The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_resource.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)kern_resource.c     8.5 (Berkeley) 1/21/94
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD$");
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/sysproto.h>
   45 #include <sys/file.h>
   46 #include <sys/kernel.h>
   47 #include <sys/lock.h>
   48 #include <sys/malloc.h>
   49 #include <sys/mutex.h>
   50 #include <sys/priv.h>
   51 #include <sys/proc.h>
   52 #include <sys/refcount.h>
   53 #include <sys/racct.h>
   54 #include <sys/resourcevar.h>
   55 #include <sys/rwlock.h>
   56 #include <sys/sched.h>
   57 #include <sys/sx.h>
   58 #include <sys/syscallsubr.h>
   59 #include <sys/sysctl.h>
   60 #include <sys/sysent.h>
   61 #include <sys/time.h>
   62 #include <sys/umtx.h>
   63 
   64 #include <vm/vm.h>
   65 #include <vm/vm_param.h>
   66 #include <vm/pmap.h>
   67 #include <vm/vm_map.h>
   68 
   69 
   70 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
   71 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
   72 #define UIHASH(uid)     (&uihashtbl[(uid) & uihash])
   73 static struct rwlock uihashtbl_lock;
   74 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
   75 static u_long uihash;           /* size of hash table - 1 */
   76 
   77 static void     calcru1(struct proc *p, struct rusage_ext *ruxp,
   78                     struct timeval *up, struct timeval *sp);
   79 static int      donice(struct thread *td, struct proc *chgp, int n);
   80 static struct uidinfo *uilookup(uid_t uid);
   81 static void     ruxagg_locked(struct rusage_ext *rux, struct thread *td);
   82 
   83 /*
   84  * Resource controls and accounting.
   85  */
   86 #ifndef _SYS_SYSPROTO_H_
   87 struct getpriority_args {
   88         int     which;
   89         int     who;
   90 };
   91 #endif
   92 int
   93 sys_getpriority(struct thread *td, struct getpriority_args *uap)
   94 {
   95         struct proc *p;
   96         struct pgrp *pg;
   97         int error, low;
   98 
   99         error = 0;
  100         low = PRIO_MAX + 1;
  101         switch (uap->which) {
  102 
  103         case PRIO_PROCESS:
  104                 if (uap->who == 0)
  105                         low = td->td_proc->p_nice;
  106                 else {
  107                         p = pfind(uap->who);
  108                         if (p == NULL)
  109                                 break;
  110                         if (p_cansee(td, p) == 0)
  111                                 low = p->p_nice;
  112                         PROC_UNLOCK(p);
  113                 }
  114                 break;
  115 
  116         case PRIO_PGRP:
  117                 sx_slock(&proctree_lock);
  118                 if (uap->who == 0) {
  119                         pg = td->td_proc->p_pgrp;
  120                         PGRP_LOCK(pg);
  121                 } else {
  122                         pg = pgfind(uap->who);
  123                         if (pg == NULL) {
  124                                 sx_sunlock(&proctree_lock);
  125                                 break;
  126                         }
  127                 }
  128                 sx_sunlock(&proctree_lock);
  129                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  130                         PROC_LOCK(p);
  131                         if (p->p_state == PRS_NORMAL &&
  132                             p_cansee(td, p) == 0) {
  133                                 if (p->p_nice < low)
  134                                         low = p->p_nice;
  135                         }
  136                         PROC_UNLOCK(p);
  137                 }
  138                 PGRP_UNLOCK(pg);
  139                 break;
  140 
  141         case PRIO_USER:
  142                 if (uap->who == 0)
  143                         uap->who = td->td_ucred->cr_uid;
  144                 sx_slock(&allproc_lock);
  145                 FOREACH_PROC_IN_SYSTEM(p) {
  146                         PROC_LOCK(p);
  147                         if (p->p_state == PRS_NORMAL &&
  148                             p_cansee(td, p) == 0 &&
  149                             p->p_ucred->cr_uid == uap->who) {
  150                                 if (p->p_nice < low)
  151                                         low = p->p_nice;
  152                         }
  153                         PROC_UNLOCK(p);
  154                 }
  155                 sx_sunlock(&allproc_lock);
  156                 break;
  157 
  158         default:
  159                 error = EINVAL;
  160                 break;
  161         }
  162         if (low == PRIO_MAX + 1 && error == 0)
  163                 error = ESRCH;
  164         td->td_retval[0] = low;
  165         return (error);
  166 }
  167 
  168 #ifndef _SYS_SYSPROTO_H_
  169 struct setpriority_args {
  170         int     which;
  171         int     who;
  172         int     prio;
  173 };
  174 #endif
  175 int
  176 sys_setpriority(struct thread *td, struct setpriority_args *uap)
  177 {
  178         struct proc *curp, *p;
  179         struct pgrp *pg;
  180         int found = 0, error = 0;
  181 
  182         curp = td->td_proc;
  183         switch (uap->which) {
  184         case PRIO_PROCESS:
  185                 if (uap->who == 0) {
  186                         PROC_LOCK(curp);
  187                         error = donice(td, curp, uap->prio);
  188                         PROC_UNLOCK(curp);
  189                 } else {
  190                         p = pfind(uap->who);
  191                         if (p == NULL)
  192                                 break;
  193                         error = p_cansee(td, p);
  194                         if (error == 0)
  195                                 error = donice(td, p, uap->prio);
  196                         PROC_UNLOCK(p);
  197                 }
  198                 found++;
  199                 break;
  200 
  201         case PRIO_PGRP:
  202                 sx_slock(&proctree_lock);
  203                 if (uap->who == 0) {
  204                         pg = curp->p_pgrp;
  205                         PGRP_LOCK(pg);
  206                 } else {
  207                         pg = pgfind(uap->who);
  208                         if (pg == NULL) {
  209                                 sx_sunlock(&proctree_lock);
  210                                 break;
  211                         }
  212                 }
  213                 sx_sunlock(&proctree_lock);
  214                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  215                         PROC_LOCK(p);
  216                         if (p->p_state == PRS_NORMAL &&
  217                             p_cansee(td, p) == 0) {
  218                                 error = donice(td, p, uap->prio);
  219                                 found++;
  220                         }
  221                         PROC_UNLOCK(p);
  222                 }
  223                 PGRP_UNLOCK(pg);
  224                 break;
  225 
  226         case PRIO_USER:
  227                 if (uap->who == 0)
  228                         uap->who = td->td_ucred->cr_uid;
  229                 sx_slock(&allproc_lock);
  230                 FOREACH_PROC_IN_SYSTEM(p) {
  231                         PROC_LOCK(p);
  232                         if (p->p_state == PRS_NORMAL &&
  233                             p->p_ucred->cr_uid == uap->who &&
  234                             p_cansee(td, p) == 0) {
  235                                 error = donice(td, p, uap->prio);
  236                                 found++;
  237                         }
  238                         PROC_UNLOCK(p);
  239                 }
  240                 sx_sunlock(&allproc_lock);
  241                 break;
  242 
  243         default:
  244                 error = EINVAL;
  245                 break;
  246         }
  247         if (found == 0 && error == 0)
  248                 error = ESRCH;
  249         return (error);
  250 }
  251 
  252 /*
  253  * Set "nice" for a (whole) process.
  254  */
  255 static int
  256 donice(struct thread *td, struct proc *p, int n)
  257 {
  258         int error;
  259 
  260         PROC_LOCK_ASSERT(p, MA_OWNED);
  261         if ((error = p_cansched(td, p)))
  262                 return (error);
  263         if (n > PRIO_MAX)
  264                 n = PRIO_MAX;
  265         if (n < PRIO_MIN)
  266                 n = PRIO_MIN;
  267         if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
  268                 return (EACCES);
  269         sched_nice(p, n);
  270         return (0);
  271 }
  272 
  273 static int unprivileged_idprio;
  274 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_idprio, CTLFLAG_RW,
  275     &unprivileged_idprio, 0, "Allow non-root users to set an idle priority");
  276 
  277 /*
  278  * Set realtime priority for LWP.
  279  */
  280 #ifndef _SYS_SYSPROTO_H_
  281 struct rtprio_thread_args {
  282         int             function;
  283         lwpid_t         lwpid;
  284         struct rtprio   *rtp;
  285 };
  286 #endif
  287 int
  288 sys_rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
  289 {
  290         struct proc *p;
  291         struct rtprio rtp;
  292         struct thread *td1;
  293         int cierror, error;
  294 
  295         /* Perform copyin before acquiring locks if needed. */
  296         if (uap->function == RTP_SET)
  297                 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
  298         else
  299                 cierror = 0;
  300 
  301         if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
  302                 p = td->td_proc;
  303                 td1 = td;
  304                 PROC_LOCK(p);
  305         } else {
  306                 td1 = tdfind(uap->lwpid, -1);
  307                 if (td1 == NULL)
  308                         return (ESRCH);
  309                 p = td1->td_proc;
  310         }
  311 
  312         switch (uap->function) {
  313         case RTP_LOOKUP:
  314                 if ((error = p_cansee(td, p)))
  315                         break;
  316                 pri_to_rtp(td1, &rtp);
  317                 PROC_UNLOCK(p);
  318                 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
  319         case RTP_SET:
  320                 if ((error = p_cansched(td, p)) || (error = cierror))
  321                         break;
  322 
  323                 /* Disallow setting rtprio in most cases if not superuser. */
  324 
  325                 /*
  326                  * Realtime priority has to be restricted for reasons which
  327                  * should be obvious.  However, for idleprio processes, there is
  328                  * a potential for system deadlock if an idleprio process gains
  329                  * a lock on a resource that other processes need (and the
  330                  * idleprio process can't run due to a CPU-bound normal
  331                  * process).  Fix me!  XXX
  332                  *
  333                  * This problem is not only related to idleprio process.
  334                  * A user level program can obtain a file lock and hold it
  335                  * indefinitely.  Additionally, without idleprio processes it is
  336                  * still conceivable that a program with low priority will never
  337                  * get to run.  In short, allowing this feature might make it
  338                  * easier to lock a resource indefinitely, but it is not the
  339                  * only thing that makes it possible.
  340                  */
  341                 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
  342                     (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
  343                     unprivileged_idprio == 0)) {
  344                         error = priv_check(td, PRIV_SCHED_RTPRIO);
  345                         if (error)
  346                                 break;
  347                 }
  348                 error = rtp_to_pri(&rtp, td1);
  349                 break;
  350         default:
  351                 error = EINVAL;
  352                 break;
  353         }
  354         PROC_UNLOCK(p);
  355         return (error);
  356 }
  357 
  358 /*
  359  * Set realtime priority.
  360  */
  361 #ifndef _SYS_SYSPROTO_H_
  362 struct rtprio_args {
  363         int             function;
  364         pid_t           pid;
  365         struct rtprio   *rtp;
  366 };
  367 #endif
  368 int
  369 sys_rtprio(struct thread *td, struct rtprio_args *uap)
  370 {
  371         struct proc *p;
  372         struct thread *tdp;
  373         struct rtprio rtp;
  374         int cierror, error;
  375 
  376         /* Perform copyin before acquiring locks if needed. */
  377         if (uap->function == RTP_SET)
  378                 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
  379         else
  380                 cierror = 0;
  381 
  382         if (uap->pid == 0) {
  383                 p = td->td_proc;
  384                 PROC_LOCK(p);
  385         } else {
  386                 p = pfind(uap->pid);
  387                 if (p == NULL)
  388                         return (ESRCH);
  389         }
  390 
  391         switch (uap->function) {
  392         case RTP_LOOKUP:
  393                 if ((error = p_cansee(td, p)))
  394                         break;
  395                 /*
  396                  * Return OUR priority if no pid specified,
  397                  * or if one is, report the highest priority
  398                  * in the process.  There isn't much more you can do as
  399                  * there is only room to return a single priority.
  400                  * Note: specifying our own pid is not the same
  401                  * as leaving it zero.
  402                  */
  403                 if (uap->pid == 0) {
  404                         pri_to_rtp(td, &rtp);
  405                 } else {
  406                         struct rtprio rtp2;
  407 
  408                         rtp.type = RTP_PRIO_IDLE;
  409                         rtp.prio = RTP_PRIO_MAX;
  410                         FOREACH_THREAD_IN_PROC(p, tdp) {
  411                                 pri_to_rtp(tdp, &rtp2);
  412                                 if (rtp2.type <  rtp.type ||
  413                                     (rtp2.type == rtp.type &&
  414                                     rtp2.prio < rtp.prio)) {
  415                                         rtp.type = rtp2.type;
  416                                         rtp.prio = rtp2.prio;
  417                                 }
  418                         }
  419                 }
  420                 PROC_UNLOCK(p);
  421                 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
  422         case RTP_SET:
  423                 if ((error = p_cansched(td, p)) || (error = cierror))
  424                         break;
  425 
  426                 /*
  427                  * Disallow setting rtprio in most cases if not superuser.
  428                  * See the comment in sys_rtprio_thread about idprio
  429                  * threads holding a lock.
  430                  */
  431                 if (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_REALTIME ||
  432                     (RTP_PRIO_BASE(rtp.type) == RTP_PRIO_IDLE &&
  433                     !unprivileged_idprio)) {
  434                         error = priv_check(td, PRIV_SCHED_RTPRIO);
  435                         if (error)
  436                                 break;
  437                 }
  438 
  439                 /*
  440                  * If we are setting our own priority, set just our
  441                  * thread but if we are doing another process,
  442                  * do all the threads on that process. If we
  443                  * specify our own pid we do the latter.
  444                  */
  445                 if (uap->pid == 0) {
  446                         error = rtp_to_pri(&rtp, td);
  447                 } else {
  448                         FOREACH_THREAD_IN_PROC(p, td) {
  449                                 if ((error = rtp_to_pri(&rtp, td)) != 0)
  450                                         break;
  451                         }
  452                 }
  453                 break;
  454         default:
  455                 error = EINVAL;
  456                 break;
  457         }
  458         PROC_UNLOCK(p);
  459         return (error);
  460 }
  461 
  462 int
  463 rtp_to_pri(struct rtprio *rtp, struct thread *td)
  464 {
  465         u_char  newpri, oldclass, oldpri;
  466 
  467         switch (RTP_PRIO_BASE(rtp->type)) {
  468         case RTP_PRIO_REALTIME:
  469                 if (rtp->prio > RTP_PRIO_MAX)
  470                         return (EINVAL);
  471                 newpri = PRI_MIN_REALTIME + rtp->prio;
  472                 break;
  473         case RTP_PRIO_NORMAL:
  474                 if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
  475                         return (EINVAL);
  476                 newpri = PRI_MIN_TIMESHARE + rtp->prio;
  477                 break;
  478         case RTP_PRIO_IDLE:
  479                 if (rtp->prio > RTP_PRIO_MAX)
  480                         return (EINVAL);
  481                 newpri = PRI_MIN_IDLE + rtp->prio;
  482                 break;
  483         default:
  484                 return (EINVAL);
  485         }
  486 
  487         thread_lock(td);
  488         oldclass = td->td_pri_class;
  489         sched_class(td, rtp->type);     /* XXX fix */
  490         oldpri = td->td_user_pri;
  491         sched_user_prio(td, newpri);
  492         if (td->td_user_pri != oldpri && (oldclass != RTP_PRIO_NORMAL ||
  493             td->td_pri_class != RTP_PRIO_NORMAL))
  494                 sched_prio(td, td->td_user_pri);
  495         if (TD_ON_UPILOCK(td) && oldpri != newpri) {
  496                 critical_enter();
  497                 thread_unlock(td);
  498                 umtx_pi_adjust(td, oldpri);
  499                 critical_exit();
  500         } else
  501                 thread_unlock(td);
  502         return (0);
  503 }
  504 
  505 void
  506 pri_to_rtp(struct thread *td, struct rtprio *rtp)
  507 {
  508 
  509         thread_lock(td);
  510         switch (PRI_BASE(td->td_pri_class)) {
  511         case PRI_REALTIME:
  512                 rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
  513                 break;
  514         case PRI_TIMESHARE:
  515                 rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
  516                 break;
  517         case PRI_IDLE:
  518                 rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
  519                 break;
  520         default:
  521                 break;
  522         }
  523         rtp->type = td->td_pri_class;
  524         thread_unlock(td);
  525 }
  526 
  527 #if defined(COMPAT_43)
  528 #ifndef _SYS_SYSPROTO_H_
  529 struct osetrlimit_args {
  530         u_int   which;
  531         struct  orlimit *rlp;
  532 };
  533 #endif
  534 int
  535 osetrlimit(struct thread *td, struct osetrlimit_args *uap)
  536 {
  537         struct orlimit olim;
  538         struct rlimit lim;
  539         int error;
  540 
  541         if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
  542                 return (error);
  543         lim.rlim_cur = olim.rlim_cur;
  544         lim.rlim_max = olim.rlim_max;
  545         error = kern_setrlimit(td, uap->which, &lim);
  546         return (error);
  547 }
  548 
  549 #ifndef _SYS_SYSPROTO_H_
  550 struct ogetrlimit_args {
  551         u_int   which;
  552         struct  orlimit *rlp;
  553 };
  554 #endif
  555 int
  556 ogetrlimit(struct thread *td, struct ogetrlimit_args *uap)
  557 {
  558         struct orlimit olim;
  559         struct rlimit rl;
  560         int error;
  561 
  562         if (uap->which >= RLIM_NLIMITS)
  563                 return (EINVAL);
  564         lim_rlimit(td, uap->which, &rl);
  565 
  566         /*
  567          * XXX would be more correct to convert only RLIM_INFINITY to the
  568          * old RLIM_INFINITY and fail with EOVERFLOW for other larger
  569          * values.  Most 64->32 and 32->16 conversions, including not
  570          * unimportant ones of uids are even more broken than what we
  571          * do here (they blindly truncate).  We don't do this correctly
  572          * here since we have little experience with EOVERFLOW yet.
  573          * Elsewhere, getuid() can't fail...
  574          */
  575         olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
  576         olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
  577         error = copyout(&olim, uap->rlp, sizeof(olim));
  578         return (error);
  579 }
  580 #endif /* COMPAT_43 */
  581 
  582 #ifndef _SYS_SYSPROTO_H_
  583 struct __setrlimit_args {
  584         u_int   which;
  585         struct  rlimit *rlp;
  586 };
  587 #endif
  588 int
  589 sys_setrlimit(struct thread *td, struct __setrlimit_args *uap)
  590 {
  591         struct rlimit alim;
  592         int error;
  593 
  594         if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
  595                 return (error);
  596         error = kern_setrlimit(td, uap->which, &alim);
  597         return (error);
  598 }
  599 
  600 static void
  601 lim_cb(void *arg)
  602 {
  603         struct rlimit rlim;
  604         struct thread *td;
  605         struct proc *p;
  606 
  607         p = arg;
  608         PROC_LOCK_ASSERT(p, MA_OWNED);
  609         /*
  610          * Check if the process exceeds its cpu resource allocation.  If
  611          * it reaches the max, arrange to kill the process in ast().
  612          */
  613         if (p->p_cpulimit == RLIM_INFINITY)
  614                 return;
  615         PROC_STATLOCK(p);
  616         FOREACH_THREAD_IN_PROC(p, td) {
  617                 ruxagg(p, td);
  618         }
  619         PROC_STATUNLOCK(p);
  620         if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
  621                 lim_rlimit_proc(p, RLIMIT_CPU, &rlim);
  622                 if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
  623                         killproc(p, "exceeded maximum CPU limit");
  624                 } else {
  625                         if (p->p_cpulimit < rlim.rlim_max)
  626                                 p->p_cpulimit += 5;
  627                         kern_psignal(p, SIGXCPU);
  628                 }
  629         }
  630         if ((p->p_flag & P_WEXIT) == 0)
  631                 callout_reset_sbt(&p->p_limco, SBT_1S, 0,
  632                     lim_cb, p, C_PREL(1));
  633 }
  634 
  635 int
  636 kern_setrlimit(struct thread *td, u_int which, struct rlimit *limp)
  637 {
  638 
  639         return (kern_proc_setrlimit(td, td->td_proc, which, limp));
  640 }
  641 
  642 int
  643 kern_proc_setrlimit(struct thread *td, struct proc *p, u_int which,
  644     struct rlimit *limp)
  645 {
  646         struct plimit *newlim, *oldlim;
  647         struct rlimit *alimp;
  648         struct rlimit oldssiz;
  649         int error;
  650 
  651         if (which >= RLIM_NLIMITS)
  652                 return (EINVAL);
  653 
  654         /*
  655          * Preserve historical bugs by treating negative limits as unsigned.
  656          */
  657         if (limp->rlim_cur < 0)
  658                 limp->rlim_cur = RLIM_INFINITY;
  659         if (limp->rlim_max < 0)
  660                 limp->rlim_max = RLIM_INFINITY;
  661 
  662         oldssiz.rlim_cur = 0;
  663         newlim = lim_alloc();
  664         PROC_LOCK(p);
  665         oldlim = p->p_limit;
  666         alimp = &oldlim->pl_rlimit[which];
  667         if (limp->rlim_cur > alimp->rlim_max ||
  668             limp->rlim_max > alimp->rlim_max)
  669                 if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
  670                         PROC_UNLOCK(p);
  671                         lim_free(newlim);
  672                         return (error);
  673                 }
  674         if (limp->rlim_cur > limp->rlim_max)
  675                 limp->rlim_cur = limp->rlim_max;
  676         lim_copy(newlim, oldlim);
  677         alimp = &newlim->pl_rlimit[which];
  678 
  679         switch (which) {
  680 
  681         case RLIMIT_CPU:
  682                 if (limp->rlim_cur != RLIM_INFINITY &&
  683                     p->p_cpulimit == RLIM_INFINITY)
  684                         callout_reset_sbt(&p->p_limco, SBT_1S, 0,
  685                             lim_cb, p, C_PREL(1));
  686                 p->p_cpulimit = limp->rlim_cur;
  687                 break;
  688         case RLIMIT_DATA:
  689                 if (limp->rlim_cur > maxdsiz)
  690                         limp->rlim_cur = maxdsiz;
  691                 if (limp->rlim_max > maxdsiz)
  692                         limp->rlim_max = maxdsiz;
  693                 break;
  694 
  695         case RLIMIT_STACK:
  696                 if (limp->rlim_cur > maxssiz)
  697                         limp->rlim_cur = maxssiz;
  698                 if (limp->rlim_max > maxssiz)
  699                         limp->rlim_max = maxssiz;
  700                 oldssiz = *alimp;
  701                 if (p->p_sysent->sv_fixlimit != NULL)
  702                         p->p_sysent->sv_fixlimit(&oldssiz,
  703                             RLIMIT_STACK);
  704                 break;
  705 
  706         case RLIMIT_NOFILE:
  707                 if (limp->rlim_cur > maxfilesperproc)
  708                         limp->rlim_cur = maxfilesperproc;
  709                 if (limp->rlim_max > maxfilesperproc)
  710                         limp->rlim_max = maxfilesperproc;
  711                 break;
  712 
  713         case RLIMIT_NPROC:
  714                 if (limp->rlim_cur > maxprocperuid)
  715                         limp->rlim_cur = maxprocperuid;
  716                 if (limp->rlim_max > maxprocperuid)
  717                         limp->rlim_max = maxprocperuid;
  718                 if (limp->rlim_cur < 1)
  719                         limp->rlim_cur = 1;
  720                 if (limp->rlim_max < 1)
  721                         limp->rlim_max = 1;
  722                 break;
  723         }
  724         if (p->p_sysent->sv_fixlimit != NULL)
  725                 p->p_sysent->sv_fixlimit(limp, which);
  726         *alimp = *limp;
  727         p->p_limit = newlim;
  728         PROC_UPDATE_COW(p);
  729         PROC_UNLOCK(p);
  730         lim_free(oldlim);
  731 
  732         if (which == RLIMIT_STACK &&
  733             /*
  734              * Skip calls from exec_new_vmspace(), done when stack is
  735              * not mapped yet.
  736              */
  737             (td != curthread || (p->p_flag & P_INEXEC) == 0)) {
  738                 /*
  739                  * Stack is allocated to the max at exec time with only
  740                  * "rlim_cur" bytes accessible.  If stack limit is going
  741                  * up make more accessible, if going down make inaccessible.
  742                  */
  743                 if (limp->rlim_cur != oldssiz.rlim_cur) {
  744                         vm_offset_t addr;
  745                         vm_size_t size;
  746                         vm_prot_t prot;
  747 
  748                         if (limp->rlim_cur > oldssiz.rlim_cur) {
  749                                 prot = p->p_sysent->sv_stackprot;
  750                                 size = limp->rlim_cur - oldssiz.rlim_cur;
  751                                 addr = p->p_sysent->sv_usrstack -
  752                                     limp->rlim_cur;
  753                         } else {
  754                                 prot = VM_PROT_NONE;
  755                                 size = oldssiz.rlim_cur - limp->rlim_cur;
  756                                 addr = p->p_sysent->sv_usrstack -
  757                                     oldssiz.rlim_cur;
  758                         }
  759                         addr = trunc_page(addr);
  760                         size = round_page(size);
  761                         (void)vm_map_protect(&p->p_vmspace->vm_map,
  762                             addr, addr + size, prot, FALSE);
  763                 }
  764         }
  765 
  766         return (0);
  767 }
  768 
  769 #ifndef _SYS_SYSPROTO_H_
  770 struct __getrlimit_args {
  771         u_int   which;
  772         struct  rlimit *rlp;
  773 };
  774 #endif
  775 /* ARGSUSED */
  776 int
  777 sys_getrlimit(struct thread *td, struct __getrlimit_args *uap)
  778 {
  779         struct rlimit rlim;
  780         int error;
  781 
  782         if (uap->which >= RLIM_NLIMITS)
  783                 return (EINVAL);
  784         lim_rlimit(td, uap->which, &rlim);
  785         error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
  786         return (error);
  787 }
  788 
  789 /*
  790  * Transform the running time and tick information for children of proc p
  791  * into user and system time usage.
  792  */
  793 void
  794 calccru(struct proc *p, struct timeval *up, struct timeval *sp)
  795 {
  796 
  797         PROC_LOCK_ASSERT(p, MA_OWNED);
  798         calcru1(p, &p->p_crux, up, sp);
  799 }
  800 
  801 /*
  802  * Transform the running time and tick information in proc p into user
  803  * and system time usage.  If appropriate, include the current time slice
  804  * on this CPU.
  805  */
  806 void
  807 calcru(struct proc *p, struct timeval *up, struct timeval *sp)
  808 {
  809         struct thread *td;
  810         uint64_t runtime, u;
  811 
  812         PROC_LOCK_ASSERT(p, MA_OWNED);
  813         PROC_STATLOCK_ASSERT(p, MA_OWNED);
  814         /*
  815          * If we are getting stats for the current process, then add in the
  816          * stats that this thread has accumulated in its current time slice.
  817          * We reset the thread and CPU state as if we had performed a context
  818          * switch right here.
  819          */
  820         td = curthread;
  821         if (td->td_proc == p) {
  822                 u = cpu_ticks();
  823                 runtime = u - PCPU_GET(switchtime);
  824                 td->td_runtime += runtime;
  825                 td->td_incruntime += runtime;
  826                 PCPU_SET(switchtime, u);
  827         }
  828         /* Make sure the per-thread stats are current. */
  829         FOREACH_THREAD_IN_PROC(p, td) {
  830                 if (td->td_incruntime == 0)
  831                         continue;
  832                 ruxagg(p, td);
  833         }
  834         calcru1(p, &p->p_rux, up, sp);
  835 }
  836 
  837 /* Collect resource usage for a single thread. */
  838 void
  839 rufetchtd(struct thread *td, struct rusage *ru)
  840 {
  841         struct proc *p;
  842         uint64_t runtime, u;
  843 
  844         p = td->td_proc;
  845         PROC_STATLOCK_ASSERT(p, MA_OWNED);
  846         THREAD_LOCK_ASSERT(td, MA_OWNED);
  847         /*
  848          * If we are getting stats for the current thread, then add in the
  849          * stats that this thread has accumulated in its current time slice.
  850          * We reset the thread and CPU state as if we had performed a context
  851          * switch right here.
  852          */
  853         if (td == curthread) {
  854                 u = cpu_ticks();
  855                 runtime = u - PCPU_GET(switchtime);
  856                 td->td_runtime += runtime;
  857                 td->td_incruntime += runtime;
  858                 PCPU_SET(switchtime, u);
  859         }
  860         ruxagg(p, td);
  861         *ru = td->td_ru;
  862         calcru1(p, &td->td_rux, &ru->ru_utime, &ru->ru_stime);
  863 }
  864 
  865 /* XXX: the MI version is too slow to use: */
  866 #ifndef __HAVE_INLINE_FLSLL
  867 #define flsll(x)        (fls((x) >> 32) != 0 ? fls((x) >> 32) + 32 : fls(x))
  868 #endif
  869 
  870 static uint64_t
  871 mul64_by_fraction(uint64_t a, uint64_t b, uint64_t c)
  872 {
  873         uint64_t acc, bh, bl;
  874         int i, s, sa, sb;
  875 
  876         /*
  877          * Calculate (a * b) / c accurately enough without overflowing.  c
  878          * must be nonzero, and its top bit must be 0.  a or b must be
  879          * <= c, and the implementation is tuned for b <= c.
  880          *
  881          * The comments about times are for use in calcru1() with units of
  882          * microseconds for 'a' and stathz ticks at 128 Hz for b and c.
  883          *
  884          * Let n be the number of top zero bits in c.  Each iteration
  885          * either returns, or reduces b by right shifting it by at least n.
  886          * The number of iterations is at most 1 + 64 / n, and the error is
  887          * at most the number of iterations.
  888          *
  889          * It is very unusual to need even 2 iterations.  Previous
  890          * implementations overflowed essentially by returning early in the
  891          * first iteration, with n = 38 giving overflow at 105+ hours and
  892          * n = 32 giving overlow at at 388+ days despite a more careful
  893          * calculation.  388 days is a reasonable uptime, and the calculation
  894          * needs to work for the uptime times the number of CPUs since 'a'
  895          * is per-process.
  896          */
  897         if (a >= (uint64_t)1 << 63)
  898                 return (0);             /* Unsupported arg -- can't happen. */
  899         acc = 0;
  900         for (i = 0; i < 128; i++) {
  901                 sa = flsll(a);
  902                 sb = flsll(b);
  903                 if (sa + sb <= 64)
  904                         /* Up to 105 hours on first iteration. */
  905                         return (acc + (a * b) / c);
  906                 if (a >= c) {
  907                         /*
  908                          * This reduction is based on a = q * c + r, with the
  909                          * remainder r < c.  'a' may be large to start, and
  910                          * moving bits from b into 'a' at the end of the loop
  911                          * sets the top bit of 'a', so the reduction makes
  912                          * significant progress.
  913                          */
  914                         acc += (a / c) * b;
  915                         a %= c;
  916                         sa = flsll(a);
  917                         if (sa + sb <= 64)
  918                                 /* Up to 388 days on first iteration. */
  919                                 return (acc + (a * b) / c);
  920                 }
  921 
  922                 /*
  923                  * This step writes a * b as a * ((bh << s) + bl) =
  924                  * a * (bh << s) + a * bl = (a << s) * bh + a * bl.  The 2
  925                  * additive terms are handled separately.  Splitting in
  926                  * this way is linear except for rounding errors.
  927                  *
  928                  * s = 64 - sa is the maximum such that a << s fits in 64
  929                  * bits.  Since a < c and c has at least 1 zero top bit,
  930                  * sa < 64 and s > 0.  Thus this step makes progress by
  931                  * reducing b (it increases 'a', but taking remainders on
  932                  * the next iteration completes the reduction).
  933                  *
  934                  * Finally, the choice for s is just what is needed to keep
  935                  * a * bl from overflowing, so we don't need complications
  936                  * like a recursive call mul64_by_fraction(a, bl, c) to
  937                  * handle the second additive term.
  938                  */
  939                 s = 64 - sa;
  940                 bh = b >> s;
  941                 bl = b - (bh << s);
  942                 acc += (a * bl) / c;
  943                 a <<= s;
  944                 b = bh;
  945         }
  946         return (0);             /* Algorithm failure -- can't happen. */
  947 }
  948 
  949 static void
  950 calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
  951     struct timeval *sp)
  952 {
  953         /* {user, system, interrupt, total} {ticks, usec}: */
  954         uint64_t ut, uu, st, su, it, tt, tu;
  955 
  956         ut = ruxp->rux_uticks;
  957         st = ruxp->rux_sticks;
  958         it = ruxp->rux_iticks;
  959         tt = ut + st + it;
  960         if (tt == 0) {
  961                 /* Avoid divide by zero */
  962                 st = 1;
  963                 tt = 1;
  964         }
  965         tu = cputick2usec(ruxp->rux_runtime);
  966         if ((int64_t)tu < 0) {
  967                 /* XXX: this should be an assert /phk */
  968                 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
  969                     (intmax_t)tu, p->p_pid, p->p_comm);
  970                 tu = ruxp->rux_tu;
  971         }
  972 
  973         /* Subdivide tu.  Avoid overflow in the multiplications. */
  974         if (__predict_true(tu <= ((uint64_t)1 << 38) && tt <= (1 << 26))) {
  975                 /* Up to 76 hours when stathz is 128. */
  976                 uu = (tu * ut) / tt;
  977                 su = (tu * st) / tt;
  978         } else {
  979                 uu = mul64_by_fraction(tu, ut, tt);
  980                 su = mul64_by_fraction(tu, st, tt);
  981         }
  982 
  983         if (tu >= ruxp->rux_tu) {
  984                 /*
  985                  * The normal case, time increased.
  986                  * Enforce monotonicity of bucketed numbers.
  987                  */
  988                 if (uu < ruxp->rux_uu)
  989                         uu = ruxp->rux_uu;
  990                 if (su < ruxp->rux_su)
  991                         su = ruxp->rux_su;
  992         } else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
  993                 /*
  994                  * When we calibrate the cputicker, it is not uncommon to
  995                  * see the presumably fixed frequency increase slightly over
  996                  * time as a result of thermal stabilization and NTP
  997                  * discipline (of the reference clock).  We therefore ignore
  998                  * a bit of backwards slop because we  expect to catch up
  999                  * shortly.  We use a 3 microsecond limit to catch low
 1000                  * counts and a 1% limit for high counts.
 1001                  */
 1002                 uu = ruxp->rux_uu;
 1003                 su = ruxp->rux_su;
 1004                 tu = ruxp->rux_tu;
 1005         } else { /* tu < ruxp->rux_tu */
 1006                 /*
 1007                  * What happened here was likely that a laptop, which ran at
 1008                  * a reduced clock frequency at boot, kicked into high gear.
 1009                  * The wisdom of spamming this message in that case is
 1010                  * dubious, but it might also be indicative of something
 1011                  * serious, so lets keep it and hope laptops can be made
 1012                  * more truthful about their CPU speed via ACPI.
 1013                  */
 1014                 printf("calcru: runtime went backwards from %ju usec "
 1015                     "to %ju usec for pid %d (%s)\n",
 1016                     (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
 1017                     p->p_pid, p->p_comm);
 1018         }
 1019 
 1020         ruxp->rux_uu = uu;
 1021         ruxp->rux_su = su;
 1022         ruxp->rux_tu = tu;
 1023 
 1024         up->tv_sec = uu / 1000000;
 1025         up->tv_usec = uu % 1000000;
 1026         sp->tv_sec = su / 1000000;
 1027         sp->tv_usec = su % 1000000;
 1028 }
 1029 
 1030 #ifndef _SYS_SYSPROTO_H_
 1031 struct getrusage_args {
 1032         int     who;
 1033         struct  rusage *rusage;
 1034 };
 1035 #endif
 1036 int
 1037 sys_getrusage(struct thread *td, struct getrusage_args *uap)
 1038 {
 1039         struct rusage ru;
 1040         int error;
 1041 
 1042         error = kern_getrusage(td, uap->who, &ru);
 1043         if (error == 0)
 1044                 error = copyout(&ru, uap->rusage, sizeof(struct rusage));
 1045         return (error);
 1046 }
 1047 
 1048 int
 1049 kern_getrusage(struct thread *td, int who, struct rusage *rup)
 1050 {
 1051         struct proc *p;
 1052         int error;
 1053 
 1054         error = 0;
 1055         p = td->td_proc;
 1056         PROC_LOCK(p);
 1057         switch (who) {
 1058         case RUSAGE_SELF:
 1059                 rufetchcalc(p, rup, &rup->ru_utime,
 1060                     &rup->ru_stime);
 1061                 break;
 1062 
 1063         case RUSAGE_CHILDREN:
 1064                 *rup = p->p_stats->p_cru;
 1065                 calccru(p, &rup->ru_utime, &rup->ru_stime);
 1066                 break;
 1067 
 1068         case RUSAGE_THREAD:
 1069                 PROC_STATLOCK(p);
 1070                 thread_lock(td);
 1071                 rufetchtd(td, rup);
 1072                 thread_unlock(td);
 1073                 PROC_STATUNLOCK(p);
 1074                 break;
 1075 
 1076         default:
 1077                 error = EINVAL;
 1078         }
 1079         PROC_UNLOCK(p);
 1080         return (error);
 1081 }
 1082 
 1083 void
 1084 rucollect(struct rusage *ru, struct rusage *ru2)
 1085 {
 1086         long *ip, *ip2;
 1087         int i;
 1088 
 1089         if (ru->ru_maxrss < ru2->ru_maxrss)
 1090                 ru->ru_maxrss = ru2->ru_maxrss;
 1091         ip = &ru->ru_first;
 1092         ip2 = &ru2->ru_first;
 1093         for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
 1094                 *ip++ += *ip2++;
 1095 }
 1096 
 1097 void
 1098 ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
 1099     struct rusage_ext *rux2)
 1100 {
 1101 
 1102         rux->rux_runtime += rux2->rux_runtime;
 1103         rux->rux_uticks += rux2->rux_uticks;
 1104         rux->rux_sticks += rux2->rux_sticks;
 1105         rux->rux_iticks += rux2->rux_iticks;
 1106         rux->rux_uu += rux2->rux_uu;
 1107         rux->rux_su += rux2->rux_su;
 1108         rux->rux_tu += rux2->rux_tu;
 1109         rucollect(ru, ru2);
 1110 }
 1111 
 1112 /*
 1113  * Aggregate tick counts into the proc's rusage_ext.
 1114  */
 1115 static void
 1116 ruxagg_locked(struct rusage_ext *rux, struct thread *td)
 1117 {
 1118 
 1119         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1120         PROC_STATLOCK_ASSERT(td->td_proc, MA_OWNED);
 1121         rux->rux_runtime += td->td_incruntime;
 1122         rux->rux_uticks += td->td_uticks;
 1123         rux->rux_sticks += td->td_sticks;
 1124         rux->rux_iticks += td->td_iticks;
 1125 }
 1126 
 1127 void
 1128 ruxagg(struct proc *p, struct thread *td)
 1129 {
 1130 
 1131         thread_lock(td);
 1132         ruxagg_locked(&p->p_rux, td);
 1133         ruxagg_locked(&td->td_rux, td);
 1134         td->td_incruntime = 0;
 1135         td->td_uticks = 0;
 1136         td->td_iticks = 0;
 1137         td->td_sticks = 0;
 1138         thread_unlock(td);
 1139 }
 1140 
 1141 /*
 1142  * Update the rusage_ext structure and fetch a valid aggregate rusage
 1143  * for proc p if storage for one is supplied.
 1144  */
 1145 void
 1146 rufetch(struct proc *p, struct rusage *ru)
 1147 {
 1148         struct thread *td;
 1149 
 1150         PROC_STATLOCK_ASSERT(p, MA_OWNED);
 1151 
 1152         *ru = p->p_ru;
 1153         if (p->p_numthreads > 0)  {
 1154                 FOREACH_THREAD_IN_PROC(p, td) {
 1155                         ruxagg(p, td);
 1156                         rucollect(ru, &td->td_ru);
 1157                 }
 1158         }
 1159 }
 1160 
 1161 /*
 1162  * Atomically perform a rufetch and a calcru together.
 1163  * Consumers, can safely assume the calcru is executed only once
 1164  * rufetch is completed.
 1165  */
 1166 void
 1167 rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
 1168     struct timeval *sp)
 1169 {
 1170 
 1171         PROC_STATLOCK(p);
 1172         rufetch(p, ru);
 1173         calcru(p, up, sp);
 1174         PROC_STATUNLOCK(p);
 1175 }
 1176 
 1177 /*
 1178  * Allocate a new resource limits structure and initialize its
 1179  * reference count and mutex pointer.
 1180  */
 1181 struct plimit *
 1182 lim_alloc(void)
 1183 {
 1184         struct plimit *limp;
 1185 
 1186         limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
 1187         refcount_init(&limp->pl_refcnt, 1);
 1188         return (limp);
 1189 }
 1190 
 1191 struct plimit *
 1192 lim_hold(struct plimit *limp)
 1193 {
 1194 
 1195         refcount_acquire(&limp->pl_refcnt);
 1196         return (limp);
 1197 }
 1198 
 1199 void
 1200 lim_fork(struct proc *p1, struct proc *p2)
 1201 {
 1202 
 1203         PROC_LOCK_ASSERT(p1, MA_OWNED);
 1204         PROC_LOCK_ASSERT(p2, MA_OWNED);
 1205 
 1206         p2->p_limit = lim_hold(p1->p_limit);
 1207         callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
 1208         if (p1->p_cpulimit != RLIM_INFINITY)
 1209                 callout_reset_sbt(&p2->p_limco, SBT_1S, 0,
 1210                     lim_cb, p2, C_PREL(1));
 1211 }
 1212 
 1213 void
 1214 lim_free(struct plimit *limp)
 1215 {
 1216 
 1217         if (refcount_release(&limp->pl_refcnt))
 1218                 free((void *)limp, M_PLIMIT);
 1219 }
 1220 
 1221 /*
 1222  * Make a copy of the plimit structure.
 1223  * We share these structures copy-on-write after fork.
 1224  */
 1225 void
 1226 lim_copy(struct plimit *dst, struct plimit *src)
 1227 {
 1228 
 1229         KASSERT(dst->pl_refcnt <= 1, ("lim_copy to shared limit"));
 1230         bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
 1231 }
 1232 
 1233 /*
 1234  * Return the hard limit for a particular system resource.  The
 1235  * which parameter specifies the index into the rlimit array.
 1236  */
 1237 rlim_t
 1238 lim_max(struct thread *td, int which)
 1239 {
 1240         struct rlimit rl;
 1241 
 1242         lim_rlimit(td, which, &rl);
 1243         return (rl.rlim_max);
 1244 }
 1245 
 1246 rlim_t
 1247 lim_max_proc(struct proc *p, int which)
 1248 {
 1249         struct rlimit rl;
 1250 
 1251         lim_rlimit_proc(p, which, &rl);
 1252         return (rl.rlim_max);
 1253 }
 1254 
 1255 /*
 1256  * Return the current (soft) limit for a particular system resource.
 1257  * The which parameter which specifies the index into the rlimit array
 1258  */
 1259 rlim_t
 1260 lim_cur(struct thread *td, int which)
 1261 {
 1262         struct rlimit rl;
 1263 
 1264         lim_rlimit(td, which, &rl);
 1265         return (rl.rlim_cur);
 1266 }
 1267 
 1268 rlim_t
 1269 lim_cur_proc(struct proc *p, int which)
 1270 {
 1271         struct rlimit rl;
 1272 
 1273         lim_rlimit_proc(p, which, &rl);
 1274         return (rl.rlim_cur);
 1275 }
 1276 
 1277 /*
 1278  * Return a copy of the entire rlimit structure for the system limit
 1279  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
 1280  */
 1281 void
 1282 lim_rlimit(struct thread *td, int which, struct rlimit *rlp)
 1283 {
 1284         struct proc *p = td->td_proc;
 1285 
 1286         MPASS(td == curthread);
 1287         KASSERT(which >= 0 && which < RLIM_NLIMITS,
 1288             ("request for invalid resource limit"));
 1289         *rlp = td->td_limit->pl_rlimit[which];
 1290         if (p->p_sysent->sv_fixlimit != NULL)
 1291                 p->p_sysent->sv_fixlimit(rlp, which);
 1292 }
 1293 
 1294 void
 1295 lim_rlimit_proc(struct proc *p, int which, struct rlimit *rlp)
 1296 {
 1297 
 1298         PROC_LOCK_ASSERT(p, MA_OWNED);
 1299         KASSERT(which >= 0 && which < RLIM_NLIMITS,
 1300             ("request for invalid resource limit"));
 1301         *rlp = p->p_limit->pl_rlimit[which];
 1302         if (p->p_sysent->sv_fixlimit != NULL)
 1303                 p->p_sysent->sv_fixlimit(rlp, which);
 1304 }
 1305 
 1306 void
 1307 uihashinit(void)
 1308 {
 1309 
 1310         uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
 1311         rw_init(&uihashtbl_lock, "uidinfo hash");
 1312 }
 1313 
 1314 /*
 1315  * Look up a uidinfo struct for the parameter uid.
 1316  * uihashtbl_lock must be locked.
 1317  * Increase refcount on uidinfo struct returned.
 1318  */
 1319 static struct uidinfo *
 1320 uilookup(uid_t uid)
 1321 {
 1322         struct uihashhead *uipp;
 1323         struct uidinfo *uip;
 1324 
 1325         rw_assert(&uihashtbl_lock, RA_LOCKED);
 1326         uipp = UIHASH(uid);
 1327         LIST_FOREACH(uip, uipp, ui_hash)
 1328                 if (uip->ui_uid == uid) {
 1329                         uihold(uip);
 1330                         break;
 1331                 }
 1332 
 1333         return (uip);
 1334 }
 1335 
 1336 /*
 1337  * Find or allocate a struct uidinfo for a particular uid.
 1338  * Returns with uidinfo struct referenced.
 1339  * uifree() should be called on a struct uidinfo when released.
 1340  */
 1341 struct uidinfo *
 1342 uifind(uid_t uid)
 1343 {
 1344         struct uidinfo *new_uip, *uip;
 1345         struct ucred *cred;
 1346 
 1347         cred = curthread->td_ucred;
 1348         if (cred->cr_uidinfo->ui_uid == uid) {
 1349                 uip = cred->cr_uidinfo;
 1350                 uihold(uip);
 1351                 return (uip);
 1352         } else if (cred->cr_ruidinfo->ui_uid == uid) {
 1353                 uip = cred->cr_ruidinfo;
 1354                 uihold(uip);
 1355                 return (uip);
 1356         }
 1357 
 1358         rw_rlock(&uihashtbl_lock);
 1359         uip = uilookup(uid);
 1360         rw_runlock(&uihashtbl_lock);
 1361         if (uip != NULL)
 1362                 return (uip);
 1363 
 1364         new_uip = malloc(sizeof(*new_uip), M_UIDINFO, M_WAITOK | M_ZERO);
 1365         racct_create(&new_uip->ui_racct);
 1366         refcount_init(&new_uip->ui_ref, 1);
 1367         new_uip->ui_uid = uid;
 1368 
 1369         rw_wlock(&uihashtbl_lock);
 1370         /*
 1371          * There's a chance someone created our uidinfo while we
 1372          * were in malloc and not holding the lock, so we have to
 1373          * make sure we don't insert a duplicate uidinfo.
 1374          */
 1375         if ((uip = uilookup(uid)) == NULL) {
 1376                 LIST_INSERT_HEAD(UIHASH(uid), new_uip, ui_hash);
 1377                 rw_wunlock(&uihashtbl_lock);
 1378                 uip = new_uip;
 1379         } else {
 1380                 rw_wunlock(&uihashtbl_lock);
 1381                 racct_destroy(&new_uip->ui_racct);
 1382                 free(new_uip, M_UIDINFO);
 1383         }
 1384         return (uip);
 1385 }
 1386 
 1387 /*
 1388  * Place another refcount on a uidinfo struct.
 1389  */
 1390 void
 1391 uihold(struct uidinfo *uip)
 1392 {
 1393 
 1394         refcount_acquire(&uip->ui_ref);
 1395 }
 1396 
 1397 /*-
 1398  * Since uidinfo structs have a long lifetime, we use an
 1399  * opportunistic refcounting scheme to avoid locking the lookup hash
 1400  * for each release.
 1401  *
 1402  * If the refcount hits 0, we need to free the structure,
 1403  * which means we need to lock the hash.
 1404  * Optimal case:
 1405  *   After locking the struct and lowering the refcount, if we find
 1406  *   that we don't need to free, simply unlock and return.
 1407  * Suboptimal case:
 1408  *   If refcount lowering results in need to free, bump the count
 1409  *   back up, lose the lock and acquire the locks in the proper
 1410  *   order to try again.
 1411  */
 1412 void
 1413 uifree(struct uidinfo *uip)
 1414 {
 1415         int old;
 1416 
 1417         /* Prepare for optimal case. */
 1418         old = uip->ui_ref;
 1419         if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1))
 1420                 return;
 1421 
 1422         /* Prepare for suboptimal case. */
 1423         rw_wlock(&uihashtbl_lock);
 1424         if (refcount_release(&uip->ui_ref) == 0) {
 1425                 rw_wunlock(&uihashtbl_lock);
 1426                 return;
 1427         }
 1428 
 1429         racct_destroy(&uip->ui_racct);
 1430         LIST_REMOVE(uip, ui_hash);
 1431         rw_wunlock(&uihashtbl_lock);
 1432 
 1433         if (uip->ui_sbsize != 0)
 1434                 printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
 1435                     uip->ui_uid, uip->ui_sbsize);
 1436         if (uip->ui_proccnt != 0)
 1437                 printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
 1438                     uip->ui_uid, uip->ui_proccnt);
 1439         if (uip->ui_vmsize != 0)
 1440                 printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
 1441                     uip->ui_uid, (unsigned long long)uip->ui_vmsize);
 1442         free(uip, M_UIDINFO);
 1443 }
 1444 
 1445 #ifdef RACCT
 1446 void
 1447 ui_racct_foreach(void (*callback)(struct racct *racct,
 1448     void *arg2, void *arg3), void (*pre)(void), void (*post)(void),
 1449     void *arg2, void *arg3)
 1450 {
 1451         struct uidinfo *uip;
 1452         struct uihashhead *uih;
 1453 
 1454         rw_rlock(&uihashtbl_lock);
 1455         if (pre != NULL)
 1456                 (pre)();
 1457         for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
 1458                 LIST_FOREACH(uip, uih, ui_hash) {
 1459                         (callback)(uip->ui_racct, arg2, arg3);
 1460                 }
 1461         }
 1462         if (post != NULL)
 1463                 (post)();
 1464         rw_runlock(&uihashtbl_lock);
 1465 }
 1466 #endif
 1467 
 1468 static inline int
 1469 chglimit(struct uidinfo *uip, long *limit, int diff, rlim_t max, const char *name)
 1470 {
 1471         long new;
 1472 
 1473         /* Don't allow them to exceed max, but allow subtraction. */
 1474         new = atomic_fetchadd_long(limit, (long)diff) + diff;
 1475         if (diff > 0 && max != 0) {
 1476                 if (new < 0 || new > max) {
 1477                         atomic_subtract_long(limit, (long)diff);
 1478                         return (0);
 1479                 }
 1480         } else if (new < 0)
 1481                 printf("negative %s for uid = %d\n", name, uip->ui_uid);
 1482         return (1);
 1483 }
 1484 
 1485 /*
 1486  * Change the count associated with number of processes
 1487  * a given user is using.  When 'max' is 0, don't enforce a limit
 1488  */
 1489 int
 1490 chgproccnt(struct uidinfo *uip, int diff, rlim_t max)
 1491 {
 1492 
 1493         return (chglimit(uip, &uip->ui_proccnt, diff, max, "proccnt"));
 1494 }
 1495 
 1496 /*
 1497  * Change the total socket buffer size a user has used.
 1498  */
 1499 int
 1500 chgsbsize(struct uidinfo *uip, u_int *hiwat, u_int to, rlim_t max)
 1501 {
 1502         int diff, rv;
 1503 
 1504         diff = to - *hiwat;
 1505         if (diff > 0 && max == 0) {
 1506                 rv = 0;
 1507         } else {
 1508                 rv = chglimit(uip, &uip->ui_sbsize, diff, max, "sbsize");
 1509                 if (rv != 0)
 1510                         *hiwat = to;
 1511         }
 1512         return (rv);
 1513 }
 1514 
 1515 /*
 1516  * Change the count associated with number of pseudo-terminals
 1517  * a given user is using.  When 'max' is 0, don't enforce a limit
 1518  */
 1519 int
 1520 chgptscnt(struct uidinfo *uip, int diff, rlim_t max)
 1521 {
 1522 
 1523         return (chglimit(uip, &uip->ui_ptscnt, diff, max, "ptscnt"));
 1524 }
 1525 
 1526 int
 1527 chgkqcnt(struct uidinfo *uip, int diff, rlim_t max)
 1528 {
 1529 
 1530         return (chglimit(uip, &uip->ui_kqcnt, diff, max, "kqcnt"));
 1531 }
 1532 
 1533 int
 1534 chgumtxcnt(struct uidinfo *uip, int diff, rlim_t max)
 1535 {
 1536 
 1537         return (chglimit(uip, &uip->ui_umtxcnt, diff, max, "umtxcnt"));
 1538 }

Cache object: 01f634a93999488a0ffa94a5622f078e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.