The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_resource.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_resource.c     8.5 (Berkeley) 1/21/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/5.3/sys/kern/kern_resource.c 136588 2004-10-16 08:43:07Z cvs2svn $");
   39 
   40 #include "opt_compat.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/sysproto.h>
   45 #include <sys/file.h>
   46 #include <sys/kernel.h>
   47 #include <sys/lock.h>
   48 #include <sys/malloc.h>
   49 #include <sys/mutex.h>
   50 #include <sys/proc.h>
   51 #include <sys/resourcevar.h>
   52 #include <sys/sched.h>
   53 #include <sys/sx.h>
   54 #include <sys/sysent.h>
   55 #include <sys/time.h>
   56 
   57 #include <vm/vm.h>
   58 #include <vm/vm_param.h>
   59 #include <vm/pmap.h>
   60 #include <vm/vm_map.h>
   61 
   62 static int donice(struct thread *td, struct proc *chgp, int n);
   63 
   64 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
   65 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
   66 #define UIHASH(uid)     (&uihashtbl[(uid) & uihash])
   67 static struct mtx uihashtbl_mtx;
   68 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
   69 static u_long uihash;           /* size of hash table - 1 */
   70 
   71 static struct uidinfo   *uilookup(uid_t uid);
   72 
   73 /*
   74  * Resource controls and accounting.
   75  */
   76 
   77 #ifndef _SYS_SYSPROTO_H_
   78 struct getpriority_args {
   79         int     which;
   80         int     who;
   81 };
   82 #endif
   83 /*
   84  * MPSAFE
   85  */
   86 int
   87 getpriority(td, uap)
   88         struct thread *td;
   89         register struct getpriority_args *uap;
   90 {
   91         struct proc *p;
   92         int error, low;
   93 
   94         error = 0;
   95         low = PRIO_MAX + 1;
   96         switch (uap->which) {
   97 
   98         case PRIO_PROCESS:
   99                 if (uap->who == 0)
  100                         low = td->td_proc->p_nice;
  101                 else {
  102                         p = pfind(uap->who);
  103                         if (p == NULL)
  104                                 break;
  105                         if (p_cansee(td, p) == 0) {
  106                                 low = p->p_nice;
  107                         }
  108                         PROC_UNLOCK(p);
  109                 }
  110                 break;
  111 
  112         case PRIO_PGRP: {
  113                 register struct pgrp *pg;
  114 
  115                 sx_slock(&proctree_lock);
  116                 if (uap->who == 0) {
  117                         pg = td->td_proc->p_pgrp;
  118                         PGRP_LOCK(pg);
  119                 } else {
  120                         pg = pgfind(uap->who);
  121                         if (pg == NULL) {
  122                                 sx_sunlock(&proctree_lock);
  123                                 break;
  124                         }
  125                 }
  126                 sx_sunlock(&proctree_lock);
  127                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  128                         PROC_LOCK(p);
  129                         if (!p_cansee(td, p)) {
  130                                 if (p->p_nice < low)
  131                                         low = p->p_nice;
  132                         }
  133                         PROC_UNLOCK(p);
  134                 }
  135                 PGRP_UNLOCK(pg);
  136                 break;
  137         }
  138 
  139         case PRIO_USER:
  140                 if (uap->who == 0)
  141                         uap->who = td->td_ucred->cr_uid;
  142                 sx_slock(&allproc_lock);
  143                 LIST_FOREACH(p, &allproc, p_list) {
  144                         PROC_LOCK(p);
  145                         if (!p_cansee(td, p) &&
  146                             p->p_ucred->cr_uid == uap->who) {
  147                                 if (p->p_nice < low)
  148                                         low = p->p_nice;
  149                         }
  150                         PROC_UNLOCK(p);
  151                 }
  152                 sx_sunlock(&allproc_lock);
  153                 break;
  154 
  155         default:
  156                 error = EINVAL;
  157                 break;
  158         }
  159         if (low == PRIO_MAX + 1 && error == 0)
  160                 error = ESRCH;
  161         td->td_retval[0] = low;
  162         return (error);
  163 }
  164 
  165 #ifndef _SYS_SYSPROTO_H_
  166 struct setpriority_args {
  167         int     which;
  168         int     who;
  169         int     prio;
  170 };
  171 #endif
  172 /*
  173  * MPSAFE
  174  */
  175 int
  176 setpriority(td, uap)
  177         struct thread *td;
  178         register struct setpriority_args *uap;
  179 {
  180         struct proc *curp;
  181         register struct proc *p;
  182         int found = 0, error = 0;
  183 
  184         curp = td->td_proc;
  185         switch (uap->which) {
  186         case PRIO_PROCESS:
  187                 if (uap->who == 0) {
  188                         PROC_LOCK(curp);
  189                         error = donice(td, curp, uap->prio);
  190                         PROC_UNLOCK(curp);
  191                 } else {
  192                         p = pfind(uap->who);
  193                         if (p == 0)
  194                                 break;
  195                         if (p_cansee(td, p) == 0)
  196                                 error = donice(td, p, uap->prio);
  197                         PROC_UNLOCK(p);
  198                 }
  199                 found++;
  200                 break;
  201 
  202         case PRIO_PGRP: {
  203                 register struct pgrp *pg;
  204 
  205                 sx_slock(&proctree_lock);
  206                 if (uap->who == 0) {
  207                         pg = curp->p_pgrp;
  208                         PGRP_LOCK(pg);
  209                 } else {
  210                         pg = pgfind(uap->who);
  211                         if (pg == NULL) {
  212                                 sx_sunlock(&proctree_lock);
  213                                 break;
  214                         }
  215                 }
  216                 sx_sunlock(&proctree_lock);
  217                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  218                         PROC_LOCK(p);
  219                         if (!p_cansee(td, p)) {
  220                                 error = donice(td, p, uap->prio);
  221                                 found++;
  222                         }
  223                         PROC_UNLOCK(p);
  224                 }
  225                 PGRP_UNLOCK(pg);
  226                 break;
  227         }
  228 
  229         case PRIO_USER:
  230                 if (uap->who == 0)
  231                         uap->who = td->td_ucred->cr_uid;
  232                 sx_slock(&allproc_lock);
  233                 FOREACH_PROC_IN_SYSTEM(p) {
  234                         PROC_LOCK(p);
  235                         if (p->p_ucred->cr_uid == uap->who &&
  236                             !p_cansee(td, p)) {
  237                                 error = donice(td, p, uap->prio);
  238                                 found++;
  239                         }
  240                         PROC_UNLOCK(p);
  241                 }
  242                 sx_sunlock(&allproc_lock);
  243                 break;
  244 
  245         default:
  246                 error = EINVAL;
  247                 break;
  248         }
  249         if (found == 0 && error == 0)
  250                 error = ESRCH;
  251         return (error);
  252 }
  253 
  254 /* 
  255  * Set "nice" for a (whole) process.
  256  */
  257 static int
  258 donice(struct thread *td, struct proc *p, int n)
  259 {
  260         int error;
  261 
  262         PROC_LOCK_ASSERT(p, MA_OWNED);
  263         if ((error = p_cansched(td, p)))
  264                 return (error);
  265         if (n > PRIO_MAX)
  266                 n = PRIO_MAX;
  267         if (n < PRIO_MIN)
  268                 n = PRIO_MIN;
  269         if (n <  p->p_nice && suser(td) != 0)
  270                 return (EACCES);
  271         mtx_lock_spin(&sched_lock);
  272         sched_nice(p, n);
  273         mtx_unlock_spin(&sched_lock);
  274         return (0);
  275 }
  276 
  277 /*
  278  * Set realtime priority
  279  *
  280  * MPSAFE
  281  */
  282 #ifndef _SYS_SYSPROTO_H_
  283 struct rtprio_args {
  284         int             function;
  285         pid_t           pid;
  286         struct rtprio   *rtp;
  287 };
  288 #endif
  289 
  290 int
  291 rtprio(td, uap)
  292         struct thread *td;              /* curthread */
  293         register struct rtprio_args *uap;
  294 {
  295         struct proc *curp;
  296         struct proc *p;
  297         struct ksegrp *kg;
  298         struct rtprio rtp;
  299         int cierror, error;
  300 
  301         /* Perform copyin before acquiring locks if needed. */
  302         if (uap->function == RTP_SET)
  303                 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
  304         else
  305                 cierror = 0;
  306 
  307         curp = td->td_proc;
  308         if (uap->pid == 0) {
  309                 p = curp;
  310                 PROC_LOCK(p);
  311         } else {
  312                 p = pfind(uap->pid);
  313                 if (p == NULL)
  314                         return (ESRCH);
  315         }
  316 
  317         switch (uap->function) {
  318         case RTP_LOOKUP:
  319                 if ((error = p_cansee(td, p)))
  320                         break;
  321                 mtx_lock_spin(&sched_lock);
  322                 /*
  323                  * Return OUR priority if no pid specified,
  324                  * or if one is, report the highest priority
  325                  * in the process. There isn't much more you can do as 
  326                  * there is only room to return a single priority.
  327                  * XXXKSE  Maybe need a new interface to report 
  328                  * priorities of multiple system scope threads.
  329                  * Note: specifying our own pid is not the same
  330                  * as leaving it zero.
  331                  */
  332                 if (uap->pid == 0) {
  333                         pri_to_rtp(td->td_ksegrp, &rtp);
  334                 } else {
  335                         struct rtprio rtp2;
  336 
  337                         rtp.type = RTP_PRIO_IDLE;
  338                         rtp.prio = RTP_PRIO_MAX;
  339                         FOREACH_KSEGRP_IN_PROC(p, kg) {
  340                                 pri_to_rtp(kg, &rtp2);
  341                                 if ((rtp2.type <  rtp.type) ||
  342                                     ((rtp2.type == rtp.type) &&
  343                                      (rtp2.prio < rtp.prio))) {
  344                                         rtp.type = rtp2.type;
  345                                         rtp.prio = rtp2.prio;
  346                                 }
  347                         }
  348                 }
  349                 mtx_unlock_spin(&sched_lock);
  350                 PROC_UNLOCK(p);
  351                 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
  352         case RTP_SET:
  353                 if ((error = p_cansched(td, p)) || (error = cierror))
  354                         break;
  355                 /* disallow setting rtprio in most cases if not superuser */
  356                 if (suser(td) != 0) {
  357                         /* can't set someone else's */
  358                         if (uap->pid) {
  359                                 error = EPERM;
  360                                 break;
  361                         }
  362                         /* can't set realtime priority */
  363 /*
  364  * Realtime priority has to be restricted for reasons which should be
  365  * obvious. However, for idle priority, there is a potential for
  366  * system deadlock if an idleprio process gains a lock on a resource
  367  * that other processes need (and the idleprio process can't run
  368  * due to a CPU-bound normal process). Fix me! XXX
  369  */
  370 #if 0
  371                         if (RTP_PRIO_IS_REALTIME(rtp.type))
  372 #endif
  373                         if (rtp.type != RTP_PRIO_NORMAL) {
  374                                 error = EPERM;
  375                                 break;
  376                         }
  377                 }
  378                 mtx_lock_spin(&sched_lock);
  379                 /*
  380                  * If we are setting our own priority, set just our
  381                  * KSEGRP but if we are doing another process,
  382                  * do all the groups on that process. If we
  383                  * specify our own pid we do the latter.
  384                  */
  385                 if (uap->pid == 0) {
  386                         error = rtp_to_pri(&rtp, td->td_ksegrp);
  387                 } else {
  388                         FOREACH_KSEGRP_IN_PROC(p, kg) {
  389                                 if ((error = rtp_to_pri(&rtp, kg)) != 0) {
  390                                         break;
  391                                 }
  392                         }
  393                 }
  394                 mtx_unlock_spin(&sched_lock);
  395                 break;
  396         default:
  397                 error = EINVAL;
  398                 break;
  399         }
  400         PROC_UNLOCK(p);
  401         return (error);
  402 }
  403 
  404 int
  405 rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg)
  406 {
  407 
  408         mtx_assert(&sched_lock, MA_OWNED);
  409         if (rtp->prio > RTP_PRIO_MAX)
  410                 return (EINVAL);
  411         switch (RTP_PRIO_BASE(rtp->type)) {
  412         case RTP_PRIO_REALTIME:
  413                 kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio;
  414                 break;
  415         case RTP_PRIO_NORMAL:
  416                 kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio;
  417                 break;
  418         case RTP_PRIO_IDLE:
  419                 kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio;
  420                 break;
  421         default:
  422                 return (EINVAL);
  423         }
  424         sched_class(kg, rtp->type);
  425         if (curthread->td_ksegrp == kg) {
  426                 curthread->td_base_pri = kg->kg_user_pri;
  427                 sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */
  428         }
  429         return (0);
  430 }
  431 
  432 void
  433 pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp)
  434 {
  435 
  436         mtx_assert(&sched_lock, MA_OWNED);
  437         switch (PRI_BASE(kg->kg_pri_class)) {
  438         case PRI_REALTIME:
  439                 rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME;
  440                 break;
  441         case PRI_TIMESHARE:
  442                 rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE;
  443                 break;
  444         case PRI_IDLE:
  445                 rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE;
  446                 break;
  447         default:
  448                 break;
  449         }
  450         rtp->type = kg->kg_pri_class;
  451 }
  452 
  453 #if defined(COMPAT_43)
  454 #ifndef _SYS_SYSPROTO_H_
  455 struct osetrlimit_args {
  456         u_int   which;
  457         struct  orlimit *rlp;
  458 };
  459 #endif
  460 /*
  461  * MPSAFE
  462  */
  463 int
  464 osetrlimit(td, uap)
  465         struct thread *td;
  466         register struct osetrlimit_args *uap;
  467 {
  468         struct orlimit olim;
  469         struct rlimit lim;
  470         int error;
  471 
  472         if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
  473                 return (error);
  474         lim.rlim_cur = olim.rlim_cur;
  475         lim.rlim_max = olim.rlim_max;
  476         error = kern_setrlimit(td, uap->which, &lim);
  477         return (error);
  478 }
  479 
  480 #ifndef _SYS_SYSPROTO_H_
  481 struct ogetrlimit_args {
  482         u_int   which;
  483         struct  orlimit *rlp;
  484 };
  485 #endif
  486 /*
  487  * MPSAFE
  488  */
  489 int
  490 ogetrlimit(td, uap)
  491         struct thread *td;
  492         register struct ogetrlimit_args *uap;
  493 {
  494         struct orlimit olim;
  495         struct rlimit rl;
  496         struct proc *p;
  497         int error;
  498 
  499         if (uap->which >= RLIM_NLIMITS)
  500                 return (EINVAL);
  501         p = td->td_proc;
  502         PROC_LOCK(p);
  503         lim_rlimit(p, uap->which, &rl);
  504         PROC_UNLOCK(p);
  505 
  506         /*
  507          * XXX would be more correct to convert only RLIM_INFINITY to the
  508          * old RLIM_INFINITY and fail with EOVERFLOW for other larger
  509          * values.  Most 64->32 and 32->16 conversions, including not
  510          * unimportant ones of uids are even more broken than what we
  511          * do here (they blindly truncate).  We don't do this correctly
  512          * here since we have little experience with EOVERFLOW yet.
  513          * Elsewhere, getuid() can't fail...
  514          */
  515         olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
  516         olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
  517         error = copyout(&olim, uap->rlp, sizeof(olim));
  518         return (error);
  519 }
  520 #endif /* COMPAT_43 */
  521 
  522 #ifndef _SYS_SYSPROTO_H_
  523 struct __setrlimit_args {
  524         u_int   which;
  525         struct  rlimit *rlp;
  526 };
  527 #endif
  528 /*
  529  * MPSAFE
  530  */
  531 int
  532 setrlimit(td, uap)
  533         struct thread *td;
  534         register struct __setrlimit_args *uap;
  535 {
  536         struct rlimit alim;
  537         int error;
  538 
  539         if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
  540                 return (error);
  541         error = kern_setrlimit(td, uap->which, &alim);
  542         return (error);
  543 }
  544 
  545 int
  546 kern_setrlimit(td, which, limp)
  547         struct thread *td;
  548         u_int which;
  549         struct rlimit *limp;
  550 {
  551         struct plimit *newlim, *oldlim;
  552         struct proc *p;
  553         register struct rlimit *alimp;
  554         rlim_t oldssiz;
  555         int error;
  556 
  557         if (which >= RLIM_NLIMITS)
  558                 return (EINVAL);
  559 
  560         /*
  561          * Preserve historical bugs by treating negative limits as unsigned.
  562          */
  563         if (limp->rlim_cur < 0)
  564                 limp->rlim_cur = RLIM_INFINITY;
  565         if (limp->rlim_max < 0)
  566                 limp->rlim_max = RLIM_INFINITY;
  567 
  568         oldssiz = 0;
  569         p = td->td_proc;
  570         newlim = lim_alloc();
  571         PROC_LOCK(p);
  572         oldlim = p->p_limit;
  573         alimp = &oldlim->pl_rlimit[which];
  574         if (limp->rlim_cur > alimp->rlim_max ||
  575             limp->rlim_max > alimp->rlim_max)
  576                 if ((error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL))) {
  577                         PROC_UNLOCK(p);
  578                         lim_free(newlim);
  579                         return (error);
  580         }
  581         if (limp->rlim_cur > limp->rlim_max)
  582                 limp->rlim_cur = limp->rlim_max;
  583         lim_copy(newlim, oldlim);
  584         alimp = &newlim->pl_rlimit[which];
  585 
  586         switch (which) {
  587 
  588         case RLIMIT_CPU:
  589                 mtx_lock_spin(&sched_lock);
  590                 p->p_cpulimit = limp->rlim_cur;
  591                 mtx_unlock_spin(&sched_lock);
  592                 break;
  593         case RLIMIT_DATA:
  594                 if (limp->rlim_cur > maxdsiz)
  595                         limp->rlim_cur = maxdsiz;
  596                 if (limp->rlim_max > maxdsiz)
  597                         limp->rlim_max = maxdsiz;
  598                 break;
  599 
  600         case RLIMIT_STACK:
  601                 if (limp->rlim_cur > maxssiz)
  602                         limp->rlim_cur = maxssiz;
  603                 if (limp->rlim_max > maxssiz)
  604                         limp->rlim_max = maxssiz;
  605                 oldssiz = alimp->rlim_cur;
  606                 break;
  607 
  608         case RLIMIT_NOFILE:
  609                 if (limp->rlim_cur > maxfilesperproc)
  610                         limp->rlim_cur = maxfilesperproc;
  611                 if (limp->rlim_max > maxfilesperproc)
  612                         limp->rlim_max = maxfilesperproc;
  613                 break;
  614 
  615         case RLIMIT_NPROC:
  616                 if (limp->rlim_cur > maxprocperuid)
  617                         limp->rlim_cur = maxprocperuid;
  618                 if (limp->rlim_max > maxprocperuid)
  619                         limp->rlim_max = maxprocperuid;
  620                 if (limp->rlim_cur < 1)
  621                         limp->rlim_cur = 1;
  622                 if (limp->rlim_max < 1)
  623                         limp->rlim_max = 1;
  624                 break;
  625         }
  626         *alimp = *limp;
  627         p->p_limit = newlim;
  628         PROC_UNLOCK(p);
  629         lim_free(oldlim);
  630 
  631         if (which == RLIMIT_STACK) {
  632                 /*
  633                  * Stack is allocated to the max at exec time with only
  634                  * "rlim_cur" bytes accessible.  If stack limit is going
  635                  * up make more accessible, if going down make inaccessible.
  636                  */
  637                 if (limp->rlim_cur != oldssiz) {
  638                         vm_offset_t addr;
  639                         vm_size_t size;
  640                         vm_prot_t prot;
  641 
  642                         mtx_lock(&Giant);
  643                         if (limp->rlim_cur > oldssiz) {
  644                                 prot = p->p_sysent->sv_stackprot;
  645                                 size = limp->rlim_cur - oldssiz;
  646                                 addr = p->p_sysent->sv_usrstack -
  647                                     limp->rlim_cur;
  648                         } else {
  649                                 prot = VM_PROT_NONE;
  650                                 size = oldssiz - limp->rlim_cur;
  651                                 addr = p->p_sysent->sv_usrstack -
  652                                     oldssiz;
  653                         }
  654                         addr = trunc_page(addr);
  655                         size = round_page(size);
  656                         (void) vm_map_protect(&p->p_vmspace->vm_map,
  657                                               addr, addr+size, prot, FALSE);
  658                         mtx_unlock(&Giant);
  659                 }
  660         }
  661         return (0);
  662 }
  663 
  664 #ifndef _SYS_SYSPROTO_H_
  665 struct __getrlimit_args {
  666         u_int   which;
  667         struct  rlimit *rlp;
  668 };
  669 #endif
  670 /*
  671  * MPSAFE
  672  */
  673 /* ARGSUSED */
  674 int
  675 getrlimit(td, uap)
  676         struct thread *td;
  677         register struct __getrlimit_args *uap;
  678 {
  679         struct rlimit rlim;
  680         struct proc *p;
  681         int error;
  682 
  683         if (uap->which >= RLIM_NLIMITS)
  684                 return (EINVAL);
  685         p = td->td_proc;
  686         PROC_LOCK(p);
  687         lim_rlimit(p, uap->which, &rlim);
  688         PROC_UNLOCK(p);
  689         error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
  690         return(error);
  691 }
  692 
  693 /*
  694  * Transform the running time and tick information in proc p into user,
  695  * system, and interrupt time usage.
  696  */
  697 void
  698 calcru(p, up, sp, ip)
  699         struct proc *p;
  700         struct timeval *up;
  701         struct timeval *sp;
  702         struct timeval *ip;
  703 {
  704         struct bintime bt, rt;
  705         struct timeval tv;
  706         struct thread *td;
  707         /* {user, system, interrupt, total} {ticks, usec}; previous tu: */
  708         u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu;
  709         int problemcase;
  710 
  711         mtx_assert(&sched_lock, MA_OWNED);
  712         /* XXX: why spl-protect ?  worst case is an off-by-one report */
  713 
  714         ut = p->p_uticks;
  715         st = p->p_sticks;
  716         it = p->p_iticks;
  717 
  718         tt = ut + st + it;
  719         if (tt == 0) {
  720                 st = 1;
  721                 tt = 1;
  722         }
  723         rt = p->p_runtime;
  724         problemcase = 0;
  725         FOREACH_THREAD_IN_PROC(p, td) {
  726                 /*
  727                  * Adjust for the current time slice.  This is actually fairly
  728                  * important since the error here is on the order of a time
  729                  * quantum, which is much greater than the sampling error.
  730                  */
  731                 if (td == curthread) {
  732                         binuptime(&bt);
  733                         bintime_sub(&bt, PCPU_PTR(switchtime));
  734                         bintime_add(&rt, &bt);
  735                 } else if (TD_IS_RUNNING(td)) {
  736                         /*
  737                          * XXX: this case should add the difference between
  738                          * the current time and the switch time as above,
  739                          * but the switch time is inaccessible, so we can't
  740                          * do the adjustment and will end up with a wrong
  741                          * runtime.  A previous call with a different
  742                          * curthread may have obtained a (right or wrong)
  743                          * runtime that is in advance of ours.  Just set a
  744                          * flag to avoid warning about this known problem.
  745                          */
  746                         problemcase = 1;
  747                 }
  748         }
  749         bintime2timeval(&rt, &tv);
  750         tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
  751         ptu = p->p_uu + p->p_su + p->p_iu;
  752         if (tu < ptu) {
  753                 if (!problemcase)
  754                         printf(
  755 "calcru: runtime went backwards from %ju usec to %ju usec for pid %d (%s)\n",
  756                             (uintmax_t)ptu, (uintmax_t)tu, p->p_pid, p->p_comm);
  757                 tu = ptu;
  758         }
  759         if ((int64_t)tu < 0) {
  760                 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
  761                     (intmax_t)tu, p->p_pid, p->p_comm);
  762                 tu = ptu;
  763         }
  764 
  765         /* Subdivide tu. */
  766         uu = (tu * ut) / tt;
  767         su = (tu * st) / tt;
  768         iu = tu - uu - su;
  769 
  770         /* Enforce monotonicity. */
  771         if (uu < p->p_uu || su < p->p_su || iu < p->p_iu) {
  772                 if (uu < p->p_uu)
  773                         uu = p->p_uu;
  774                 else if (uu + p->p_su + p->p_iu > tu)
  775                         uu = tu - p->p_su - p->p_iu;
  776                 if (st == 0)
  777                         su = p->p_su;
  778                 else {
  779                         su = ((tu - uu) * st) / (st + it);
  780                         if (su < p->p_su)
  781                                 su = p->p_su;
  782                         else if (uu + su + p->p_iu > tu)
  783                                 su = tu - uu - p->p_iu;
  784                 }
  785                 KASSERT(uu + su + p->p_iu <= tu,
  786                     ("calcru: monotonisation botch 1"));
  787                 iu = tu - uu - su;
  788                 KASSERT(iu >= p->p_iu,
  789                     ("calcru: monotonisation botch 2"));
  790         }
  791         p->p_uu = uu;
  792         p->p_su = su;
  793         p->p_iu = iu;
  794 
  795         up->tv_sec = uu / 1000000;
  796         up->tv_usec = uu % 1000000;
  797         sp->tv_sec = su / 1000000;
  798         sp->tv_usec = su % 1000000;
  799         if (ip != NULL) {
  800                 ip->tv_sec = iu / 1000000;
  801                 ip->tv_usec = iu % 1000000;
  802         }
  803 }
  804 
  805 #ifndef _SYS_SYSPROTO_H_
  806 struct getrusage_args {
  807         int     who;
  808         struct  rusage *rusage;
  809 };
  810 #endif
  811 /*
  812  * MPSAFE
  813  */
  814 /* ARGSUSED */
  815 int
  816 getrusage(td, uap)
  817         register struct thread *td;
  818         register struct getrusage_args *uap;
  819 {
  820         struct rusage ru;
  821         struct proc *p;
  822 
  823         p = td->td_proc;
  824         switch (uap->who) {
  825 
  826         case RUSAGE_SELF:
  827                 mtx_lock(&Giant);
  828                 mtx_lock_spin(&sched_lock);
  829                 calcru(p, &p->p_stats->p_ru.ru_utime, &p->p_stats->p_ru.ru_stime,
  830                     NULL);
  831                 mtx_unlock_spin(&sched_lock);
  832                 ru = p->p_stats->p_ru;
  833                 mtx_unlock(&Giant);
  834                 break;
  835 
  836         case RUSAGE_CHILDREN:
  837                 mtx_lock(&Giant);
  838                 ru = p->p_stats->p_cru;
  839                 mtx_unlock(&Giant);
  840                 break;
  841 
  842         default:
  843                 return (EINVAL);
  844                 break;
  845         }
  846         return (copyout(&ru, uap->rusage, sizeof(struct rusage)));
  847 }
  848 
  849 void
  850 ruadd(ru, ru2)
  851         register struct rusage *ru, *ru2;
  852 {
  853         register long *ip, *ip2;
  854         register int i;
  855 
  856         timevaladd(&ru->ru_utime, &ru2->ru_utime);
  857         timevaladd(&ru->ru_stime, &ru2->ru_stime);
  858         if (ru->ru_maxrss < ru2->ru_maxrss)
  859                 ru->ru_maxrss = ru2->ru_maxrss;
  860         ip = &ru->ru_first; ip2 = &ru2->ru_first;
  861         for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
  862                 *ip++ += *ip2++;
  863 }
  864 
  865 /*
  866  * Allocate a new resource limits structure and initialize its
  867  * reference count and mutex pointer.
  868  */
  869 struct plimit *
  870 lim_alloc()
  871 {
  872         struct plimit *limp;
  873 
  874         limp = (struct plimit *)malloc(sizeof(struct plimit), M_PLIMIT,
  875             M_WAITOK);
  876         limp->pl_refcnt = 1;
  877         limp->pl_mtx = mtx_pool_alloc(mtxpool_sleep);
  878         return (limp);
  879 }
  880 
  881 struct plimit *
  882 lim_hold(limp)
  883         struct plimit *limp;
  884 {
  885 
  886         LIM_LOCK(limp);
  887         limp->pl_refcnt++;
  888         LIM_UNLOCK(limp);
  889         return (limp);
  890 }
  891 
  892 void
  893 lim_free(limp)
  894         struct plimit *limp;
  895 {
  896 
  897         LIM_LOCK(limp);
  898         KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
  899         if (--limp->pl_refcnt == 0) {
  900                 LIM_UNLOCK(limp);
  901                 free((void *)limp, M_PLIMIT);
  902                 return;
  903         }
  904         LIM_UNLOCK(limp);
  905 }
  906 
  907 /*
  908  * Make a copy of the plimit structure.
  909  * We share these structures copy-on-write after fork.
  910  */
  911 void
  912 lim_copy(dst, src)
  913         struct plimit *dst, *src;
  914 {
  915 
  916         KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
  917         bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
  918 }
  919 
  920 /*
  921  * Return the hard limit for a particular system resource.  The
  922  * which parameter specifies the index into the rlimit array.
  923  */
  924 rlim_t
  925 lim_max(struct proc *p, int which)
  926 {
  927         struct rlimit rl;
  928 
  929         lim_rlimit(p, which, &rl);
  930         return (rl.rlim_max);
  931 }
  932 
  933 /*
  934  * Return the current (soft) limit for a particular system resource.
  935  * The which parameter which specifies the index into the rlimit array
  936  */
  937 rlim_t
  938 lim_cur(struct proc *p, int which)
  939 {
  940         struct rlimit rl;
  941 
  942         lim_rlimit(p, which, &rl);
  943         return (rl.rlim_cur);
  944 }
  945 
  946 /*
  947  * Return a copy of the entire rlimit structure for the system limit
  948  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
  949  */
  950 void
  951 lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
  952 {
  953 
  954         PROC_LOCK_ASSERT(p, MA_OWNED);
  955         KASSERT(which >= 0 && which < RLIM_NLIMITS,
  956             ("request for invalid resource limit"));
  957         *rlp = p->p_limit->pl_rlimit[which];
  958 }
  959 
  960 /*
  961  * Find the uidinfo structure for a uid.  This structure is used to
  962  * track the total resource consumption (process count, socket buffer
  963  * size, etc.) for the uid and impose limits.
  964  */
  965 void
  966 uihashinit()
  967 {
  968 
  969         uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
  970         mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF);
  971 }
  972 
  973 /*
  974  * Look up a uidinfo struct for the parameter uid.
  975  * uihashtbl_mtx must be locked.
  976  */
  977 static struct uidinfo *
  978 uilookup(uid)
  979         uid_t uid;
  980 {
  981         struct uihashhead *uipp;
  982         struct uidinfo *uip;
  983 
  984         mtx_assert(&uihashtbl_mtx, MA_OWNED);
  985         uipp = UIHASH(uid);
  986         LIST_FOREACH(uip, uipp, ui_hash)
  987                 if (uip->ui_uid == uid)
  988                         break;
  989 
  990         return (uip);
  991 }
  992 
  993 /*
  994  * Find or allocate a struct uidinfo for a particular uid.
  995  * Increase refcount on uidinfo struct returned.
  996  * uifree() should be called on a struct uidinfo when released.
  997  */
  998 struct uidinfo *
  999 uifind(uid)
 1000         uid_t uid;
 1001 {
 1002         struct uidinfo *old_uip, *uip;
 1003 
 1004         mtx_lock(&uihashtbl_mtx);
 1005         uip = uilookup(uid);
 1006         if (uip == NULL) {
 1007                 mtx_unlock(&uihashtbl_mtx);
 1008                 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
 1009                 mtx_lock(&uihashtbl_mtx);
 1010                 /*
 1011                  * There's a chance someone created our uidinfo while we
 1012                  * were in malloc and not holding the lock, so we have to
 1013                  * make sure we don't insert a duplicate uidinfo.
 1014                  */
 1015                 if ((old_uip = uilookup(uid)) != NULL) {
 1016                         /* Someone else beat us to it. */
 1017                         free(uip, M_UIDINFO);
 1018                         uip = old_uip;
 1019                 } else {
 1020                         uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep);
 1021                         uip->ui_uid = uid;
 1022                         LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
 1023                 }
 1024         }
 1025         uihold(uip);
 1026         mtx_unlock(&uihashtbl_mtx);
 1027         return (uip);
 1028 }
 1029 
 1030 /*
 1031  * Place another refcount on a uidinfo struct.
 1032  */
 1033 void
 1034 uihold(uip)
 1035         struct uidinfo *uip;
 1036 {
 1037 
 1038         UIDINFO_LOCK(uip);
 1039         uip->ui_ref++;
 1040         UIDINFO_UNLOCK(uip);
 1041 }
 1042 
 1043 /*-
 1044  * Since uidinfo structs have a long lifetime, we use an
 1045  * opportunistic refcounting scheme to avoid locking the lookup hash
 1046  * for each release.
 1047  *
 1048  * If the refcount hits 0, we need to free the structure,
 1049  * which means we need to lock the hash.
 1050  * Optimal case:
 1051  *   After locking the struct and lowering the refcount, if we find
 1052  *   that we don't need to free, simply unlock and return.
 1053  * Suboptimal case:
 1054  *   If refcount lowering results in need to free, bump the count
 1055  *   back up, loose the lock and aquire the locks in the proper
 1056  *   order to try again.
 1057  */
 1058 void
 1059 uifree(uip)
 1060         struct uidinfo *uip;
 1061 {
 1062 
 1063         /* Prepare for optimal case. */
 1064         UIDINFO_LOCK(uip);
 1065 
 1066         if (--uip->ui_ref != 0) {
 1067                 UIDINFO_UNLOCK(uip);
 1068                 return;
 1069         }
 1070 
 1071         /* Prepare for suboptimal case. */
 1072         uip->ui_ref++;
 1073         UIDINFO_UNLOCK(uip);
 1074         mtx_lock(&uihashtbl_mtx);
 1075         UIDINFO_LOCK(uip);
 1076 
 1077         /*
 1078          * We must subtract one from the count again because we backed out
 1079          * our initial subtraction before dropping the lock.
 1080          * Since another thread may have added a reference after we dropped the
 1081          * initial lock we have to test for zero again.
 1082          */
 1083         if (--uip->ui_ref == 0) {
 1084                 LIST_REMOVE(uip, ui_hash);
 1085                 mtx_unlock(&uihashtbl_mtx);
 1086                 if (uip->ui_sbsize != 0)
 1087                         printf("freeing uidinfo: uid = %d, sbsize = %jd\n",
 1088                             uip->ui_uid, (intmax_t)uip->ui_sbsize);
 1089                 if (uip->ui_proccnt != 0)
 1090                         printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
 1091                             uip->ui_uid, uip->ui_proccnt);
 1092                 UIDINFO_UNLOCK(uip);
 1093                 FREE(uip, M_UIDINFO);
 1094                 return;
 1095         }
 1096 
 1097         mtx_unlock(&uihashtbl_mtx);
 1098         UIDINFO_UNLOCK(uip);
 1099 }
 1100 
 1101 /*
 1102  * Change the count associated with number of processes
 1103  * a given user is using.  When 'max' is 0, don't enforce a limit
 1104  */
 1105 int
 1106 chgproccnt(uip, diff, max)
 1107         struct  uidinfo *uip;
 1108         int     diff;
 1109         int     max;
 1110 {
 1111 
 1112         UIDINFO_LOCK(uip);
 1113         /* Don't allow them to exceed max, but allow subtraction. */
 1114         if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
 1115                 UIDINFO_UNLOCK(uip);
 1116                 return (0);
 1117         }
 1118         uip->ui_proccnt += diff;
 1119         if (uip->ui_proccnt < 0)
 1120                 printf("negative proccnt for uid = %d\n", uip->ui_uid);
 1121         UIDINFO_UNLOCK(uip);
 1122         return (1);
 1123 }
 1124 
 1125 /*
 1126  * Change the total socket buffer size a user has used.
 1127  */
 1128 int
 1129 chgsbsize(uip, hiwat, to, max)
 1130         struct  uidinfo *uip;
 1131         u_int  *hiwat;
 1132         u_int   to;
 1133         rlim_t  max;
 1134 {
 1135         rlim_t new;
 1136 
 1137         UIDINFO_LOCK(uip);
 1138         new = uip->ui_sbsize + to - *hiwat;
 1139         /* Don't allow them to exceed max, but allow subtraction */
 1140         if (to > *hiwat && new > max) {
 1141                 UIDINFO_UNLOCK(uip);
 1142                 return (0);
 1143         }
 1144         uip->ui_sbsize = new;
 1145         UIDINFO_UNLOCK(uip);
 1146         *hiwat = to;
 1147         if (new < 0)
 1148                 printf("negative sbsize for uid = %d\n", uip->ui_uid);
 1149         return (1);
 1150 }

Cache object: 825d63e02523fd27bff19d698c0bbe4f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.