The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_resource.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_resource.c     8.5 (Berkeley) 1/21/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: src/sys/kern/kern_resource.c,v 1.143.2.3 2005/04/21 22:19:22 ps Exp $");
   39 
   40 #include "opt_compat.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/sysproto.h>
   45 #include <sys/file.h>
   46 #include <sys/kernel.h>
   47 #include <sys/lock.h>
   48 #include <sys/malloc.h>
   49 #include <sys/mutex.h>
   50 #include <sys/proc.h>
   51 #include <sys/resourcevar.h>
   52 #include <sys/sched.h>
   53 #include <sys/sx.h>
   54 #include <sys/syscallsubr.h>
   55 #include <sys/sysent.h>
   56 #include <sys/time.h>
   57 
   58 #include <vm/vm.h>
   59 #include <vm/vm_param.h>
   60 #include <vm/pmap.h>
   61 #include <vm/vm_map.h>
   62 
   63 static int donice(struct thread *td, struct proc *chgp, int n);
   64 
   65 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
   66 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
   67 #define UIHASH(uid)     (&uihashtbl[(uid) & uihash])
   68 static struct mtx uihashtbl_mtx;
   69 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
   70 static u_long uihash;           /* size of hash table - 1 */
   71 
   72 static struct uidinfo   *uilookup(uid_t uid);
   73 
   74 /*
   75  * Resource controls and accounting.
   76  */
   77 
   78 #ifndef _SYS_SYSPROTO_H_
   79 struct getpriority_args {
   80         int     which;
   81         int     who;
   82 };
   83 #endif
   84 /*
   85  * MPSAFE
   86  */
   87 int
   88 getpriority(td, uap)
   89         struct thread *td;
   90         register struct getpriority_args *uap;
   91 {
   92         struct proc *p;
   93         int error, low;
   94 
   95         error = 0;
   96         low = PRIO_MAX + 1;
   97         switch (uap->which) {
   98 
   99         case PRIO_PROCESS:
  100                 if (uap->who == 0)
  101                         low = td->td_proc->p_nice;
  102                 else {
  103                         p = pfind(uap->who);
  104                         if (p == NULL)
  105                                 break;
  106                         if (p_cansee(td, p) == 0) {
  107                                 low = p->p_nice;
  108                         }
  109                         PROC_UNLOCK(p);
  110                 }
  111                 break;
  112 
  113         case PRIO_PGRP: {
  114                 register struct pgrp *pg;
  115 
  116                 sx_slock(&proctree_lock);
  117                 if (uap->who == 0) {
  118                         pg = td->td_proc->p_pgrp;
  119                         PGRP_LOCK(pg);
  120                 } else {
  121                         pg = pgfind(uap->who);
  122                         if (pg == NULL) {
  123                                 sx_sunlock(&proctree_lock);
  124                                 break;
  125                         }
  126                 }
  127                 sx_sunlock(&proctree_lock);
  128                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  129                         PROC_LOCK(p);
  130                         if (!p_cansee(td, p)) {
  131                                 if (p->p_nice < low)
  132                                         low = p->p_nice;
  133                         }
  134                         PROC_UNLOCK(p);
  135                 }
  136                 PGRP_UNLOCK(pg);
  137                 break;
  138         }
  139 
  140         case PRIO_USER:
  141                 if (uap->who == 0)
  142                         uap->who = td->td_ucred->cr_uid;
  143                 sx_slock(&allproc_lock);
  144                 LIST_FOREACH(p, &allproc, p_list) {
  145                         PROC_LOCK(p);
  146                         if (!p_cansee(td, p) &&
  147                             p->p_ucred->cr_uid == uap->who) {
  148                                 if (p->p_nice < low)
  149                                         low = p->p_nice;
  150                         }
  151                         PROC_UNLOCK(p);
  152                 }
  153                 sx_sunlock(&allproc_lock);
  154                 break;
  155 
  156         default:
  157                 error = EINVAL;
  158                 break;
  159         }
  160         if (low == PRIO_MAX + 1 && error == 0)
  161                 error = ESRCH;
  162         td->td_retval[0] = low;
  163         return (error);
  164 }
  165 
  166 #ifndef _SYS_SYSPROTO_H_
  167 struct setpriority_args {
  168         int     which;
  169         int     who;
  170         int     prio;
  171 };
  172 #endif
  173 /*
  174  * MPSAFE
  175  */
  176 int
  177 setpriority(td, uap)
  178         struct thread *td;
  179         register struct setpriority_args *uap;
  180 {
  181         struct proc *curp;
  182         register struct proc *p;
  183         int found = 0, error = 0;
  184 
  185         curp = td->td_proc;
  186         switch (uap->which) {
  187         case PRIO_PROCESS:
  188                 if (uap->who == 0) {
  189                         PROC_LOCK(curp);
  190                         error = donice(td, curp, uap->prio);
  191                         PROC_UNLOCK(curp);
  192                 } else {
  193                         p = pfind(uap->who);
  194                         if (p == 0)
  195                                 break;
  196                         if (p_cansee(td, p) == 0)
  197                                 error = donice(td, p, uap->prio);
  198                         PROC_UNLOCK(p);
  199                 }
  200                 found++;
  201                 break;
  202 
  203         case PRIO_PGRP: {
  204                 register struct pgrp *pg;
  205 
  206                 sx_slock(&proctree_lock);
  207                 if (uap->who == 0) {
  208                         pg = curp->p_pgrp;
  209                         PGRP_LOCK(pg);
  210                 } else {
  211                         pg = pgfind(uap->who);
  212                         if (pg == NULL) {
  213                                 sx_sunlock(&proctree_lock);
  214                                 break;
  215                         }
  216                 }
  217                 sx_sunlock(&proctree_lock);
  218                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  219                         PROC_LOCK(p);
  220                         if (!p_cansee(td, p)) {
  221                                 error = donice(td, p, uap->prio);
  222                                 found++;
  223                         }
  224                         PROC_UNLOCK(p);
  225                 }
  226                 PGRP_UNLOCK(pg);
  227                 break;
  228         }
  229 
  230         case PRIO_USER:
  231                 if (uap->who == 0)
  232                         uap->who = td->td_ucred->cr_uid;
  233                 sx_slock(&allproc_lock);
  234                 FOREACH_PROC_IN_SYSTEM(p) {
  235                         PROC_LOCK(p);
  236                         if (p->p_ucred->cr_uid == uap->who &&
  237                             !p_cansee(td, p)) {
  238                                 error = donice(td, p, uap->prio);
  239                                 found++;
  240                         }
  241                         PROC_UNLOCK(p);
  242                 }
  243                 sx_sunlock(&allproc_lock);
  244                 break;
  245 
  246         default:
  247                 error = EINVAL;
  248                 break;
  249         }
  250         if (found == 0 && error == 0)
  251                 error = ESRCH;
  252         return (error);
  253 }
  254 
  255 /* 
  256  * Set "nice" for a (whole) process.
  257  */
  258 static int
  259 donice(struct thread *td, struct proc *p, int n)
  260 {
  261         int error;
  262 
  263         PROC_LOCK_ASSERT(p, MA_OWNED);
  264         if ((error = p_cansched(td, p)))
  265                 return (error);
  266         if (n > PRIO_MAX)
  267                 n = PRIO_MAX;
  268         if (n < PRIO_MIN)
  269                 n = PRIO_MIN;
  270         if (n <  p->p_nice && suser(td) != 0)
  271                 return (EACCES);
  272         mtx_lock_spin(&sched_lock);
  273         sched_nice(p, n);
  274         mtx_unlock_spin(&sched_lock);
  275         return (0);
  276 }
  277 
  278 /*
  279  * Set realtime priority
  280  *
  281  * MPSAFE
  282  */
  283 #ifndef _SYS_SYSPROTO_H_
  284 struct rtprio_args {
  285         int             function;
  286         pid_t           pid;
  287         struct rtprio   *rtp;
  288 };
  289 #endif
  290 
  291 int
  292 rtprio(td, uap)
  293         struct thread *td;              /* curthread */
  294         register struct rtprio_args *uap;
  295 {
  296         struct proc *curp;
  297         struct proc *p;
  298         struct ksegrp *kg;
  299         struct rtprio rtp;
  300         int cierror, error;
  301 
  302         /* Perform copyin before acquiring locks if needed. */
  303         if (uap->function == RTP_SET)
  304                 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
  305         else
  306                 cierror = 0;
  307 
  308         curp = td->td_proc;
  309         if (uap->pid == 0) {
  310                 p = curp;
  311                 PROC_LOCK(p);
  312         } else {
  313                 p = pfind(uap->pid);
  314                 if (p == NULL)
  315                         return (ESRCH);
  316         }
  317 
  318         switch (uap->function) {
  319         case RTP_LOOKUP:
  320                 if ((error = p_cansee(td, p)))
  321                         break;
  322                 mtx_lock_spin(&sched_lock);
  323                 /*
  324                  * Return OUR priority if no pid specified,
  325                  * or if one is, report the highest priority
  326                  * in the process. There isn't much more you can do as 
  327                  * there is only room to return a single priority.
  328                  * XXXKSE  Maybe need a new interface to report 
  329                  * priorities of multiple system scope threads.
  330                  * Note: specifying our own pid is not the same
  331                  * as leaving it zero.
  332                  */
  333                 if (uap->pid == 0) {
  334                         pri_to_rtp(td->td_ksegrp, &rtp);
  335                 } else {
  336                         struct rtprio rtp2;
  337 
  338                         rtp.type = RTP_PRIO_IDLE;
  339                         rtp.prio = RTP_PRIO_MAX;
  340                         FOREACH_KSEGRP_IN_PROC(p, kg) {
  341                                 pri_to_rtp(kg, &rtp2);
  342                                 if ((rtp2.type <  rtp.type) ||
  343                                     ((rtp2.type == rtp.type) &&
  344                                      (rtp2.prio < rtp.prio))) {
  345                                         rtp.type = rtp2.type;
  346                                         rtp.prio = rtp2.prio;
  347                                 }
  348                         }
  349                 }
  350                 mtx_unlock_spin(&sched_lock);
  351                 PROC_UNLOCK(p);
  352                 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
  353         case RTP_SET:
  354                 if ((error = p_cansched(td, p)) || (error = cierror))
  355                         break;
  356                 /* disallow setting rtprio in most cases if not superuser */
  357                 if (suser(td) != 0) {
  358                         /* can't set someone else's */
  359                         if (uap->pid) {
  360                                 error = EPERM;
  361                                 break;
  362                         }
  363                         /* can't set realtime priority */
  364 /*
  365  * Realtime priority has to be restricted for reasons which should be
  366  * obvious. However, for idle priority, there is a potential for
  367  * system deadlock if an idleprio process gains a lock on a resource
  368  * that other processes need (and the idleprio process can't run
  369  * due to a CPU-bound normal process). Fix me! XXX
  370  */
  371 #if 0
  372                         if (RTP_PRIO_IS_REALTIME(rtp.type))
  373 #endif
  374                         if (rtp.type != RTP_PRIO_NORMAL) {
  375                                 error = EPERM;
  376                                 break;
  377                         }
  378                 }
  379                 mtx_lock_spin(&sched_lock);
  380                 /*
  381                  * If we are setting our own priority, set just our
  382                  * KSEGRP but if we are doing another process,
  383                  * do all the groups on that process. If we
  384                  * specify our own pid we do the latter.
  385                  */
  386                 if (uap->pid == 0) {
  387                         error = rtp_to_pri(&rtp, td->td_ksegrp);
  388                 } else {
  389                         FOREACH_KSEGRP_IN_PROC(p, kg) {
  390                                 if ((error = rtp_to_pri(&rtp, kg)) != 0) {
  391                                         break;
  392                                 }
  393                         }
  394                 }
  395                 mtx_unlock_spin(&sched_lock);
  396                 break;
  397         default:
  398                 error = EINVAL;
  399                 break;
  400         }
  401         PROC_UNLOCK(p);
  402         return (error);
  403 }
  404 
  405 int
  406 rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg)
  407 {
  408 
  409         mtx_assert(&sched_lock, MA_OWNED);
  410         if (rtp->prio > RTP_PRIO_MAX)
  411                 return (EINVAL);
  412         switch (RTP_PRIO_BASE(rtp->type)) {
  413         case RTP_PRIO_REALTIME:
  414                 kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio;
  415                 break;
  416         case RTP_PRIO_NORMAL:
  417                 kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio;
  418                 break;
  419         case RTP_PRIO_IDLE:
  420                 kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio;
  421                 break;
  422         default:
  423                 return (EINVAL);
  424         }
  425         sched_class(kg, rtp->type);
  426         if (curthread->td_ksegrp == kg) {
  427                 curthread->td_base_pri = kg->kg_user_pri;
  428                 sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */
  429         }
  430         return (0);
  431 }
  432 
  433 void
  434 pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp)
  435 {
  436 
  437         mtx_assert(&sched_lock, MA_OWNED);
  438         switch (PRI_BASE(kg->kg_pri_class)) {
  439         case PRI_REALTIME:
  440                 rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME;
  441                 break;
  442         case PRI_TIMESHARE:
  443                 rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE;
  444                 break;
  445         case PRI_IDLE:
  446                 rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE;
  447                 break;
  448         default:
  449                 break;
  450         }
  451         rtp->type = kg->kg_pri_class;
  452 }
  453 
  454 #if defined(COMPAT_43)
  455 #ifndef _SYS_SYSPROTO_H_
  456 struct osetrlimit_args {
  457         u_int   which;
  458         struct  orlimit *rlp;
  459 };
  460 #endif
  461 /*
  462  * MPSAFE
  463  */
  464 int
  465 osetrlimit(td, uap)
  466         struct thread *td;
  467         register struct osetrlimit_args *uap;
  468 {
  469         struct orlimit olim;
  470         struct rlimit lim;
  471         int error;
  472 
  473         if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
  474                 return (error);
  475         lim.rlim_cur = olim.rlim_cur;
  476         lim.rlim_max = olim.rlim_max;
  477         error = kern_setrlimit(td, uap->which, &lim);
  478         return (error);
  479 }
  480 
  481 #ifndef _SYS_SYSPROTO_H_
  482 struct ogetrlimit_args {
  483         u_int   which;
  484         struct  orlimit *rlp;
  485 };
  486 #endif
  487 /*
  488  * MPSAFE
  489  */
  490 int
  491 ogetrlimit(td, uap)
  492         struct thread *td;
  493         register struct ogetrlimit_args *uap;
  494 {
  495         struct orlimit olim;
  496         struct rlimit rl;
  497         struct proc *p;
  498         int error;
  499 
  500         if (uap->which >= RLIM_NLIMITS)
  501                 return (EINVAL);
  502         p = td->td_proc;
  503         PROC_LOCK(p);
  504         lim_rlimit(p, uap->which, &rl);
  505         PROC_UNLOCK(p);
  506 
  507         /*
  508          * XXX would be more correct to convert only RLIM_INFINITY to the
  509          * old RLIM_INFINITY and fail with EOVERFLOW for other larger
  510          * values.  Most 64->32 and 32->16 conversions, including not
  511          * unimportant ones of uids are even more broken than what we
  512          * do here (they blindly truncate).  We don't do this correctly
  513          * here since we have little experience with EOVERFLOW yet.
  514          * Elsewhere, getuid() can't fail...
  515          */
  516         olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
  517         olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
  518         error = copyout(&olim, uap->rlp, sizeof(olim));
  519         return (error);
  520 }
  521 #endif /* COMPAT_43 */
  522 
  523 #ifndef _SYS_SYSPROTO_H_
  524 struct __setrlimit_args {
  525         u_int   which;
  526         struct  rlimit *rlp;
  527 };
  528 #endif
  529 /*
  530  * MPSAFE
  531  */
  532 int
  533 setrlimit(td, uap)
  534         struct thread *td;
  535         register struct __setrlimit_args *uap;
  536 {
  537         struct rlimit alim;
  538         int error;
  539 
  540         if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
  541                 return (error);
  542         error = kern_setrlimit(td, uap->which, &alim);
  543         return (error);
  544 }
  545 
  546 int
  547 kern_setrlimit(td, which, limp)
  548         struct thread *td;
  549         u_int which;
  550         struct rlimit *limp;
  551 {
  552         struct plimit *newlim, *oldlim;
  553         struct proc *p;
  554         register struct rlimit *alimp;
  555         rlim_t oldssiz;
  556         int error;
  557 
  558         if (which >= RLIM_NLIMITS)
  559                 return (EINVAL);
  560 
  561         /*
  562          * Preserve historical bugs by treating negative limits as unsigned.
  563          */
  564         if (limp->rlim_cur < 0)
  565                 limp->rlim_cur = RLIM_INFINITY;
  566         if (limp->rlim_max < 0)
  567                 limp->rlim_max = RLIM_INFINITY;
  568 
  569         oldssiz = 0;
  570         p = td->td_proc;
  571         newlim = lim_alloc();
  572         PROC_LOCK(p);
  573         oldlim = p->p_limit;
  574         alimp = &oldlim->pl_rlimit[which];
  575         if (limp->rlim_cur > alimp->rlim_max ||
  576             limp->rlim_max > alimp->rlim_max)
  577                 if ((error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL))) {
  578                         PROC_UNLOCK(p);
  579                         lim_free(newlim);
  580                         return (error);
  581         }
  582         if (limp->rlim_cur > limp->rlim_max)
  583                 limp->rlim_cur = limp->rlim_max;
  584         lim_copy(newlim, oldlim);
  585         alimp = &newlim->pl_rlimit[which];
  586 
  587         switch (which) {
  588 
  589         case RLIMIT_CPU:
  590                 mtx_lock_spin(&sched_lock);
  591                 p->p_cpulimit = limp->rlim_cur;
  592                 mtx_unlock_spin(&sched_lock);
  593                 break;
  594         case RLIMIT_DATA:
  595                 if (limp->rlim_cur > maxdsiz)
  596                         limp->rlim_cur = maxdsiz;
  597                 if (limp->rlim_max > maxdsiz)
  598                         limp->rlim_max = maxdsiz;
  599                 break;
  600 
  601         case RLIMIT_STACK:
  602                 if (limp->rlim_cur > maxssiz)
  603                         limp->rlim_cur = maxssiz;
  604                 if (limp->rlim_max > maxssiz)
  605                         limp->rlim_max = maxssiz;
  606                 oldssiz = alimp->rlim_cur;
  607                 break;
  608 
  609         case RLIMIT_NOFILE:
  610                 if (limp->rlim_cur > maxfilesperproc)
  611                         limp->rlim_cur = maxfilesperproc;
  612                 if (limp->rlim_max > maxfilesperproc)
  613                         limp->rlim_max = maxfilesperproc;
  614                 break;
  615 
  616         case RLIMIT_NPROC:
  617                 if (limp->rlim_cur > maxprocperuid)
  618                         limp->rlim_cur = maxprocperuid;
  619                 if (limp->rlim_max > maxprocperuid)
  620                         limp->rlim_max = maxprocperuid;
  621                 if (limp->rlim_cur < 1)
  622                         limp->rlim_cur = 1;
  623                 if (limp->rlim_max < 1)
  624                         limp->rlim_max = 1;
  625                 break;
  626         }
  627         *alimp = *limp;
  628         p->p_limit = newlim;
  629         PROC_UNLOCK(p);
  630         lim_free(oldlim);
  631 
  632         if (which == RLIMIT_STACK) {
  633                 /*
  634                  * Stack is allocated to the max at exec time with only
  635                  * "rlim_cur" bytes accessible.  If stack limit is going
  636                  * up make more accessible, if going down make inaccessible.
  637                  */
  638                 if (limp->rlim_cur != oldssiz) {
  639                         vm_offset_t addr;
  640                         vm_size_t size;
  641                         vm_prot_t prot;
  642 
  643                         mtx_lock(&Giant);
  644                         if (limp->rlim_cur > oldssiz) {
  645                                 prot = p->p_sysent->sv_stackprot;
  646                                 size = limp->rlim_cur - oldssiz;
  647                                 addr = p->p_sysent->sv_usrstack -
  648                                     limp->rlim_cur;
  649                         } else {
  650                                 prot = VM_PROT_NONE;
  651                                 size = oldssiz - limp->rlim_cur;
  652                                 addr = p->p_sysent->sv_usrstack -
  653                                     oldssiz;
  654                         }
  655                         addr = trunc_page(addr);
  656                         size = round_page(size);
  657                         (void) vm_map_protect(&p->p_vmspace->vm_map,
  658                                               addr, addr+size, prot, FALSE);
  659                         mtx_unlock(&Giant);
  660                 }
  661         }
  662         return (0);
  663 }
  664 
  665 #ifndef _SYS_SYSPROTO_H_
  666 struct __getrlimit_args {
  667         u_int   which;
  668         struct  rlimit *rlp;
  669 };
  670 #endif
  671 /*
  672  * MPSAFE
  673  */
  674 /* ARGSUSED */
  675 int
  676 getrlimit(td, uap)
  677         struct thread *td;
  678         register struct __getrlimit_args *uap;
  679 {
  680         struct rlimit rlim;
  681         struct proc *p;
  682         int error;
  683 
  684         if (uap->which >= RLIM_NLIMITS)
  685                 return (EINVAL);
  686         p = td->td_proc;
  687         PROC_LOCK(p);
  688         lim_rlimit(p, uap->which, &rlim);
  689         PROC_UNLOCK(p);
  690         error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
  691         return(error);
  692 }
  693 
  694 /*
  695  * Transform the running time and tick information in proc p into user,
  696  * system, and interrupt time usage.
  697  */
  698 void
  699 calcru(p, up, sp, ip)
  700         struct proc *p;
  701         struct timeval *up;
  702         struct timeval *sp;
  703         struct timeval *ip;
  704 {
  705         struct bintime bt, rt;
  706         struct timeval tv;
  707         struct thread *td;
  708         /* {user, system, interrupt, total} {ticks, usec}; previous tu: */
  709         u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu;
  710         int problemcase;
  711 
  712         mtx_assert(&sched_lock, MA_OWNED);
  713         /* XXX: why spl-protect ?  worst case is an off-by-one report */
  714 
  715         ut = p->p_uticks;
  716         st = p->p_sticks;
  717         it = p->p_iticks;
  718 
  719         tt = ut + st + it;
  720         if (tt == 0) {
  721                 st = 1;
  722                 tt = 1;
  723         }
  724         rt = p->p_runtime;
  725         problemcase = 0;
  726         FOREACH_THREAD_IN_PROC(p, td) {
  727                 /*
  728                  * Adjust for the current time slice.  This is actually fairly
  729                  * important since the error here is on the order of a time
  730                  * quantum, which is much greater than the sampling error.
  731                  */
  732                 if (td == curthread) {
  733                         binuptime(&bt);
  734                         bintime_sub(&bt, PCPU_PTR(switchtime));
  735                         bintime_add(&rt, &bt);
  736                 } else if (TD_IS_RUNNING(td)) {
  737                         /*
  738                          * XXX: this case should add the difference between
  739                          * the current time and the switch time as above,
  740                          * but the switch time is inaccessible, so we can't
  741                          * do the adjustment and will end up with a wrong
  742                          * runtime.  A previous call with a different
  743                          * curthread may have obtained a (right or wrong)
  744                          * runtime that is in advance of ours.  Just set a
  745                          * flag to avoid warning about this known problem.
  746                          */
  747                         problemcase = 1;
  748                 }
  749         }
  750         bintime2timeval(&rt, &tv);
  751         tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
  752         ptu = p->p_uu + p->p_su + p->p_iu;
  753         if (tu < ptu) {
  754                 if (!problemcase)
  755                         printf(
  756 "calcru: runtime went backwards from %ju usec to %ju usec for pid %d (%s)\n",
  757                             (uintmax_t)ptu, (uintmax_t)tu, p->p_pid, p->p_comm);
  758                 tu = ptu;
  759         }
  760         if ((int64_t)tu < 0) {
  761                 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
  762                     (intmax_t)tu, p->p_pid, p->p_comm);
  763                 tu = ptu;
  764         }
  765 
  766         /* Subdivide tu. */
  767         uu = (tu * ut) / tt;
  768         su = (tu * st) / tt;
  769         iu = tu - uu - su;
  770 
  771         /* Enforce monotonicity. */
  772         if (uu < p->p_uu || su < p->p_su || iu < p->p_iu) {
  773                 if (uu < p->p_uu)
  774                         uu = p->p_uu;
  775                 else if (uu + p->p_su + p->p_iu > tu)
  776                         uu = tu - p->p_su - p->p_iu;
  777                 if (st == 0)
  778                         su = p->p_su;
  779                 else {
  780                         su = ((tu - uu) * st) / (st + it);
  781                         if (su < p->p_su)
  782                                 su = p->p_su;
  783                         else if (uu + su + p->p_iu > tu)
  784                                 su = tu - uu - p->p_iu;
  785                 }
  786                 KASSERT(uu + su + p->p_iu <= tu,
  787                     ("calcru: monotonisation botch 1"));
  788                 iu = tu - uu - su;
  789                 KASSERT(iu >= p->p_iu,
  790                     ("calcru: monotonisation botch 2"));
  791         }
  792         p->p_uu = uu;
  793         p->p_su = su;
  794         p->p_iu = iu;
  795 
  796         up->tv_sec = uu / 1000000;
  797         up->tv_usec = uu % 1000000;
  798         sp->tv_sec = su / 1000000;
  799         sp->tv_usec = su % 1000000;
  800         if (ip != NULL) {
  801                 ip->tv_sec = iu / 1000000;
  802                 ip->tv_usec = iu % 1000000;
  803         }
  804 }
  805 
  806 #ifndef _SYS_SYSPROTO_H_
  807 struct getrusage_args {
  808         int     who;
  809         struct  rusage *rusage;
  810 };
  811 #endif
  812 /*
  813  * MPSAFE
  814  */
  815 /* ARGSUSED */
  816 int
  817 getrusage(td, uap)
  818         register struct thread *td;
  819         register struct getrusage_args *uap;
  820 {
  821         struct rusage ru;
  822         struct proc *p;
  823 
  824         p = td->td_proc;
  825         switch (uap->who) {
  826 
  827         case RUSAGE_SELF:
  828                 mtx_lock(&Giant);
  829                 mtx_lock_spin(&sched_lock);
  830                 calcru(p, &p->p_stats->p_ru.ru_utime, &p->p_stats->p_ru.ru_stime,
  831                     NULL);
  832                 mtx_unlock_spin(&sched_lock);
  833                 ru = p->p_stats->p_ru;
  834                 mtx_unlock(&Giant);
  835                 break;
  836 
  837         case RUSAGE_CHILDREN:
  838                 mtx_lock(&Giant);
  839                 ru = p->p_stats->p_cru;
  840                 mtx_unlock(&Giant);
  841                 break;
  842 
  843         default:
  844                 return (EINVAL);
  845                 break;
  846         }
  847         return (copyout(&ru, uap->rusage, sizeof(struct rusage)));
  848 }
  849 
  850 void
  851 ruadd(ru, ru2)
  852         register struct rusage *ru, *ru2;
  853 {
  854         register long *ip, *ip2;
  855         register int i;
  856 
  857         timevaladd(&ru->ru_utime, &ru2->ru_utime);
  858         timevaladd(&ru->ru_stime, &ru2->ru_stime);
  859         if (ru->ru_maxrss < ru2->ru_maxrss)
  860                 ru->ru_maxrss = ru2->ru_maxrss;
  861         ip = &ru->ru_first; ip2 = &ru2->ru_first;
  862         for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
  863                 *ip++ += *ip2++;
  864 }
  865 
  866 /*
  867  * Allocate a new resource limits structure and initialize its
  868  * reference count and mutex pointer.
  869  */
  870 struct plimit *
  871 lim_alloc()
  872 {
  873         struct plimit *limp;
  874 
  875         limp = (struct plimit *)malloc(sizeof(struct plimit), M_PLIMIT,
  876             M_WAITOK);
  877         limp->pl_refcnt = 1;
  878         limp->pl_mtx = mtx_pool_alloc(mtxpool_sleep);
  879         return (limp);
  880 }
  881 
  882 struct plimit *
  883 lim_hold(limp)
  884         struct plimit *limp;
  885 {
  886 
  887         LIM_LOCK(limp);
  888         limp->pl_refcnt++;
  889         LIM_UNLOCK(limp);
  890         return (limp);
  891 }
  892 
  893 void
  894 lim_free(limp)
  895         struct plimit *limp;
  896 {
  897 
  898         LIM_LOCK(limp);
  899         KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
  900         if (--limp->pl_refcnt == 0) {
  901                 LIM_UNLOCK(limp);
  902                 free((void *)limp, M_PLIMIT);
  903                 return;
  904         }
  905         LIM_UNLOCK(limp);
  906 }
  907 
  908 /*
  909  * Make a copy of the plimit structure.
  910  * We share these structures copy-on-write after fork.
  911  */
  912 void
  913 lim_copy(dst, src)
  914         struct plimit *dst, *src;
  915 {
  916 
  917         KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
  918         bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
  919 }
  920 
  921 /*
  922  * Return the hard limit for a particular system resource.  The
  923  * which parameter specifies the index into the rlimit array.
  924  */
  925 rlim_t
  926 lim_max(struct proc *p, int which)
  927 {
  928         struct rlimit rl;
  929 
  930         lim_rlimit(p, which, &rl);
  931         return (rl.rlim_max);
  932 }
  933 
  934 /*
  935  * Return the current (soft) limit for a particular system resource.
  936  * The which parameter which specifies the index into the rlimit array
  937  */
  938 rlim_t
  939 lim_cur(struct proc *p, int which)
  940 {
  941         struct rlimit rl;
  942 
  943         lim_rlimit(p, which, &rl);
  944         return (rl.rlim_cur);
  945 }
  946 
  947 /*
  948  * Return a copy of the entire rlimit structure for the system limit
  949  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
  950  */
  951 void
  952 lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
  953 {
  954 
  955         PROC_LOCK_ASSERT(p, MA_OWNED);
  956         KASSERT(which >= 0 && which < RLIM_NLIMITS,
  957             ("request for invalid resource limit"));
  958         *rlp = p->p_limit->pl_rlimit[which];
  959 }
  960 
  961 /*
  962  * Find the uidinfo structure for a uid.  This structure is used to
  963  * track the total resource consumption (process count, socket buffer
  964  * size, etc.) for the uid and impose limits.
  965  */
  966 void
  967 uihashinit()
  968 {
  969 
  970         uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
  971         mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF);
  972 }
  973 
  974 /*
  975  * Look up a uidinfo struct for the parameter uid.
  976  * uihashtbl_mtx must be locked.
  977  */
  978 static struct uidinfo *
  979 uilookup(uid)
  980         uid_t uid;
  981 {
  982         struct uihashhead *uipp;
  983         struct uidinfo *uip;
  984 
  985         mtx_assert(&uihashtbl_mtx, MA_OWNED);
  986         uipp = UIHASH(uid);
  987         LIST_FOREACH(uip, uipp, ui_hash)
  988                 if (uip->ui_uid == uid)
  989                         break;
  990 
  991         return (uip);
  992 }
  993 
  994 /*
  995  * Find or allocate a struct uidinfo for a particular uid.
  996  * Increase refcount on uidinfo struct returned.
  997  * uifree() should be called on a struct uidinfo when released.
  998  */
  999 struct uidinfo *
 1000 uifind(uid)
 1001         uid_t uid;
 1002 {
 1003         struct uidinfo *old_uip, *uip;
 1004 
 1005         mtx_lock(&uihashtbl_mtx);
 1006         uip = uilookup(uid);
 1007         if (uip == NULL) {
 1008                 mtx_unlock(&uihashtbl_mtx);
 1009                 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
 1010                 mtx_lock(&uihashtbl_mtx);
 1011                 /*
 1012                  * There's a chance someone created our uidinfo while we
 1013                  * were in malloc and not holding the lock, so we have to
 1014                  * make sure we don't insert a duplicate uidinfo.
 1015                  */
 1016                 if ((old_uip = uilookup(uid)) != NULL) {
 1017                         /* Someone else beat us to it. */
 1018                         free(uip, M_UIDINFO);
 1019                         uip = old_uip;
 1020                 } else {
 1021                         uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep);
 1022                         uip->ui_uid = uid;
 1023                         LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
 1024                 }
 1025         }
 1026         uihold(uip);
 1027         mtx_unlock(&uihashtbl_mtx);
 1028         return (uip);
 1029 }
 1030 
 1031 /*
 1032  * Place another refcount on a uidinfo struct.
 1033  */
 1034 void
 1035 uihold(uip)
 1036         struct uidinfo *uip;
 1037 {
 1038 
 1039         UIDINFO_LOCK(uip);
 1040         uip->ui_ref++;
 1041         UIDINFO_UNLOCK(uip);
 1042 }
 1043 
 1044 /*-
 1045  * Since uidinfo structs have a long lifetime, we use an
 1046  * opportunistic refcounting scheme to avoid locking the lookup hash
 1047  * for each release.
 1048  *
 1049  * If the refcount hits 0, we need to free the structure,
 1050  * which means we need to lock the hash.
 1051  * Optimal case:
 1052  *   After locking the struct and lowering the refcount, if we find
 1053  *   that we don't need to free, simply unlock and return.
 1054  * Suboptimal case:
 1055  *   If refcount lowering results in need to free, bump the count
 1056  *   back up, loose the lock and aquire the locks in the proper
 1057  *   order to try again.
 1058  */
 1059 void
 1060 uifree(uip)
 1061         struct uidinfo *uip;
 1062 {
 1063 
 1064         /* Prepare for optimal case. */
 1065         UIDINFO_LOCK(uip);
 1066 
 1067         if (--uip->ui_ref != 0) {
 1068                 UIDINFO_UNLOCK(uip);
 1069                 return;
 1070         }
 1071 
 1072         /* Prepare for suboptimal case. */
 1073         uip->ui_ref++;
 1074         UIDINFO_UNLOCK(uip);
 1075         mtx_lock(&uihashtbl_mtx);
 1076         UIDINFO_LOCK(uip);
 1077 
 1078         /*
 1079          * We must subtract one from the count again because we backed out
 1080          * our initial subtraction before dropping the lock.
 1081          * Since another thread may have added a reference after we dropped the
 1082          * initial lock we have to test for zero again.
 1083          */
 1084         if (--uip->ui_ref == 0) {
 1085                 LIST_REMOVE(uip, ui_hash);
 1086                 mtx_unlock(&uihashtbl_mtx);
 1087                 if (uip->ui_sbsize != 0)
 1088                         printf("freeing uidinfo: uid = %d, sbsize = %jd\n",
 1089                             uip->ui_uid, (intmax_t)uip->ui_sbsize);
 1090                 if (uip->ui_proccnt != 0)
 1091                         printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
 1092                             uip->ui_uid, uip->ui_proccnt);
 1093                 UIDINFO_UNLOCK(uip);
 1094                 FREE(uip, M_UIDINFO);
 1095                 return;
 1096         }
 1097 
 1098         mtx_unlock(&uihashtbl_mtx);
 1099         UIDINFO_UNLOCK(uip);
 1100 }
 1101 
 1102 /*
 1103  * Change the count associated with number of processes
 1104  * a given user is using.  When 'max' is 0, don't enforce a limit
 1105  */
 1106 int
 1107 chgproccnt(uip, diff, max)
 1108         struct  uidinfo *uip;
 1109         int     diff;
 1110         int     max;
 1111 {
 1112 
 1113         UIDINFO_LOCK(uip);
 1114         /* Don't allow them to exceed max, but allow subtraction. */
 1115         if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
 1116                 UIDINFO_UNLOCK(uip);
 1117                 return (0);
 1118         }
 1119         uip->ui_proccnt += diff;
 1120         if (uip->ui_proccnt < 0)
 1121                 printf("negative proccnt for uid = %d\n", uip->ui_uid);
 1122         UIDINFO_UNLOCK(uip);
 1123         return (1);
 1124 }
 1125 
 1126 /*
 1127  * Change the total socket buffer size a user has used.
 1128  */
 1129 int
 1130 chgsbsize(uip, hiwat, to, max)
 1131         struct  uidinfo *uip;
 1132         u_int  *hiwat;
 1133         u_int   to;
 1134         rlim_t  max;
 1135 {
 1136         rlim_t new;
 1137 
 1138         UIDINFO_LOCK(uip);
 1139         new = uip->ui_sbsize + to - *hiwat;
 1140         /* Don't allow them to exceed max, but allow subtraction */
 1141         if (to > *hiwat && new > max) {
 1142                 UIDINFO_UNLOCK(uip);
 1143                 return (0);
 1144         }
 1145         uip->ui_sbsize = new;
 1146         UIDINFO_UNLOCK(uip);
 1147         *hiwat = to;
 1148         if (new < 0)
 1149                 printf("negative sbsize for uid = %d\n", uip->ui_uid);
 1150         return (1);
 1151 }

Cache object: 71fb17ad72190afb61d903338391df71


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.