1 /*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94
35 */
36
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD: releng/6.0/sys/kern/kern_resource.c 146879 2005-06-01 17:52:51Z alc $");
39
40 #include "opt_compat.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/file.h>
46 #include <sys/kernel.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/sched.h>
53 #include <sys/sx.h>
54 #include <sys/syscallsubr.h>
55 #include <sys/sysent.h>
56 #include <sys/time.h>
57
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_map.h>
62
63
64 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
65 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
66 #define UIHASH(uid) (&uihashtbl[(uid) & uihash])
67 static struct mtx uihashtbl_mtx;
68 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
69 static u_long uihash; /* size of hash table - 1 */
70
71 static void calcru1(struct proc *p, struct rusage_ext *ruxp,
72 struct timeval *up, struct timeval *sp);
73 static int donice(struct thread *td, struct proc *chgp, int n);
74 static struct uidinfo *uilookup(uid_t uid);
75
76 /*
77 * Resource controls and accounting.
78 */
79
80 #ifndef _SYS_SYSPROTO_H_
81 struct getpriority_args {
82 int which;
83 int who;
84 };
85 #endif
86 /*
87 * MPSAFE
88 */
89 int
90 getpriority(td, uap)
91 struct thread *td;
92 register struct getpriority_args *uap;
93 {
94 struct proc *p;
95 struct pgrp *pg;
96 int error, low;
97
98 error = 0;
99 low = PRIO_MAX + 1;
100 switch (uap->which) {
101
102 case PRIO_PROCESS:
103 if (uap->who == 0)
104 low = td->td_proc->p_nice;
105 else {
106 p = pfind(uap->who);
107 if (p == NULL)
108 break;
109 if (p_cansee(td, p) == 0)
110 low = p->p_nice;
111 PROC_UNLOCK(p);
112 }
113 break;
114
115 case PRIO_PGRP:
116 sx_slock(&proctree_lock);
117 if (uap->who == 0) {
118 pg = td->td_proc->p_pgrp;
119 PGRP_LOCK(pg);
120 } else {
121 pg = pgfind(uap->who);
122 if (pg == NULL) {
123 sx_sunlock(&proctree_lock);
124 break;
125 }
126 }
127 sx_sunlock(&proctree_lock);
128 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
129 PROC_LOCK(p);
130 if (!p_cansee(td, p)) {
131 if (p->p_nice < low)
132 low = p->p_nice;
133 }
134 PROC_UNLOCK(p);
135 }
136 PGRP_UNLOCK(pg);
137 break;
138
139 case PRIO_USER:
140 if (uap->who == 0)
141 uap->who = td->td_ucred->cr_uid;
142 sx_slock(&allproc_lock);
143 LIST_FOREACH(p, &allproc, p_list) {
144 PROC_LOCK(p);
145 if (!p_cansee(td, p) &&
146 p->p_ucred->cr_uid == uap->who) {
147 if (p->p_nice < low)
148 low = p->p_nice;
149 }
150 PROC_UNLOCK(p);
151 }
152 sx_sunlock(&allproc_lock);
153 break;
154
155 default:
156 error = EINVAL;
157 break;
158 }
159 if (low == PRIO_MAX + 1 && error == 0)
160 error = ESRCH;
161 td->td_retval[0] = low;
162 return (error);
163 }
164
165 #ifndef _SYS_SYSPROTO_H_
166 struct setpriority_args {
167 int which;
168 int who;
169 int prio;
170 };
171 #endif
172 /*
173 * MPSAFE
174 */
175 int
176 setpriority(td, uap)
177 struct thread *td;
178 struct setpriority_args *uap;
179 {
180 struct proc *curp, *p;
181 struct pgrp *pg;
182 int found = 0, error = 0;
183
184 curp = td->td_proc;
185 switch (uap->which) {
186 case PRIO_PROCESS:
187 if (uap->who == 0) {
188 PROC_LOCK(curp);
189 error = donice(td, curp, uap->prio);
190 PROC_UNLOCK(curp);
191 } else {
192 p = pfind(uap->who);
193 if (p == 0)
194 break;
195 if (p_cansee(td, p) == 0)
196 error = donice(td, p, uap->prio);
197 PROC_UNLOCK(p);
198 }
199 found++;
200 break;
201
202 case PRIO_PGRP:
203 sx_slock(&proctree_lock);
204 if (uap->who == 0) {
205 pg = curp->p_pgrp;
206 PGRP_LOCK(pg);
207 } else {
208 pg = pgfind(uap->who);
209 if (pg == NULL) {
210 sx_sunlock(&proctree_lock);
211 break;
212 }
213 }
214 sx_sunlock(&proctree_lock);
215 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
216 PROC_LOCK(p);
217 if (!p_cansee(td, p)) {
218 error = donice(td, p, uap->prio);
219 found++;
220 }
221 PROC_UNLOCK(p);
222 }
223 PGRP_UNLOCK(pg);
224 break;
225
226 case PRIO_USER:
227 if (uap->who == 0)
228 uap->who = td->td_ucred->cr_uid;
229 sx_slock(&allproc_lock);
230 FOREACH_PROC_IN_SYSTEM(p) {
231 PROC_LOCK(p);
232 if (p->p_ucred->cr_uid == uap->who &&
233 !p_cansee(td, p)) {
234 error = donice(td, p, uap->prio);
235 found++;
236 }
237 PROC_UNLOCK(p);
238 }
239 sx_sunlock(&allproc_lock);
240 break;
241
242 default:
243 error = EINVAL;
244 break;
245 }
246 if (found == 0 && error == 0)
247 error = ESRCH;
248 return (error);
249 }
250
251 /*
252 * Set "nice" for a (whole) process.
253 */
254 static int
255 donice(struct thread *td, struct proc *p, int n)
256 {
257 int error;
258
259 PROC_LOCK_ASSERT(p, MA_OWNED);
260 if ((error = p_cansched(td, p)))
261 return (error);
262 if (n > PRIO_MAX)
263 n = PRIO_MAX;
264 if (n < PRIO_MIN)
265 n = PRIO_MIN;
266 if (n < p->p_nice && suser(td) != 0)
267 return (EACCES);
268 mtx_lock_spin(&sched_lock);
269 sched_nice(p, n);
270 mtx_unlock_spin(&sched_lock);
271 return (0);
272 }
273
274 /*
275 * Set realtime priority.
276 *
277 * MPSAFE
278 */
279 #ifndef _SYS_SYSPROTO_H_
280 struct rtprio_args {
281 int function;
282 pid_t pid;
283 struct rtprio *rtp;
284 };
285 #endif
286
287 int
288 rtprio(td, uap)
289 struct thread *td; /* curthread */
290 register struct rtprio_args *uap;
291 {
292 struct proc *curp;
293 struct proc *p;
294 struct ksegrp *kg;
295 struct rtprio rtp;
296 int cierror, error;
297
298 /* Perform copyin before acquiring locks if needed. */
299 if (uap->function == RTP_SET)
300 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
301 else
302 cierror = 0;
303
304 curp = td->td_proc;
305 if (uap->pid == 0) {
306 p = curp;
307 PROC_LOCK(p);
308 } else {
309 p = pfind(uap->pid);
310 if (p == NULL)
311 return (ESRCH);
312 }
313
314 switch (uap->function) {
315 case RTP_LOOKUP:
316 if ((error = p_cansee(td, p)))
317 break;
318 mtx_lock_spin(&sched_lock);
319 /*
320 * Return OUR priority if no pid specified,
321 * or if one is, report the highest priority
322 * in the process. There isn't much more you can do as
323 * there is only room to return a single priority.
324 * XXXKSE: maybe need a new interface to report
325 * priorities of multiple system scope threads.
326 * Note: specifying our own pid is not the same
327 * as leaving it zero.
328 */
329 if (uap->pid == 0) {
330 pri_to_rtp(td->td_ksegrp, &rtp);
331 } else {
332 struct rtprio rtp2;
333
334 rtp.type = RTP_PRIO_IDLE;
335 rtp.prio = RTP_PRIO_MAX;
336 FOREACH_KSEGRP_IN_PROC(p, kg) {
337 pri_to_rtp(kg, &rtp2);
338 if (rtp2.type < rtp.type ||
339 (rtp2.type == rtp.type &&
340 rtp2.prio < rtp.prio)) {
341 rtp.type = rtp2.type;
342 rtp.prio = rtp2.prio;
343 }
344 }
345 }
346 mtx_unlock_spin(&sched_lock);
347 PROC_UNLOCK(p);
348 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
349 case RTP_SET:
350 if ((error = p_cansched(td, p)) || (error = cierror))
351 break;
352
353 /* Disallow setting rtprio in most cases if not superuser. */
354 if (suser(td) != 0) {
355 /* can't set someone else's */
356 if (uap->pid) {
357 error = EPERM;
358 break;
359 }
360 /* can't set realtime priority */
361 /*
362 * Realtime priority has to be restricted for reasons which should be
363 * obvious. However, for idle priority, there is a potential for
364 * system deadlock if an idleprio process gains a lock on a resource
365 * that other processes need (and the idleprio process can't run
366 * due to a CPU-bound normal process). Fix me! XXX
367 */
368 #if 0
369 if (RTP_PRIO_IS_REALTIME(rtp.type)) {
370 #else
371 if (rtp.type != RTP_PRIO_NORMAL) {
372 #endif
373 error = EPERM;
374 break;
375 }
376 }
377
378 /*
379 * If we are setting our own priority, set just our
380 * KSEGRP but if we are doing another process,
381 * do all the groups on that process. If we
382 * specify our own pid we do the latter.
383 */
384 mtx_lock_spin(&sched_lock);
385 if (uap->pid == 0) {
386 error = rtp_to_pri(&rtp, td->td_ksegrp);
387 } else {
388 FOREACH_KSEGRP_IN_PROC(p, kg) {
389 if ((error = rtp_to_pri(&rtp, kg)) != 0) {
390 break;
391 }
392 }
393 }
394 mtx_unlock_spin(&sched_lock);
395 break;
396 default:
397 error = EINVAL;
398 break;
399 }
400 PROC_UNLOCK(p);
401 return (error);
402 }
403
404 int
405 rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg)
406 {
407
408 mtx_assert(&sched_lock, MA_OWNED);
409 if (rtp->prio > RTP_PRIO_MAX)
410 return (EINVAL);
411 switch (RTP_PRIO_BASE(rtp->type)) {
412 case RTP_PRIO_REALTIME:
413 kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio;
414 break;
415 case RTP_PRIO_NORMAL:
416 kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio;
417 break;
418 case RTP_PRIO_IDLE:
419 kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio;
420 break;
421 default:
422 return (EINVAL);
423 }
424 sched_class(kg, rtp->type);
425 if (curthread->td_ksegrp == kg) {
426 sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */
427 }
428 return (0);
429 }
430
431 void
432 pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp)
433 {
434
435 mtx_assert(&sched_lock, MA_OWNED);
436 switch (PRI_BASE(kg->kg_pri_class)) {
437 case PRI_REALTIME:
438 rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME;
439 break;
440 case PRI_TIMESHARE:
441 rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE;
442 break;
443 case PRI_IDLE:
444 rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE;
445 break;
446 default:
447 break;
448 }
449 rtp->type = kg->kg_pri_class;
450 }
451
452 #if defined(COMPAT_43)
453 #ifndef _SYS_SYSPROTO_H_
454 struct osetrlimit_args {
455 u_int which;
456 struct orlimit *rlp;
457 };
458 #endif
459 /*
460 * MPSAFE
461 */
462 int
463 osetrlimit(td, uap)
464 struct thread *td;
465 register struct osetrlimit_args *uap;
466 {
467 struct orlimit olim;
468 struct rlimit lim;
469 int error;
470
471 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
472 return (error);
473 lim.rlim_cur = olim.rlim_cur;
474 lim.rlim_max = olim.rlim_max;
475 error = kern_setrlimit(td, uap->which, &lim);
476 return (error);
477 }
478
479 #ifndef _SYS_SYSPROTO_H_
480 struct ogetrlimit_args {
481 u_int which;
482 struct orlimit *rlp;
483 };
484 #endif
485 /*
486 * MPSAFE
487 */
488 int
489 ogetrlimit(td, uap)
490 struct thread *td;
491 register struct ogetrlimit_args *uap;
492 {
493 struct orlimit olim;
494 struct rlimit rl;
495 struct proc *p;
496 int error;
497
498 if (uap->which >= RLIM_NLIMITS)
499 return (EINVAL);
500 p = td->td_proc;
501 PROC_LOCK(p);
502 lim_rlimit(p, uap->which, &rl);
503 PROC_UNLOCK(p);
504
505 /*
506 * XXX would be more correct to convert only RLIM_INFINITY to the
507 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
508 * values. Most 64->32 and 32->16 conversions, including not
509 * unimportant ones of uids are even more broken than what we
510 * do here (they blindly truncate). We don't do this correctly
511 * here since we have little experience with EOVERFLOW yet.
512 * Elsewhere, getuid() can't fail...
513 */
514 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
515 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
516 error = copyout(&olim, uap->rlp, sizeof(olim));
517 return (error);
518 }
519 #endif /* COMPAT_43 */
520
521 #ifndef _SYS_SYSPROTO_H_
522 struct __setrlimit_args {
523 u_int which;
524 struct rlimit *rlp;
525 };
526 #endif
527 /*
528 * MPSAFE
529 */
530 int
531 setrlimit(td, uap)
532 struct thread *td;
533 register struct __setrlimit_args *uap;
534 {
535 struct rlimit alim;
536 int error;
537
538 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
539 return (error);
540 error = kern_setrlimit(td, uap->which, &alim);
541 return (error);
542 }
543
544 int
545 kern_setrlimit(td, which, limp)
546 struct thread *td;
547 u_int which;
548 struct rlimit *limp;
549 {
550 struct plimit *newlim, *oldlim;
551 struct proc *p;
552 register struct rlimit *alimp;
553 rlim_t oldssiz;
554 int error;
555
556 if (which >= RLIM_NLIMITS)
557 return (EINVAL);
558
559 /*
560 * Preserve historical bugs by treating negative limits as unsigned.
561 */
562 if (limp->rlim_cur < 0)
563 limp->rlim_cur = RLIM_INFINITY;
564 if (limp->rlim_max < 0)
565 limp->rlim_max = RLIM_INFINITY;
566
567 oldssiz = 0;
568 p = td->td_proc;
569 newlim = lim_alloc();
570 PROC_LOCK(p);
571 oldlim = p->p_limit;
572 alimp = &oldlim->pl_rlimit[which];
573 if (limp->rlim_cur > alimp->rlim_max ||
574 limp->rlim_max > alimp->rlim_max)
575 if ((error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL))) {
576 PROC_UNLOCK(p);
577 lim_free(newlim);
578 return (error);
579 }
580 if (limp->rlim_cur > limp->rlim_max)
581 limp->rlim_cur = limp->rlim_max;
582 lim_copy(newlim, oldlim);
583 alimp = &newlim->pl_rlimit[which];
584
585 switch (which) {
586
587 case RLIMIT_CPU:
588 mtx_lock_spin(&sched_lock);
589 p->p_cpulimit = limp->rlim_cur;
590 mtx_unlock_spin(&sched_lock);
591 break;
592 case RLIMIT_DATA:
593 if (limp->rlim_cur > maxdsiz)
594 limp->rlim_cur = maxdsiz;
595 if (limp->rlim_max > maxdsiz)
596 limp->rlim_max = maxdsiz;
597 break;
598
599 case RLIMIT_STACK:
600 if (limp->rlim_cur > maxssiz)
601 limp->rlim_cur = maxssiz;
602 if (limp->rlim_max > maxssiz)
603 limp->rlim_max = maxssiz;
604 oldssiz = alimp->rlim_cur;
605 break;
606
607 case RLIMIT_NOFILE:
608 if (limp->rlim_cur > maxfilesperproc)
609 limp->rlim_cur = maxfilesperproc;
610 if (limp->rlim_max > maxfilesperproc)
611 limp->rlim_max = maxfilesperproc;
612 break;
613
614 case RLIMIT_NPROC:
615 if (limp->rlim_cur > maxprocperuid)
616 limp->rlim_cur = maxprocperuid;
617 if (limp->rlim_max > maxprocperuid)
618 limp->rlim_max = maxprocperuid;
619 if (limp->rlim_cur < 1)
620 limp->rlim_cur = 1;
621 if (limp->rlim_max < 1)
622 limp->rlim_max = 1;
623 break;
624 }
625 *alimp = *limp;
626 p->p_limit = newlim;
627 PROC_UNLOCK(p);
628 lim_free(oldlim);
629
630 if (which == RLIMIT_STACK) {
631 /*
632 * Stack is allocated to the max at exec time with only
633 * "rlim_cur" bytes accessible. If stack limit is going
634 * up make more accessible, if going down make inaccessible.
635 */
636 if (limp->rlim_cur != oldssiz) {
637 vm_offset_t addr;
638 vm_size_t size;
639 vm_prot_t prot;
640
641 if (limp->rlim_cur > oldssiz) {
642 prot = p->p_sysent->sv_stackprot;
643 size = limp->rlim_cur - oldssiz;
644 addr = p->p_sysent->sv_usrstack -
645 limp->rlim_cur;
646 } else {
647 prot = VM_PROT_NONE;
648 size = oldssiz - limp->rlim_cur;
649 addr = p->p_sysent->sv_usrstack - oldssiz;
650 }
651 addr = trunc_page(addr);
652 size = round_page(size);
653 (void)vm_map_protect(&p->p_vmspace->vm_map,
654 addr, addr + size, prot, FALSE);
655 }
656 }
657 return (0);
658 }
659
660 #ifndef _SYS_SYSPROTO_H_
661 struct __getrlimit_args {
662 u_int which;
663 struct rlimit *rlp;
664 };
665 #endif
666 /*
667 * MPSAFE
668 */
669 /* ARGSUSED */
670 int
671 getrlimit(td, uap)
672 struct thread *td;
673 register struct __getrlimit_args *uap;
674 {
675 struct rlimit rlim;
676 struct proc *p;
677 int error;
678
679 if (uap->which >= RLIM_NLIMITS)
680 return (EINVAL);
681 p = td->td_proc;
682 PROC_LOCK(p);
683 lim_rlimit(p, uap->which, &rlim);
684 PROC_UNLOCK(p);
685 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
686 return (error);
687 }
688
689 /*
690 * Transform the running time and tick information in proc p into user,
691 * system, and interrupt time usage.
692 */
693 void
694 calcru(p, up, sp)
695 struct proc *p;
696 struct timeval *up;
697 struct timeval *sp;
698 {
699 struct bintime bt;
700 struct rusage_ext rux;
701 struct thread *td;
702 int bt_valid;
703
704 PROC_LOCK_ASSERT(p, MA_OWNED);
705 mtx_assert(&sched_lock, MA_NOTOWNED);
706 bt_valid = 0;
707 mtx_lock_spin(&sched_lock);
708 rux = p->p_rux;
709 FOREACH_THREAD_IN_PROC(p, td) {
710 if (TD_IS_RUNNING(td)) {
711 /*
712 * Adjust for the current time slice. This is
713 * actually fairly important since the error here is
714 * on the order of a time quantum which is much
715 * greater than the precision of binuptime().
716 */
717 KASSERT(td->td_oncpu != NOCPU,
718 ("%s: running thread has no CPU", __func__));
719 if (!bt_valid) {
720 binuptime(&bt);
721 bt_valid = 1;
722 }
723 bintime_add(&rux.rux_runtime, &bt);
724 bintime_sub(&rux.rux_runtime,
725 &pcpu_find(td->td_oncpu)->pc_switchtime);
726 }
727 }
728 mtx_unlock_spin(&sched_lock);
729 calcru1(p, &rux, up, sp);
730 p->p_rux.rux_uu = rux.rux_uu;
731 p->p_rux.rux_su = rux.rux_su;
732 p->p_rux.rux_iu = rux.rux_iu;
733 }
734
735 void
736 calccru(p, up, sp)
737 struct proc *p;
738 struct timeval *up;
739 struct timeval *sp;
740 {
741
742 PROC_LOCK_ASSERT(p, MA_OWNED);
743 calcru1(p, &p->p_crux, up, sp);
744 }
745
746 static void
747 calcru1(p, ruxp, up, sp)
748 struct proc *p;
749 struct rusage_ext *ruxp;
750 struct timeval *up;
751 struct timeval *sp;
752 {
753 struct timeval tv;
754 /* {user, system, interrupt, total} {ticks, usec}; previous tu: */
755 u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu;
756
757 ut = ruxp->rux_uticks;
758 st = ruxp->rux_sticks;
759 it = ruxp->rux_iticks;
760 tt = ut + st + it;
761 if (tt == 0) {
762 st = 1;
763 tt = 1;
764 }
765 bintime2timeval(&ruxp->rux_runtime, &tv);
766 tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
767 ptu = ruxp->rux_uu + ruxp->rux_su + ruxp->rux_iu;
768 if (tu < ptu) {
769 printf(
770 "calcru: runtime went backwards from %ju usec to %ju usec for pid %d (%s)\n",
771 (uintmax_t)ptu, (uintmax_t)tu, p->p_pid, p->p_comm);
772 tu = ptu;
773 }
774 if ((int64_t)tu < 0) {
775 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
776 (intmax_t)tu, p->p_pid, p->p_comm);
777 tu = ptu;
778 }
779
780 /* Subdivide tu. */
781 uu = (tu * ut) / tt;
782 su = (tu * st) / tt;
783 iu = tu - uu - su;
784
785 /* Enforce monotonicity. */
786 if (uu < ruxp->rux_uu || su < ruxp->rux_su || iu < ruxp->rux_iu) {
787 if (uu < ruxp->rux_uu)
788 uu = ruxp->rux_uu;
789 else if (uu + ruxp->rux_su + ruxp->rux_iu > tu)
790 uu = tu - ruxp->rux_su - ruxp->rux_iu;
791 if (st == 0)
792 su = ruxp->rux_su;
793 else {
794 su = ((tu - uu) * st) / (st + it);
795 if (su < ruxp->rux_su)
796 su = ruxp->rux_su;
797 else if (uu + su + ruxp->rux_iu > tu)
798 su = tu - uu - ruxp->rux_iu;
799 }
800 KASSERT(uu + su + ruxp->rux_iu <= tu,
801 ("calcru: monotonisation botch 1"));
802 iu = tu - uu - su;
803 KASSERT(iu >= ruxp->rux_iu,
804 ("calcru: monotonisation botch 2"));
805 }
806 ruxp->rux_uu = uu;
807 ruxp->rux_su = su;
808 ruxp->rux_iu = iu;
809
810 up->tv_sec = uu / 1000000;
811 up->tv_usec = uu % 1000000;
812 sp->tv_sec = su / 1000000;
813 sp->tv_usec = su % 1000000;
814 }
815
816 #ifndef _SYS_SYSPROTO_H_
817 struct getrusage_args {
818 int who;
819 struct rusage *rusage;
820 };
821 #endif
822 /*
823 * MPSAFE
824 */
825 int
826 getrusage(td, uap)
827 register struct thread *td;
828 register struct getrusage_args *uap;
829 {
830 struct rusage ru;
831 int error;
832
833 error = kern_getrusage(td, uap->who, &ru);
834 if (error == 0)
835 error = copyout(&ru, uap->rusage, sizeof(struct rusage));
836 return (error);
837 }
838
839 int
840 kern_getrusage(td, who, rup)
841 struct thread *td;
842 int who;
843 struct rusage *rup;
844 {
845 struct proc *p;
846
847 p = td->td_proc;
848 PROC_LOCK(p);
849 switch (who) {
850
851 case RUSAGE_SELF:
852 *rup = p->p_stats->p_ru;
853 calcru(p, &rup->ru_utime, &rup->ru_stime);
854 break;
855
856 case RUSAGE_CHILDREN:
857 *rup = p->p_stats->p_cru;
858 calccru(p, &rup->ru_utime, &rup->ru_stime);
859 break;
860
861 default:
862 PROC_UNLOCK(p);
863 return (EINVAL);
864 }
865 PROC_UNLOCK(p);
866 return (0);
867 }
868
869 void
870 ruadd(ru, rux, ru2, rux2)
871 struct rusage *ru;
872 struct rusage_ext *rux;
873 struct rusage *ru2;
874 struct rusage_ext *rux2;
875 {
876 register long *ip, *ip2;
877 register int i;
878
879 bintime_add(&rux->rux_runtime, &rux2->rux_runtime);
880 rux->rux_uticks += rux2->rux_uticks;
881 rux->rux_sticks += rux2->rux_sticks;
882 rux->rux_iticks += rux2->rux_iticks;
883 rux->rux_uu += rux2->rux_uu;
884 rux->rux_su += rux2->rux_su;
885 rux->rux_iu += rux2->rux_iu;
886 if (ru->ru_maxrss < ru2->ru_maxrss)
887 ru->ru_maxrss = ru2->ru_maxrss;
888 ip = &ru->ru_first;
889 ip2 = &ru2->ru_first;
890 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
891 *ip++ += *ip2++;
892 }
893
894 /*
895 * Allocate a new resource limits structure and initialize its
896 * reference count and mutex pointer.
897 */
898 struct plimit *
899 lim_alloc()
900 {
901 struct plimit *limp;
902
903 limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
904 limp->pl_refcnt = 1;
905 limp->pl_mtx = mtx_pool_alloc(mtxpool_sleep);
906 return (limp);
907 }
908
909 struct plimit *
910 lim_hold(limp)
911 struct plimit *limp;
912 {
913
914 LIM_LOCK(limp);
915 limp->pl_refcnt++;
916 LIM_UNLOCK(limp);
917 return (limp);
918 }
919
920 void
921 lim_free(limp)
922 struct plimit *limp;
923 {
924
925 LIM_LOCK(limp);
926 KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
927 if (--limp->pl_refcnt == 0) {
928 LIM_UNLOCK(limp);
929 free((void *)limp, M_PLIMIT);
930 return;
931 }
932 LIM_UNLOCK(limp);
933 }
934
935 /*
936 * Make a copy of the plimit structure.
937 * We share these structures copy-on-write after fork.
938 */
939 void
940 lim_copy(dst, src)
941 struct plimit *dst, *src;
942 {
943
944 KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
945 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
946 }
947
948 /*
949 * Return the hard limit for a particular system resource. The
950 * which parameter specifies the index into the rlimit array.
951 */
952 rlim_t
953 lim_max(struct proc *p, int which)
954 {
955 struct rlimit rl;
956
957 lim_rlimit(p, which, &rl);
958 return (rl.rlim_max);
959 }
960
961 /*
962 * Return the current (soft) limit for a particular system resource.
963 * The which parameter which specifies the index into the rlimit array
964 */
965 rlim_t
966 lim_cur(struct proc *p, int which)
967 {
968 struct rlimit rl;
969
970 lim_rlimit(p, which, &rl);
971 return (rl.rlim_cur);
972 }
973
974 /*
975 * Return a copy of the entire rlimit structure for the system limit
976 * specified by 'which' in the rlimit structure pointed to by 'rlp'.
977 */
978 void
979 lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
980 {
981
982 PROC_LOCK_ASSERT(p, MA_OWNED);
983 KASSERT(which >= 0 && which < RLIM_NLIMITS,
984 ("request for invalid resource limit"));
985 *rlp = p->p_limit->pl_rlimit[which];
986 }
987
988 /*
989 * Find the uidinfo structure for a uid. This structure is used to
990 * track the total resource consumption (process count, socket buffer
991 * size, etc.) for the uid and impose limits.
992 */
993 void
994 uihashinit()
995 {
996
997 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
998 mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF);
999 }
1000
1001 /*
1002 * Look up a uidinfo struct for the parameter uid.
1003 * uihashtbl_mtx must be locked.
1004 */
1005 static struct uidinfo *
1006 uilookup(uid)
1007 uid_t uid;
1008 {
1009 struct uihashhead *uipp;
1010 struct uidinfo *uip;
1011
1012 mtx_assert(&uihashtbl_mtx, MA_OWNED);
1013 uipp = UIHASH(uid);
1014 LIST_FOREACH(uip, uipp, ui_hash)
1015 if (uip->ui_uid == uid)
1016 break;
1017
1018 return (uip);
1019 }
1020
1021 /*
1022 * Find or allocate a struct uidinfo for a particular uid.
1023 * Increase refcount on uidinfo struct returned.
1024 * uifree() should be called on a struct uidinfo when released.
1025 */
1026 struct uidinfo *
1027 uifind(uid)
1028 uid_t uid;
1029 {
1030 struct uidinfo *old_uip, *uip;
1031
1032 mtx_lock(&uihashtbl_mtx);
1033 uip = uilookup(uid);
1034 if (uip == NULL) {
1035 mtx_unlock(&uihashtbl_mtx);
1036 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
1037 mtx_lock(&uihashtbl_mtx);
1038 /*
1039 * There's a chance someone created our uidinfo while we
1040 * were in malloc and not holding the lock, so we have to
1041 * make sure we don't insert a duplicate uidinfo.
1042 */
1043 if ((old_uip = uilookup(uid)) != NULL) {
1044 /* Someone else beat us to it. */
1045 free(uip, M_UIDINFO);
1046 uip = old_uip;
1047 } else {
1048 uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep);
1049 uip->ui_uid = uid;
1050 LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
1051 }
1052 }
1053 uihold(uip);
1054 mtx_unlock(&uihashtbl_mtx);
1055 return (uip);
1056 }
1057
1058 /*
1059 * Place another refcount on a uidinfo struct.
1060 */
1061 void
1062 uihold(uip)
1063 struct uidinfo *uip;
1064 {
1065
1066 UIDINFO_LOCK(uip);
1067 uip->ui_ref++;
1068 UIDINFO_UNLOCK(uip);
1069 }
1070
1071 /*-
1072 * Since uidinfo structs have a long lifetime, we use an
1073 * opportunistic refcounting scheme to avoid locking the lookup hash
1074 * for each release.
1075 *
1076 * If the refcount hits 0, we need to free the structure,
1077 * which means we need to lock the hash.
1078 * Optimal case:
1079 * After locking the struct and lowering the refcount, if we find
1080 * that we don't need to free, simply unlock and return.
1081 * Suboptimal case:
1082 * If refcount lowering results in need to free, bump the count
1083 * back up, loose the lock and aquire the locks in the proper
1084 * order to try again.
1085 */
1086 void
1087 uifree(uip)
1088 struct uidinfo *uip;
1089 {
1090
1091 /* Prepare for optimal case. */
1092 UIDINFO_LOCK(uip);
1093
1094 if (--uip->ui_ref != 0) {
1095 UIDINFO_UNLOCK(uip);
1096 return;
1097 }
1098
1099 /* Prepare for suboptimal case. */
1100 uip->ui_ref++;
1101 UIDINFO_UNLOCK(uip);
1102 mtx_lock(&uihashtbl_mtx);
1103 UIDINFO_LOCK(uip);
1104
1105 /*
1106 * We must subtract one from the count again because we backed out
1107 * our initial subtraction before dropping the lock.
1108 * Since another thread may have added a reference after we dropped the
1109 * initial lock we have to test for zero again.
1110 */
1111 if (--uip->ui_ref == 0) {
1112 LIST_REMOVE(uip, ui_hash);
1113 mtx_unlock(&uihashtbl_mtx);
1114 if (uip->ui_sbsize != 0)
1115 printf("freeing uidinfo: uid = %d, sbsize = %jd\n",
1116 uip->ui_uid, (intmax_t)uip->ui_sbsize);
1117 if (uip->ui_proccnt != 0)
1118 printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1119 uip->ui_uid, uip->ui_proccnt);
1120 UIDINFO_UNLOCK(uip);
1121 FREE(uip, M_UIDINFO);
1122 return;
1123 }
1124
1125 mtx_unlock(&uihashtbl_mtx);
1126 UIDINFO_UNLOCK(uip);
1127 }
1128
1129 /*
1130 * Change the count associated with number of processes
1131 * a given user is using. When 'max' is 0, don't enforce a limit
1132 */
1133 int
1134 chgproccnt(uip, diff, max)
1135 struct uidinfo *uip;
1136 int diff;
1137 int max;
1138 {
1139
1140 UIDINFO_LOCK(uip);
1141 /* Don't allow them to exceed max, but allow subtraction. */
1142 if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
1143 UIDINFO_UNLOCK(uip);
1144 return (0);
1145 }
1146 uip->ui_proccnt += diff;
1147 if (uip->ui_proccnt < 0)
1148 printf("negative proccnt for uid = %d\n", uip->ui_uid);
1149 UIDINFO_UNLOCK(uip);
1150 return (1);
1151 }
1152
1153 /*
1154 * Change the total socket buffer size a user has used.
1155 */
1156 int
1157 chgsbsize(uip, hiwat, to, max)
1158 struct uidinfo *uip;
1159 u_int *hiwat;
1160 u_int to;
1161 rlim_t max;
1162 {
1163 rlim_t new;
1164
1165 UIDINFO_LOCK(uip);
1166 new = uip->ui_sbsize + to - *hiwat;
1167 /* Don't allow them to exceed max, but allow subtraction. */
1168 if (to > *hiwat && new > max) {
1169 UIDINFO_UNLOCK(uip);
1170 return (0);
1171 }
1172 uip->ui_sbsize = new;
1173 UIDINFO_UNLOCK(uip);
1174 *hiwat = to;
1175 if (new < 0)
1176 printf("negative sbsize for uid = %d\n", uip->ui_uid);
1177 return (1);
1178 }
Cache object: 279f3bf4280e883b6b55a1237f631fa9
|