);
597 error = kern_setrlimit(td, uap->which, &alim);
598 return (error);
599 }
600
601 static void
602 lim_cb(void *arg)
603 {
604 struct rlimit rlim;
605 struct thread *td;
606 struct proc *p;
607
608 p = arg;
609 PROC_LOCK_ASSERT(p, MA_OWNED);
610 /*
611 * Check if the process exceeds its cpu resource allocation. If
612 * it reaches the max, arrange to kill the process in ast().
613 */
614 if (p->p_cpulimit == RLIM_INFINITY)
615 return;
616 PROC_STATLOCK(p);
617 FOREACH_THREAD_IN_PROC(p, td) {
618 ruxagg(p, td);
619 }
620 PROC_STATUNLOCK(p);
621 if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
622 lim_rlimit_proc(p, RLIMIT_CPU, &rlim);
623 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
624 killproc(p, "exceeded maximum CPU limit");
625 } else {
626 if (p->p_cpulimit < rlim.rlim_max)
627 p->p_cpulimit += 5;
628 kern_psignal(p, SIGXCPU);
629 }
630 }
631 if ((p->p_flag & P_WEXIT) == 0)
632 callout_reset_sbt(&p->p_limco, SBT_1S, 0,
633 lim_cb, p, C_PREL(1));
634 }
635
636 int
637 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
638 {
639
640 return (kern_proc_setrlimit(td, td->td_proc, which, limp));
641 }
642
643 int
644 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which,
645 struct rlimit *limp)
646 {
647 struct plimit *newlim, *oldlim;
648 struct rlimit *alimp;
649 struct rlimit oldssiz;
650 int error;
651
652 if (which >= RLIM_NLIMITS)
653 return (EINVAL);
654
655 /*
656 * Preserve historical bugs by treating negative limits as unsigned.
657 */
658 if (limp->rlim_cur < 0)
659 limp->rlim_cur = RLIM_INFINITY;
660 if (limp->rlim_max < 0)
661 limp->rlim_max = RLIM_INFINITY;
662
663 oldssiz.rlim_cur = 0;
664 newlim = lim_alloc();
665 PROC_LOCK(p);
666 oldlim = p->p_limit;
667 alimp = &oldlim->pl_rlimit[which];
668 if (limp->rlim_cur > alimp->rlim_max ||
669 limp->rlim_max > alimp->rlim_max)
670 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
671 PROC_UNLOCK(p);
672 lim_free(newlim);
673 return (error);
674 }
675 if (limp->rlim_cur > limp->rlim_max)
676 limp->rlim_cur = limp->rlim_max;
677 lim_copy(newlim, oldlim);
678 alimp = &newlim->pl_rlimit[which];
679
680 switch (which) {
681
682 case RLIMIT_CPU:
683 if (limp->rlim_cur != RLIM_INFINITY &&
684 p->p_cpulimit == RLIM_INFINITY)
685 callout_reset_sbt(&p->p_limco, SBT_1S, 0,
686 lim_cb, p, C_PREL(1));
687 p->p_cpulimit = limp->rlim_cur;
688 break;
689 case RLIMIT_DATA:
690 if (limp->rlim_cur > maxdsiz)
691 limp->rlim_cur = maxdsiz;
692 if (limp->rlim_max > maxdsiz)
693 limp->rlim_max = maxdsiz;
694 break;
695
696 case RLIMIT_STACK:
697 if (limp->rlim_cur > maxssiz)
698 limp->rlim_cur = maxssiz;
699 if (limp->rlim_max > maxssiz)
700 limp->rlim_max = maxssiz;
701 oldssiz = *alimp;
702 if (p->p_sysent->sv_fixlimit != NULL)
703 p->p_sysent->sv_fixlimit(&oldssiz,
704 RLIMIT_STACK);
705 break;
706
707 case RLIMIT_NOFILE:
708 if (limp->rlim_cur > maxfilesperproc)
709 limp->rlim_cur = maxfilesperproc;
710 if (limp->rlim_max > maxfilesperproc)
711 limp->rlim_max = maxfilesperproc;
712 break;
713
714 case RLIMIT_NPROC:
715 if (limp->rlim_cur > maxprocperuid)
716 limp->rlim_cur = maxprocperuid;
717 if (limp->rlim_max > maxprocperuid)
718 limp->rlim_max = maxprocperuid;
719 if (limp->rlim_cur < 1)
720 limp->rlim_cur = 1;
721 if (limp->rlim_max < 1)
722 limp->rlim_max = 1;
723 break;
724 }
725 if (p->p_sysent->sv_fixlimit != NULL)
726 p->p_sysent->sv_fixlimit(limp, which);
727 *alimp = *limp;
728 p->p_limit = newlim;
729 PROC_UPDATE_COW(p);
730 PROC_UNLOCK(p);
731 lim_free(oldlim);
732
733 if (which == RLIMIT_STACK &&
734 /*
735 * Skip calls from exec_new_vmspace(), done when stack is
736 * not mapped yet.
737 */
738 (td != curthread || (p->p_flag & P_INEXEC) == 0)) {
739 /*
740 * Stack is allocated to the max at exec time with only
741 * "rlim_cur" bytes accessible. If stack limit is going
742 * up make more accessible, if going down make inaccessible.
743 */
744 if (limp->rlim_cur != oldssiz.rlim_cur) {
745 vm_offset_t addr;
746 vm_size_t size;
747 vm_prot_t prot;
748
749 if (limp->rlim_cur > oldssiz.rlim_cur) {
750 prot = p->p_sysent->sv_stackprot;
751 size = limp->rlim_cur - oldssiz.rlim_cur;
752 addr = p->p_sysent->sv_usrstack -
753 limp->rlim_cur;
754 } else {
755 prot = VM_PROT_NONE;
756 size = oldssiz.rlim_cur - limp->rlim_cur;
757 addr = p->p_sysent->sv_usrstack -
758 oldssiz.rlim_cur;
759 }
760 addr = trunc_page(addr);
761 size = round_page(size);
762 (void)vm_map_protect(&p->p_vmspace->vm_map,
763 addr, addr + size, prot, FALSE);
764 }
765 }
766
767 return (0);
768 }
769
770 #ifndef _SYS_SYSPROTO_H_
771 struct __getrlimit_args {
772 u_int which;
773 struct rlimit *rlp;
774 };
775 #endif
776 /* ARGSUSED */
777 int
778 sys_getrlimit(struct thread *td, struct __getrlimit_args *uap)
779 {
780 struct rlimit rlim;
781 int error;
782
783 if (uap->which >= RLIM_NLIMITS)
784 return (EINVAL);
785 lim_rlimit(td, uap->which, &rlim);
786 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
787 return (error);
788 }
789
790 /*
791 * Transform the running time and tick information for children of proc p
792 * into user and system time usage.
793 */
794 void
795 calccru(struct proc *p, struct timeval *up, struct timeval *sp)
796 {
797
798 PROC_LOCK_ASSERT(p, MA_OWNED);
799 calcru1(p, &p->p_crux, up, sp);
800 }
801
802 /*
803 * Transform the running time and tick information in proc p into user
804 * and system time usage. If appropriate, include the current time slice
805 * on this CPU.
806 */
807 void
808 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
809 {
810 struct thread *td;
811 uint64_t runtime, u;
812
813 PROC_LOCK_ASSERT(p, MA_OWNED);
814 PROC_STATLOCK_ASSERT(p, MA_OWNED);
815 /*
816 * If we are getting stats for the current process, then add in the
817 * stats that this thread has accumulated in its current time slice.
818 * We reset the thread and CPU state as if we had performed a context
819 * switch right here.
820 */
821 td = curthread;
822 if (td->td_proc == p) {
823 u = cpu_ticks();
824 runtime = u - PCPU_GET(switchtime);
825 td->td_runtime += runtime;
826 td->td_incruntime += runtime;
827 PCPU_SET(switchtime, u);
828 }
829 /* Make sure the per-thread stats are current. */
830 FOREACH_THREAD_IN_PROC(p, td) {
831 if (td->td_incruntime == 0)
832 continue;
833 ruxagg(p, td);
834 }
835 calcru1(p, &p->p_rux, up, sp);
836 }
837
838 /* Collect resource usage for a single thread. */
839 void
840 rufetchtd(struct thread *td, struct rusage *ru)
841 {
842 struct proc *p;
843 uint64_t runtime, u;
844
845 p = td->td_proc;
846 PROC_STATLOCK_ASSERT(p, MA_OWNED);
847 THREAD_LOCK_ASSERT(td, MA_OWNED);
848 /*
849 * If we are getting stats for the current thread, then add in the
850 * stats that this thread has accumulated in its current time slice.
851 * We reset the thread and CPU state as if we had performed a context
852 * switch right here.
853 */
854 if (td == curthread) {
855 u = cpu_ticks();
856 runtime = u - PCPU_GET(switchtime);
857 td->td_runtime += runtime;
858 td->td_incruntime += runtime;
859 PCPU_SET(switchtime, u);
860 }
861 ruxagg(p, td);
862 *ru = td->td_ru;
863 calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
864 }
865
866 static void
867 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
868 struct timeval *sp)
869 {
870 /* {user, system, interrupt, total} {ticks, usec}: */
871 uint64_t ut, uu, st, su, it, tt, tu;
872
873 ut = ruxp->rux_uticks;
874 st = ruxp->rux_sticks;
875 it = ruxp->rux_iticks;
876 tt = ut + st + it;
877 if (tt == 0) {
878 /* Avoid divide by zero */
879 st = 1;
880 tt = 1;
881 }
882 tu = cputick2usec(ruxp->rux_runtime);
883 if ((int64_t)tu < 0) {
884 /* XXX: this should be an assert /phk */
885 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
886 (intmax_t)tu, p->p_pid, p->p_comm);
887 tu = ruxp->rux_tu;
888 }
889
890 if (tu >= ruxp->rux_tu) {
891 /*
892 * The normal case, time increased.
893 * Enforce monotonicity of bucketed numbers.
894 */
895 uu = (tu * ut) / tt;
896 if (uu < ruxp->rux_uu)
897 uu = ruxp->rux_uu;
898 su = (tu * st) / tt;
899 if (su < ruxp->rux_su)
900 su = ruxp->rux_su;
901 } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
902 /*
903 * When we calibrate the cputicker, it is not uncommon to
904 * see the presumably fixed frequency increase slightly over
905 * time as a result of thermal stabilization and NTP
906 * discipline (of the reference clock). We therefore ignore
907 * a bit of backwards slop because we expect to catch up
908 * shortly. We use a 3 microsecond limit to catch low
909 * counts and a 1% limit for high counts.
910 */
911 uu = ruxp->rux_uu;
912 su = ruxp->rux_su;
913 tu = ruxp->rux_tu;
914 } else { /* tu < ruxp->rux_tu */
915 /*
916 * What happened here was likely that a laptop, which ran at
917 * a reduced clock frequency at boot, kicked into high gear.
918 * The wisdom of spamming this message in that case is
919 * dubious, but it might also be indicative of something
920 * serious, so lets keep it and hope laptops can be made
921 * more truthful about their CPU speed via ACPI.
922 */
923 printf("calcru: runtime went backwards from %ju usec "
924 "to %ju usec for pid %d (%s)\n",
925 (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
926 p->p_pid, p->p_comm);
927 uu = (tu * ut) / tt;
928 su = (tu * st) / tt;
929 }
930
931 ruxp->rux_uu = uu;
932 ruxp->rux_su = su;
933 ruxp->rux_tu = tu;
934
935 up->tv_sec = uu / 1000000;
936 up->tv_usec = uu % 1000000;
937 sp->tv_sec = su / 1000000;
938 sp->tv_usec = su % 1000000;
939 }
940
941 #ifndef _SYS_SYSPROTO_H_
942 struct getrusage_args {
943 int who;
944 struct rusage *rusage;
945 };
946 #endif
947 int
948 sys_getrusage(struct thread *td, struct getrusage_args *uap)
949 {
950 struct rusage ru;
951 int error;
952
953 error = kern_getrusage(td, uap->who, &ru);
954 if (error == 0)
955 error = copyout(&ru, uap->rusage, sizeof(struct rusage));
956 return (error);
957 }
958
959 int
960 kern_getrusage(struct thread *td, int who, struct rusage *rup)
961 {
962 struct proc *p;
963 int error;
964
965 error = 0;
966 p = td->td_proc;
967 PROC_LOCK(p);
968 switch (who) {
969 case RUSAGE_SELF:
970 rufetchcalc(p, rup, &rup->ru_utime,
971 &rup->ru_stime);
972 break;
973
974 case RUSAGE_CHILDREN:
975 *rup = p->p_stats->p_cru;
976 calccru(p, &rup->ru_utime, &rup->ru_stime);
977 break;
978
979 case RUSAGE_THREAD:
980 PROC_STATLOCK(p);
981 thread_lock(td);
982 rufetchtd(td, rup);
983 thread_unlock(td);
984 PROC_STATUNLOCK(p);
985 break;
986
987 default:
988 error = EINVAL;
989 }
990 PROC_UNLOCK(p);
991 return (error);
992 }
993
994 void
995 rucollect(struct rusage *ru, struct rusage *ru2)
996 {
997 long *ip, *ip2;
998 int i;
999
1000 if (ru->ru_maxrss < ru2->ru_maxrss)
1001 ru->ru_maxrss = ru2->ru_maxrss;
1002 ip = &ru->ru_first;
1003 ip2 = &ru2->ru_first;
1004 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
1005 *ip++ += *ip2++;
1006 }
1007
1008 void
1009 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
1010 struct rusage_ext *rux2)
1011 {
1012
1013 rux->rux_runtime += rux2->rux_runtime;
1014 rux->rux_uticks += rux2->rux_uticks;
1015 rux->rux_sticks += rux2->rux_sticks;
1016 rux->rux_iticks += rux2->rux_iticks;
1017 rux->rux_uu += rux2->rux_uu;
1018 rux->rux_su += rux2->rux_su;
1019 rux->rux_tu += rux2->rux_tu;
1020 rucollect(ru, ru2);
1021 }
1022
1023 /*
1024 * Aggregate tick counts into the proc's rusage_ext.
1025 */
1026 static void
1027 ruxagg_locked(struct rusage_ext *rux, struct thread *td)
1028 {
1029
1030 THREAD_LOCK_ASSERT(td, MA_OWNED);
1031 PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED);
1032 rux->rux_runtime += td->td_incruntime;
1033 rux->rux_uticks += td->td_uticks;
1034 rux->rux_sticks += td->td_sticks;
1035 rux->rux_iticks += td->td_iticks;
1036 }
1037
1038 void
1039 ruxagg(struct proc *p, struct thread *td)
1040 {
1041
1042 thread_lock(td);
1043 ruxagg_locked(&p->p_rux, td);
1044 ruxagg_locked(&td->td_rux, td);
1045 td->td_incruntime = 0;
1046 td->td_uticks = 0;
1047 td->td_iticks = 0;
1048 td->td_sticks = 0;
1049 thread_unlock(td);
1050 }
1051
1052 /*
1053 * Update the rusage_ext structure and fetch a valid aggregate rusage
1054 * for proc p if storage for one is supplied.
1055 */
1056 void
1057 rufetch(struct proc *p, struct rusage *ru)
1058 {
1059 struct thread *td;
1060
1061 PROC_STATLOCK_ASSERT(p, MA_OWNED);
1062
1063 *ru = p->p_ru;
1064 if (p->p_numthreads > 0) {
1065 FOREACH_THREAD_IN_PROC(p, td) {
1066 ruxagg(p, td);
1067 rucollect(ru, &td->td_ru);
1068 }
1069 }
1070 }
1071
1072 /*
1073 * Atomically perform a rufetch and a calcru together.
1074 * Consumers, can safely assume the calcru is executed only once
1075 * rufetch is completed.
1076 */
1077 void
1078 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1079 struct timeval *sp)
1080 {
1081
1082 PROC_STATLOCK(p);
1083 rufetch(p, ru);
1084 calcru(p, up, sp);
1085 PROC_STATUNLOCK(p);
1086 }
1087
1088 /*
1089 * Allocate a new resource limits structure and initialize its
1090 * reference count and mutex pointer.
1091 */
1092 struct plimit *
1093 lim_alloc()
1094 {
1095 struct plimit *limp;
1096
1097 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1098 refcount_init(&limp->pl_refcnt, 1);
1099 return (limp);
1100 }
1101
1102 struct plimit *
1103 lim_hold(struct plimit *limp)
1104 {
1105
1106 refcount_acquire(&limp->pl_refcnt);
1107 return (limp);
1108 }
1109
1110 void
1111 lim_fork(struct proc *p1, struct proc *p2)
1112 {
1113
1114 PROC_LOCK_ASSERT(p1, MA_OWNED);
1115 PROC_LOCK_ASSERT(p2, MA_OWNED);
1116
1117 p2->p_limit = lim_hold(p1->p_limit);
1118 callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1119 if (p1->p_cpulimit != RLIM_INFINITY)
1120 callout_reset_sbt(&p2->p_limco, SBT_1S, 0,
1121 lim_cb, p2, C_PREL(1));
1122 }
1123
1124 void
1125 lim_free(struct plimit *limp)
1126 {
1127
1128 if (refcount_release(&limp->pl_refcnt))
1129 free((void *)limp, M_PLIMIT);
1130 }
1131
1132 /*
1133 * Make a copy of the plimit structure.
1134 * We share these structures copy-on-write after fork.
1135 */
1136 void
1137 lim_copy(struct plimit *dst, struct plimit *src)
1138 {
1139
1140 KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit"));
1141 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1142 }
1143
1144 /*
1145 * Return the hard limit for a particular system resource. The
1146 * which parameter specifies the index into the rlimit array.
1147 */
1148 rlim_t
1149 lim_max(struct thread *td, int which)
1150 {
1151 struct rlimit rl;
1152
1153 lim_rlimit(td, which, &rl);
1154 return (rl.rlim_max);
1155 }
1156
1157 rlim_t
1158 lim_max_proc(struct proc *p, int which)
1159 {
1160 struct rlimit rl;
1161
1162 lim_rlimit_proc(p, which, &rl);
1163 return (rl.rlim_max);
1164 }
1165
1166 /*
1167 * Return the current (soft) limit for a particular system resource.
1168 * The which parameter which specifies the index into the rlimit array
1169 */
1170 rlim_t
1171 lim_cur(struct thread *td, int which)
1172 {
1173 struct rlimit rl;
1174
1175 lim_rlimit(td, which, &rl);
1176 return (rl.rlim_cur);
1177 }
1178
1179 rlim_t
1180 lim_cur_proc(struct proc *p, int which)
1181 {
1182 struct rlimit rl;
1183
1184 lim_rlimit_proc(p, which, &rl);
1185 return (rl.rlim_cur);
1186 }
1187
1188 /*
1189 * Return a copy of the entire rlimit structure for the system limit
1190 * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1191 */
1192 void
1193 lim_rlimit(struct thread *td, int which, struct rlimit *rlp)
1194 {
1195 struct proc *p = td->td_proc;
1196
1197 MPASS(td == curthread);
1198 KASSERT(which >= 0 && which < RLIM_NLIMITS,
1199 ("request for invalid resource limit"));
1200 *rlp = td->td_limit->pl_rlimit[which];
1201 if (p->p_sysent->sv_fixlimit != NULL)
1202 p->p_sysent->sv_fixlimit(rlp, which);
1203 }
1204
1205 void
1206 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp)
1207 {
1208
1209 PROC_LOCK_ASSERT(p, MA_OWNED);
1210 KASSERT(which >= 0 && which < RLIM_NLIMITS,
1211 ("request for invalid resource limit"));
1212 *rlp = p->p_limit->pl_rlimit[which];
1213 if (p->p_sysent->sv_fixlimit != NULL)
1214 p->p_sysent->sv_fixlimit(rlp, which);
1215 }
1216
1217 void
1218 uihashinit()
1219 {
1220
1221 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1222 rw_init(&uihashtbl_lock, "uidinfo hash");
1223 }
1224
1225 /*
1226 * Look up a uidinfo struct for the parameter uid.
1227 * uihashtbl_lock must be locked.
1228 * Increase refcount on uidinfo struct returned.
1229 */
1230 static struct uidinfo *
1231 uilookup(uid_t uid)
1232 {
1233 struct uihashhead *uipp;
1234 struct uidinfo *uip;
1235
1236 rw_assert(&uihashtbl_lock, RA_LOCKED);
1237 uipp = UIHASH(uid);
1238 LIST_FOREACH(uip, uipp, ui_hash)
1239 if (uip->ui_uid == uid) {
1240 uihold(uip);
1241 break;
1242 }
1243
1244 return (uip);
1245 }
1246
1247 /*
1248 * Find or allocate a struct uidinfo for a particular uid.
1249 * Returns with uidinfo struct referenced.
1250 * uifree() should be called on a struct uidinfo when released.
1251 */
1252 struct uidinfo *
1253 uifind(uid_t uid)
1254 {
1255 struct uidinfo *new_uip, *uip;
1256 struct ucred *cred;
1257
1258 cred = curthread->td_ucred;
1259 if (cred->cr_uidinfo->ui_uid == uid) {
1260 uip = cred->cr_uidinfo;
1261 uihold(uip);
1262 return (uip);
1263 } else if (cred->cr_ruidinfo->ui_uid == uid) {
1264 uip = cred->cr_ruidinfo;
1265 uihold(uip);
1266 return (uip);
1267 }
1268
1269 rw_rlock(&uihashtbl_lock);
1270 uip = uilookup(uid);
1271 rw_runlock(&uihashtbl_lock);
1272 if (uip != NULL)
1273 return (uip);
1274
1275 new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO);
1276 racct_create(&new_uip->ui_racct);
1277 refcount_init(&new_uip->ui_ref, 1);
1278 new_uip->ui_uid = uid;
1279
1280 rw_wlock(&uihashtbl_lock);
1281 /*
1282 * There's a chance someone created our uidinfo while we
1283 * were in malloc and not holding the lock, so we have to
1284 * make sure we don't insert a duplicate uidinfo.
1285 */
1286 if ((uip = uilookup(uid)) == NULL) {
1287 LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash);
1288 rw_wunlock(&uihashtbl_lock);
1289 uip = new_uip;
1290 } else {
1291 rw_wunlock(&uihashtbl_lock);
1292 racct_destroy(&new_uip->ui_racct);
1293 free(new_uip, M_UIDINFO);
1294 }
1295 return (uip);
1296 }
1297
1298 /*
1299 * Place another refcount on a uidinfo struct.
1300 */
1301 void
1302 uihold(struct uidinfo *uip)
1303 {
1304
1305 refcount_acquire(&uip->ui_ref);
1306 }
1307
1308 /*-
1309 * Since uidinfo structs have a long lifetime, we use an
1310 * opportunistic refcounting scheme to avoid locking the lookup hash
1311 * for each release.
1312 *
1313 * If the refcount hits 0, we need to free the structure,
1314 * which means we need to lock the hash.
1315 * Optimal case:
1316 * After locking the struct and lowering the refcount, if we find
1317 * that we don't need to free, simply unlock and return.
1318 * Suboptimal case:
1319 * If refcount lowering results in need to free, bump the count
1320 * back up, lose the lock and acquire the locks in the proper
1321 * order to try again.
1322 */
1323 void
1324 uifree(struct uidinfo *uip)
1325 {
1326 int old;
1327
1328 /* Prepare for optimal case. */
1329 old = uip->ui_ref;
1330 if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1))
1331 return;
1332
1333 /* Prepare for suboptimal case. */
1334 rw_wlock(&uihashtbl_lock);
1335 if (refcount_release(&uip->ui_ref) == 0) {
1336 rw_wunlock(&uihashtbl_lock);
1337 return;
1338 }
1339
1340 racct_destroy(&uip->ui_racct);
1341 LIST_REMOVE(uip, ui_hash);
1342 rw_wunlock(&uihashtbl_lock);
1343
1344 if (uip->ui_sbsize != 0)
1345 printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1346 uip->ui_uid, uip->ui_sbsize);
1347 if (uip->ui_proccnt != 0)
1348 printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1349 uip->ui_uid, uip->ui_proccnt);
1350 if (uip->ui_vmsize != 0)
1351 printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
1352 uip->ui_uid, (unsigned long long)uip->ui_vmsize);
1353 free(uip, M_UIDINFO);
1354 }
1355
1356 #ifdef RACCT
1357 void
1358 ui_racct_foreach(void (*callback)(struct racct *racct,
1359 void *arg2, void *arg3), void (*pre)(void), void (*post)(void),
1360 void *arg2, void *arg3)
1361 {
1362 struct uidinfo *uip;
1363 struct uihashhead *uih;
1364
1365 rw_rlock(&uihashtbl_lock);
1366 if (pre != NULL)
1367 (pre)();
1368 for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
1369 LIST_FOREACH(uip, uih, ui_hash) {
1370 (callback)(uip->ui_racct, arg2, arg3);
1371 }
1372 }
1373 if (post != NULL)
1374 (post)();
1375 rw_runlock(&uihashtbl_lock);
1376 }
1377 #endif
1378
1379 static inline int
1380 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name)
1381 {
1382 long new;
1383
1384 /* Don't allow them to exceed max, but allow subtraction. */
1385 new = atomic_fetchadd_long(limit, (long)diff) + diff;
1386 if (diff > 0 && max != 0) {
1387 if (new < 0 || new > max) {
1388 atomic_subtract_long(limit, (long)diff);
1389 return (0);
1390 }
1391 } else if (new < 0)
1392 printf("negative %s for uid = %d\n", name, uip->ui_uid);
1393 return (1);
1394 }
1395
1396 /*
1397 * Change the count associated with number of processes
1398 * a given user is using. When 'max' is 0, don't enforce a limit
1399 */
1400 int
1401 chgproccnt(struct uidinfo *uip, int diff, rlim_t max)
1402 {
1403
1404 return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt"));
1405 }
1406
1407 /*
1408 * Change the total socket buffer size a user has used.
1409 */
1410 int
1411 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
1412 {
1413 int diff, rv;
1414
1415 diff = to - *hiwat;
1416 if (diff > 0 && max == 0) {
1417 rv = 0;
1418 } else {
1419 rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize");
1420 if (rv != 0)
1421 *hiwat = to;
1422 }
1423 return (rv);
1424 }
1425
1426 /*
1427 * Change the count associated with number of pseudo-terminals
1428 * a given user is using. When 'max' is 0, don't enforce a limit
1429 */
1430 int
1431 chgptscnt(struct uidinfo *uip, int diff, rlim_t max)
1432 {
1433
1434 return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt"));
1435 }
1436
1437 int
1438 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max)
1439 {
1440
1441 return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt"));
1442 }
1443
1444 int
1445 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max)
1446 {
1447
1448 return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt"));
1449 }
Cache object: 35425761f85c141108976157e0b48477
|