The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_resource.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_resource.c     8.5 (Berkeley) 1/21/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/6.2/sys/kern/kern_resource.c 164286 2006-11-14 20:42:41Z cvs2svn $");
   39 
   40 #include "opt_compat.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/sysproto.h>
   45 #include <sys/file.h>
   46 #include <sys/imgact.h>
   47 #include <sys/kernel.h>
   48 #include <sys/lock.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mutex.h>
   51 #include <sys/proc.h>
   52 #include <sys/resourcevar.h>
   53 #include <sys/sched.h>
   54 #include <sys/sx.h>
   55 #include <sys/syscallsubr.h>
   56 #include <sys/sysent.h>
   57 #include <sys/time.h>
   58 
   59 #include <vm/vm.h>
   60 #include <vm/vm_param.h>
   61 #include <vm/pmap.h>
   62 #include <vm/vm_map.h>
   63 
   64 
   65 static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
   66 static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
   67 #define UIHASH(uid)     (&uihashtbl[(uid) & uihash])
   68 static struct mtx uihashtbl_mtx;
   69 static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
   70 static u_long uihash;           /* size of hash table - 1 */
   71 
   72 static void     calcru1(struct proc *p, struct rusage_ext *ruxp,
   73                     struct timeval *up, struct timeval *sp);
   74 static int      donice(struct thread *td, struct proc *chgp, int n);
   75 static struct uidinfo *uilookup(uid_t uid);
   76 
   77 /*
   78  * Resource controls and accounting.
   79  */
   80 
   81 #ifndef _SYS_SYSPROTO_H_
   82 struct getpriority_args {
   83         int     which;
   84         int     who;
   85 };
   86 #endif
   87 /*
   88  * MPSAFE
   89  */
   90 int
   91 getpriority(td, uap)
   92         struct thread *td;
   93         register struct getpriority_args *uap;
   94 {
   95         struct proc *p;
   96         struct pgrp *pg;
   97         int error, low;
   98 
   99         error = 0;
  100         low = PRIO_MAX + 1;
  101         switch (uap->which) {
  102 
  103         case PRIO_PROCESS:
  104                 if (uap->who == 0)
  105                         low = td->td_proc->p_nice;
  106                 else {
  107                         p = pfind(uap->who);
  108                         if (p == NULL)
  109                                 break;
  110                         if (p_cansee(td, p) == 0)
  111                                 low = p->p_nice;
  112                         PROC_UNLOCK(p);
  113                 }
  114                 break;
  115 
  116         case PRIO_PGRP:
  117                 sx_slock(&proctree_lock);
  118                 if (uap->who == 0) {
  119                         pg = td->td_proc->p_pgrp;
  120                         PGRP_LOCK(pg);
  121                 } else {
  122                         pg = pgfind(uap->who);
  123                         if (pg == NULL) {
  124                                 sx_sunlock(&proctree_lock);
  125                                 break;
  126                         }
  127                 }
  128                 sx_sunlock(&proctree_lock);
  129                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  130                         PROC_LOCK(p);
  131                         if (!p_cansee(td, p)) {
  132                                 if (p->p_nice < low)
  133                                         low = p->p_nice;
  134                         }
  135                         PROC_UNLOCK(p);
  136                 }
  137                 PGRP_UNLOCK(pg);
  138                 break;
  139 
  140         case PRIO_USER:
  141                 if (uap->who == 0)
  142                         uap->who = td->td_ucred->cr_uid;
  143                 sx_slock(&allproc_lock);
  144                 LIST_FOREACH(p, &allproc, p_list) {
  145                         PROC_LOCK(p);
  146                         if (!p_cansee(td, p) &&
  147                             p->p_ucred->cr_uid == uap->who) {
  148                                 if (p->p_nice < low)
  149                                         low = p->p_nice;
  150                         }
  151                         PROC_UNLOCK(p);
  152                 }
  153                 sx_sunlock(&allproc_lock);
  154                 break;
  155 
  156         default:
  157                 error = EINVAL;
  158                 break;
  159         }
  160         if (low == PRIO_MAX + 1 && error == 0)
  161                 error = ESRCH;
  162         td->td_retval[0] = low;
  163         return (error);
  164 }
  165 
  166 #ifndef _SYS_SYSPROTO_H_
  167 struct setpriority_args {
  168         int     which;
  169         int     who;
  170         int     prio;
  171 };
  172 #endif
  173 /*
  174  * MPSAFE
  175  */
  176 int
  177 setpriority(td, uap)
  178         struct thread *td;
  179         struct setpriority_args *uap;
  180 {
  181         struct proc *curp, *p;
  182         struct pgrp *pg;
  183         int found = 0, error = 0;
  184 
  185         curp = td->td_proc;
  186         switch (uap->which) {
  187         case PRIO_PROCESS:
  188                 if (uap->who == 0) {
  189                         PROC_LOCK(curp);
  190                         error = donice(td, curp, uap->prio);
  191                         PROC_UNLOCK(curp);
  192                 } else {
  193                         p = pfind(uap->who);
  194                         if (p == 0)
  195                                 break;
  196                         if (p_cansee(td, p) == 0)
  197                                 error = donice(td, p, uap->prio);
  198                         PROC_UNLOCK(p);
  199                 }
  200                 found++;
  201                 break;
  202 
  203         case PRIO_PGRP:
  204                 sx_slock(&proctree_lock);
  205                 if (uap->who == 0) {
  206                         pg = curp->p_pgrp;
  207                         PGRP_LOCK(pg);
  208                 } else {
  209                         pg = pgfind(uap->who);
  210                         if (pg == NULL) {
  211                                 sx_sunlock(&proctree_lock);
  212                                 break;
  213                         }
  214                 }
  215                 sx_sunlock(&proctree_lock);
  216                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  217                         PROC_LOCK(p);
  218                         if (!p_cansee(td, p)) {
  219                                 error = donice(td, p, uap->prio);
  220                                 found++;
  221                         }
  222                         PROC_UNLOCK(p);
  223                 }
  224                 PGRP_UNLOCK(pg);
  225                 break;
  226 
  227         case PRIO_USER:
  228                 if (uap->who == 0)
  229                         uap->who = td->td_ucred->cr_uid;
  230                 sx_slock(&allproc_lock);
  231                 FOREACH_PROC_IN_SYSTEM(p) {
  232                         PROC_LOCK(p);
  233                         if (p->p_ucred->cr_uid == uap->who &&
  234                             !p_cansee(td, p)) {
  235                                 error = donice(td, p, uap->prio);
  236                                 found++;
  237                         }
  238                         PROC_UNLOCK(p);
  239                 }
  240                 sx_sunlock(&allproc_lock);
  241                 break;
  242 
  243         default:
  244                 error = EINVAL;
  245                 break;
  246         }
  247         if (found == 0 && error == 0)
  248                 error = ESRCH;
  249         return (error);
  250 }
  251 
  252 /*
  253  * Set "nice" for a (whole) process.
  254  */
  255 static int
  256 donice(struct thread *td, struct proc *p, int n)
  257 {
  258         int error;
  259 
  260         PROC_LOCK_ASSERT(p, MA_OWNED);
  261         if ((error = p_cansched(td, p)))
  262                 return (error);
  263         if (n > PRIO_MAX)
  264                 n = PRIO_MAX;
  265         if (n < PRIO_MIN)
  266                 n = PRIO_MIN;
  267         if (n < p->p_nice && suser(td) != 0)
  268                 return (EACCES);
  269         mtx_lock_spin(&sched_lock);
  270         sched_nice(p, n);
  271         mtx_unlock_spin(&sched_lock);
  272         return (0);
  273 }
  274 
  275 /*
  276  * Set realtime priority.
  277  *
  278  * MPSAFE
  279  */
  280 #ifndef _SYS_SYSPROTO_H_
  281 struct rtprio_args {
  282         int             function;
  283         pid_t           pid;
  284         struct rtprio   *rtp;
  285 };
  286 #endif
  287 
  288 int
  289 rtprio(td, uap)
  290         struct thread *td;              /* curthread */
  291         register struct rtprio_args *uap;
  292 {
  293         struct proc *curp;
  294         struct proc *p;
  295         struct ksegrp *kg;
  296         struct rtprio rtp;
  297         int cierror, error;
  298 
  299         /* Perform copyin before acquiring locks if needed. */
  300         if (uap->function == RTP_SET)
  301                 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
  302         else
  303                 cierror = 0;
  304 
  305         curp = td->td_proc;
  306         if (uap->pid == 0) {
  307                 p = curp;
  308                 PROC_LOCK(p);
  309         } else {
  310                 p = pfind(uap->pid);
  311                 if (p == NULL)
  312                         return (ESRCH);
  313         }
  314 
  315         switch (uap->function) {
  316         case RTP_LOOKUP:
  317                 if ((error = p_cansee(td, p)))
  318                         break;
  319                 mtx_lock_spin(&sched_lock);
  320                 /*
  321                  * Return OUR priority if no pid specified,
  322                  * or if one is, report the highest priority
  323                  * in the process.  There isn't much more you can do as 
  324                  * there is only room to return a single priority.
  325                  * XXXKSE: maybe need a new interface to report 
  326                  * priorities of multiple system scope threads.
  327                  * Note: specifying our own pid is not the same
  328                  * as leaving it zero.
  329                  */
  330                 if (uap->pid == 0) {
  331                         pri_to_rtp(td->td_ksegrp, &rtp);
  332                 } else {
  333                         struct rtprio rtp2;
  334 
  335                         rtp.type = RTP_PRIO_IDLE;
  336                         rtp.prio = RTP_PRIO_MAX;
  337                         FOREACH_KSEGRP_IN_PROC(p, kg) {
  338                                 pri_to_rtp(kg, &rtp2);
  339                                 if (rtp2.type <  rtp.type ||
  340                                     (rtp2.type == rtp.type &&
  341                                     rtp2.prio < rtp.prio)) {
  342                                         rtp.type = rtp2.type;
  343                                         rtp.prio = rtp2.prio;
  344                                 }
  345                         }
  346                 }
  347                 mtx_unlock_spin(&sched_lock);
  348                 PROC_UNLOCK(p);
  349                 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
  350         case RTP_SET:
  351                 if ((error = p_cansched(td, p)) || (error = cierror))
  352                         break;
  353 
  354                 /* Disallow setting rtprio in most cases if not superuser. */
  355                 if (suser(td) != 0) {
  356                         /* can't set someone else's */
  357                         if (uap->pid) {
  358                                 error = EPERM;
  359                                 break;
  360                         }
  361                         /* can't set realtime priority */
  362 /*
  363  * Realtime priority has to be restricted for reasons which should be
  364  * obvious.  However, for idle priority, there is a potential for
  365  * system deadlock if an idleprio process gains a lock on a resource
  366  * that other processes need (and the idleprio process can't run
  367  * due to a CPU-bound normal process).  Fix me!  XXX
  368  */
  369 #if 0
  370                         if (RTP_PRIO_IS_REALTIME(rtp.type)) {
  371 #else
  372                         if (rtp.type != RTP_PRIO_NORMAL) {
  373 #endif
  374                                 error = EPERM;
  375                                 break;
  376                         }
  377                 }
  378 
  379                 /*
  380                  * If we are setting our own priority, set just our
  381                  * KSEGRP but if we are doing another process,
  382                  * do all the groups on that process. If we
  383                  * specify our own pid we do the latter.
  384                  */
  385                 mtx_lock_spin(&sched_lock);
  386                 if (uap->pid == 0) {
  387                         error = rtp_to_pri(&rtp, td->td_ksegrp);
  388                 } else {
  389                         FOREACH_KSEGRP_IN_PROC(p, kg) {
  390                                 if ((error = rtp_to_pri(&rtp, kg)) != 0) {
  391                                         break;
  392                                 }
  393                         }
  394                 }
  395                 mtx_unlock_spin(&sched_lock);
  396                 break;
  397         default:
  398                 error = EINVAL;
  399                 break;
  400         }
  401         PROC_UNLOCK(p);
  402         return (error);
  403 }
  404 
  405 int
  406 rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg)
  407 {
  408 
  409         mtx_assert(&sched_lock, MA_OWNED);
  410         if (rtp->prio > RTP_PRIO_MAX)
  411                 return (EINVAL);
  412         switch (RTP_PRIO_BASE(rtp->type)) {
  413         case RTP_PRIO_REALTIME:
  414                 kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio;
  415                 break;
  416         case RTP_PRIO_NORMAL:
  417                 kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio;
  418                 break;
  419         case RTP_PRIO_IDLE:
  420                 kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio;
  421                 break;
  422         default:
  423                 return (EINVAL);
  424         }
  425         sched_class(kg, rtp->type);
  426         if (curthread->td_ksegrp == kg) {
  427                 sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */
  428         }
  429         return (0);
  430 }
  431 
  432 void
  433 pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp)
  434 {
  435 
  436         mtx_assert(&sched_lock, MA_OWNED);
  437         switch (PRI_BASE(kg->kg_pri_class)) {
  438         case PRI_REALTIME:
  439                 rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME;
  440                 break;
  441         case PRI_TIMESHARE:
  442                 rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE;
  443                 break;
  444         case PRI_IDLE:
  445                 rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE;
  446                 break;
  447         default:
  448                 break;
  449         }
  450         rtp->type = kg->kg_pri_class;
  451 }
  452 
  453 #if defined(COMPAT_43)
  454 #ifndef _SYS_SYSPROTO_H_
  455 struct osetrlimit_args {
  456         u_int   which;
  457         struct  orlimit *rlp;
  458 };
  459 #endif
  460 /*
  461  * MPSAFE
  462  */
  463 int
  464 osetrlimit(td, uap)
  465         struct thread *td;
  466         register struct osetrlimit_args *uap;
  467 {
  468         struct orlimit olim;
  469         struct rlimit lim;
  470         int error;
  471 
  472         if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
  473                 return (error);
  474         lim.rlim_cur = olim.rlim_cur;
  475         lim.rlim_max = olim.rlim_max;
  476         error = kern_setrlimit(td, uap->which, &lim);
  477         return (error);
  478 }
  479 
  480 #ifndef _SYS_SYSPROTO_H_
  481 struct ogetrlimit_args {
  482         u_int   which;
  483         struct  orlimit *rlp;
  484 };
  485 #endif
  486 /*
  487  * MPSAFE
  488  */
  489 int
  490 ogetrlimit(td, uap)
  491         struct thread *td;
  492         register struct ogetrlimit_args *uap;
  493 {
  494         struct orlimit olim;
  495         struct rlimit rl;
  496         struct proc *p;
  497         int error;
  498 
  499         if (uap->which >= RLIM_NLIMITS)
  500                 return (EINVAL);
  501         p = td->td_proc;
  502         PROC_LOCK(p);
  503         lim_rlimit(p, uap->which, &rl);
  504         PROC_UNLOCK(p);
  505 
  506         /*
  507          * XXX would be more correct to convert only RLIM_INFINITY to the
  508          * old RLIM_INFINITY and fail with EOVERFLOW for other larger
  509          * values.  Most 64->32 and 32->16 conversions, including not
  510          * unimportant ones of uids are even more broken than what we
  511          * do here (they blindly truncate).  We don't do this correctly
  512          * here since we have little experience with EOVERFLOW yet.
  513          * Elsewhere, getuid() can't fail...
  514          */
  515         olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
  516         olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
  517         error = copyout(&olim, uap->rlp, sizeof(olim));
  518         return (error);
  519 }
  520 #endif /* COMPAT_43 */
  521 
  522 #ifndef _SYS_SYSPROTO_H_
  523 struct __setrlimit_args {
  524         u_int   which;
  525         struct  rlimit *rlp;
  526 };
  527 #endif
  528 /*
  529  * MPSAFE
  530  */
  531 int
  532 setrlimit(td, uap)
  533         struct thread *td;
  534         register struct __setrlimit_args *uap;
  535 {
  536         struct rlimit alim;
  537         int error;
  538 
  539         if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
  540                 return (error);
  541         error = kern_setrlimit(td, uap->which, &alim);
  542         return (error);
  543 }
  544 
  545 int
  546 kern_setrlimit(td, which, limp)
  547         struct thread *td;
  548         u_int which;
  549         struct rlimit *limp;
  550 {
  551         struct plimit *newlim, *oldlim;
  552         struct proc *p;
  553         register struct rlimit *alimp;
  554         rlim_t oldssiz;
  555         int error;
  556 
  557         if (which >= RLIM_NLIMITS)
  558                 return (EINVAL);
  559 
  560         /*
  561          * Preserve historical bugs by treating negative limits as unsigned.
  562          */
  563         if (limp->rlim_cur < 0)
  564                 limp->rlim_cur = RLIM_INFINITY;
  565         if (limp->rlim_max < 0)
  566                 limp->rlim_max = RLIM_INFINITY;
  567 
  568         oldssiz = 0;
  569         p = td->td_proc;
  570         newlim = lim_alloc();
  571         PROC_LOCK(p);
  572         oldlim = p->p_limit;
  573         alimp = &oldlim->pl_rlimit[which];
  574         if (limp->rlim_cur > alimp->rlim_max ||
  575             limp->rlim_max > alimp->rlim_max)
  576                 if ((error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL))) {
  577                         PROC_UNLOCK(p);
  578                         lim_free(newlim);
  579                         return (error);
  580                 }
  581         if (limp->rlim_cur > limp->rlim_max)
  582                 limp->rlim_cur = limp->rlim_max;
  583         lim_copy(newlim, oldlim);
  584         alimp = &newlim->pl_rlimit[which];
  585 
  586         switch (which) {
  587 
  588         case RLIMIT_CPU:
  589                 mtx_lock_spin(&sched_lock);
  590                 p->p_cpulimit = limp->rlim_cur;
  591                 mtx_unlock_spin(&sched_lock);
  592                 break;
  593         case RLIMIT_DATA:
  594                 if (limp->rlim_cur > maxdsiz)
  595                         limp->rlim_cur = maxdsiz;
  596                 if (limp->rlim_max > maxdsiz)
  597                         limp->rlim_max = maxdsiz;
  598                 break;
  599 
  600         case RLIMIT_STACK:
  601                 if (limp->rlim_cur > maxssiz)
  602                         limp->rlim_cur = maxssiz;
  603                 if (limp->rlim_max > maxssiz)
  604                         limp->rlim_max = maxssiz;
  605                 oldssiz = alimp->rlim_cur;
  606                 break;
  607 
  608         case RLIMIT_NOFILE:
  609                 if (limp->rlim_cur > maxfilesperproc)
  610                         limp->rlim_cur = maxfilesperproc;
  611                 if (limp->rlim_max > maxfilesperproc)
  612                         limp->rlim_max = maxfilesperproc;
  613                 break;
  614 
  615         case RLIMIT_NPROC:
  616                 if (limp->rlim_cur > maxprocperuid)
  617                         limp->rlim_cur = maxprocperuid;
  618                 if (limp->rlim_max > maxprocperuid)
  619                         limp->rlim_max = maxprocperuid;
  620                 if (limp->rlim_cur < 1)
  621                         limp->rlim_cur = 1;
  622                 if (limp->rlim_max < 1)
  623                         limp->rlim_max = 1;
  624                 break;
  625         }
  626         *alimp = *limp;
  627         p->p_limit = newlim;
  628         PROC_UNLOCK(p);
  629         lim_free(oldlim);
  630 
  631         if (which == RLIMIT_STACK) {
  632                 /*
  633                  * Stack is allocated to the max at exec time with only
  634                  * "rlim_cur" bytes accessible.  If stack limit is going
  635                  * up make more accessible, if going down make inaccessible.
  636                  */
  637                 if (limp->rlim_cur != oldssiz) {
  638                         vm_offset_t addr;
  639                         vm_size_t size;
  640                         vm_prot_t prot;
  641 
  642                         if (limp->rlim_cur > oldssiz) {
  643                                 prot = p->p_sysent->sv_stackprot;
  644                                 size = limp->rlim_cur - oldssiz;
  645                                 addr = p->p_sysent->sv_usrstack -
  646                                     limp->rlim_cur;
  647                         } else {
  648                                 prot = VM_PROT_NONE;
  649                                 size = oldssiz - limp->rlim_cur;
  650                                 addr = p->p_sysent->sv_usrstack - oldssiz;
  651                         }
  652                         addr = trunc_page(addr);
  653                         size = round_page(size);
  654                         (void)vm_map_protect(&p->p_vmspace->vm_map,
  655                             addr, addr + size, prot, FALSE);
  656                 }
  657         }
  658 
  659         if (td->td_proc->p_sysent->sv_fixlimits != NULL) {
  660                 struct image_params imgp;
  661 
  662                 imgp.proc = td->td_proc;
  663                 td->td_proc->p_sysent->sv_fixlimits(&imgp);
  664         }
  665         return (0);
  666 }
  667 
  668 #ifndef _SYS_SYSPROTO_H_
  669 struct __getrlimit_args {
  670         u_int   which;
  671         struct  rlimit *rlp;
  672 };
  673 #endif
  674 /*
  675  * MPSAFE
  676  */
  677 /* ARGSUSED */
  678 int
  679 getrlimit(td, uap)
  680         struct thread *td;
  681         register struct __getrlimit_args *uap;
  682 {
  683         struct rlimit rlim;
  684         struct proc *p;
  685         int error;
  686 
  687         if (uap->which >= RLIM_NLIMITS)
  688                 return (EINVAL);
  689         p = td->td_proc;
  690         PROC_LOCK(p);
  691         lim_rlimit(p, uap->which, &rlim);
  692         PROC_UNLOCK(p);
  693         error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
  694         return (error);
  695 }
  696 
  697 /*
  698  * Transform the running time and tick information in proc p into user,
  699  * system, and interrupt time usage.
  700  */
  701 void
  702 calcru(p, up, sp)
  703         struct proc *p;
  704         struct timeval *up;
  705         struct timeval *sp;
  706 {
  707         struct bintime bt;
  708         struct rusage_ext rux;
  709         struct thread *td;
  710         int bt_valid;
  711 
  712         PROC_LOCK_ASSERT(p, MA_OWNED);
  713         mtx_assert(&sched_lock, MA_NOTOWNED);
  714         bt_valid = 0;
  715         mtx_lock_spin(&sched_lock);
  716         rux = p->p_rux;
  717         FOREACH_THREAD_IN_PROC(p, td) {
  718                 if (TD_IS_RUNNING(td)) {
  719                         /*
  720                          * Adjust for the current time slice.  This is
  721                          * actually fairly important since the error here is
  722                          * on the order of a time quantum which is much
  723                          * greater than the precision of binuptime().
  724                          */
  725                         KASSERT(td->td_oncpu != NOCPU,
  726                             ("%s: running thread has no CPU", __func__));
  727                         if (!bt_valid) {
  728                                 binuptime(&bt);
  729                                 bt_valid = 1;
  730                         }
  731                         bintime_add(&rux.rux_runtime, &bt);
  732                         bintime_sub(&rux.rux_runtime,
  733                             &pcpu_find(td->td_oncpu)->pc_switchtime);
  734                 }
  735         }
  736         mtx_unlock_spin(&sched_lock);
  737         calcru1(p, &rux, up, sp);
  738         p->p_rux.rux_uu = rux.rux_uu;
  739         p->p_rux.rux_su = rux.rux_su;
  740         p->p_rux.rux_iu = rux.rux_iu;
  741 }
  742 
  743 void
  744 calccru(p, up, sp)
  745         struct proc *p;
  746         struct timeval *up;
  747         struct timeval *sp;
  748 {
  749 
  750         PROC_LOCK_ASSERT(p, MA_OWNED);
  751         calcru1(p, &p->p_crux, up, sp);
  752 }
  753 
  754 static void
  755 calcru1(p, ruxp, up, sp)
  756         struct proc *p;
  757         struct rusage_ext *ruxp;
  758         struct timeval *up;
  759         struct timeval *sp;
  760 {
  761         struct timeval tv;
  762         /* {user, system, interrupt, total} {ticks, usec}; previous tu: */
  763         u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu;
  764 
  765         ut = ruxp->rux_uticks;
  766         st = ruxp->rux_sticks;
  767         it = ruxp->rux_iticks;
  768         tt = ut + st + it;
  769         if (tt == 0) {
  770                 st = 1;
  771                 tt = 1;
  772         }
  773         bintime2timeval(&ruxp->rux_runtime, &tv);
  774         tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
  775         ptu = ruxp->rux_uu + ruxp->rux_su + ruxp->rux_iu;
  776         if (tu < ptu) {
  777                 printf(
  778 "calcru: runtime went backwards from %ju usec to %ju usec for pid %d (%s)\n",
  779                     (uintmax_t)ptu, (uintmax_t)tu, p->p_pid, p->p_comm);
  780                 tu = ptu;
  781         }
  782         if ((int64_t)tu < 0) {
  783                 printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
  784                     (intmax_t)tu, p->p_pid, p->p_comm);
  785                 tu = ptu;
  786         }
  787 
  788         /* Subdivide tu. */
  789         uu = (tu * ut) / tt;
  790         su = (tu * st) / tt;
  791         iu = tu - uu - su;
  792 
  793         /* Enforce monotonicity. */
  794         if (uu < ruxp->rux_uu || su < ruxp->rux_su || iu < ruxp->rux_iu) {
  795                 if (uu < ruxp->rux_uu)
  796                         uu = ruxp->rux_uu;
  797                 else if (uu + ruxp->rux_su + ruxp->rux_iu > tu)
  798                         uu = tu - ruxp->rux_su - ruxp->rux_iu;
  799                 if (st == 0)
  800                         su = ruxp->rux_su;
  801                 else {
  802                         su = ((tu - uu) * st) / (st + it);
  803                         if (su < ruxp->rux_su)
  804                                 su = ruxp->rux_su;
  805                         else if (uu + su + ruxp->rux_iu > tu)
  806                                 su = tu - uu - ruxp->rux_iu;
  807                 }
  808                 KASSERT(uu + su + ruxp->rux_iu <= tu,
  809                     ("calcru: monotonisation botch 1"));
  810                 iu = tu - uu - su;
  811                 KASSERT(iu >= ruxp->rux_iu,
  812                     ("calcru: monotonisation botch 2"));
  813         }
  814         ruxp->rux_uu = uu;
  815         ruxp->rux_su = su;
  816         ruxp->rux_iu = iu;
  817 
  818         up->tv_sec = uu / 1000000;
  819         up->tv_usec = uu % 1000000;
  820         sp->tv_sec = su / 1000000;
  821         sp->tv_usec = su % 1000000;
  822 }
  823 
  824 #ifndef _SYS_SYSPROTO_H_
  825 struct getrusage_args {
  826         int     who;
  827         struct  rusage *rusage;
  828 };
  829 #endif
  830 /*
  831  * MPSAFE
  832  */
  833 int
  834 getrusage(td, uap)
  835         register struct thread *td;
  836         register struct getrusage_args *uap;
  837 {
  838         struct rusage ru;
  839         int error;
  840 
  841         error = kern_getrusage(td, uap->who, &ru);
  842         if (error == 0)
  843                 error = copyout(&ru, uap->rusage, sizeof(struct rusage));
  844         return (error);
  845 }
  846 
  847 int
  848 kern_getrusage(td, who, rup)
  849         struct thread *td;
  850         int who;
  851         struct rusage *rup;
  852 {
  853         struct proc *p;
  854 
  855         p = td->td_proc;
  856         PROC_LOCK(p);
  857         switch (who) {
  858 
  859         case RUSAGE_SELF:
  860                 *rup = p->p_stats->p_ru;
  861                 calcru(p, &rup->ru_utime, &rup->ru_stime);
  862                 break;
  863 
  864         case RUSAGE_CHILDREN:
  865                 *rup = p->p_stats->p_cru;
  866                 calccru(p, &rup->ru_utime, &rup->ru_stime);
  867                 break;
  868 
  869         default:
  870                 PROC_UNLOCK(p);
  871                 return (EINVAL);
  872         }
  873         PROC_UNLOCK(p);
  874         return (0);
  875 }
  876 
  877 void
  878 ruadd(ru, rux, ru2, rux2)
  879         struct rusage *ru;
  880         struct rusage_ext *rux;
  881         struct rusage *ru2;
  882         struct rusage_ext *rux2;
  883 {
  884         register long *ip, *ip2;
  885         register int i;
  886 
  887         bintime_add(&rux->rux_runtime, &rux2->rux_runtime);
  888         rux->rux_uticks += rux2->rux_uticks;
  889         rux->rux_sticks += rux2->rux_sticks;
  890         rux->rux_iticks += rux2->rux_iticks;
  891         rux->rux_uu += rux2->rux_uu;
  892         rux->rux_su += rux2->rux_su;
  893         rux->rux_iu += rux2->rux_iu;
  894         if (ru->ru_maxrss < ru2->ru_maxrss)
  895                 ru->ru_maxrss = ru2->ru_maxrss;
  896         ip = &ru->ru_first;
  897         ip2 = &ru2->ru_first;
  898         for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
  899                 *ip++ += *ip2++;
  900 }
  901 
  902 /*
  903  * Allocate a new resource limits structure and initialize its
  904  * reference count and mutex pointer.
  905  */
  906 struct plimit *
  907 lim_alloc()
  908 {
  909         struct plimit *limp;
  910 
  911         limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
  912         limp->pl_refcnt = 1;
  913         limp->pl_mtx = mtx_pool_alloc(mtxpool_sleep);
  914         return (limp);
  915 }
  916 
  917 struct plimit *
  918 lim_hold(limp)
  919         struct plimit *limp;
  920 {
  921 
  922         LIM_LOCK(limp);
  923         limp->pl_refcnt++;
  924         LIM_UNLOCK(limp);
  925         return (limp);
  926 }
  927 
  928 void
  929 lim_free(limp)
  930         struct plimit *limp;
  931 {
  932 
  933         LIM_LOCK(limp);
  934         KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
  935         if (--limp->pl_refcnt == 0) {
  936                 LIM_UNLOCK(limp);
  937                 free((void *)limp, M_PLIMIT);
  938                 return;
  939         }
  940         LIM_UNLOCK(limp);
  941 }
  942 
  943 /*
  944  * Make a copy of the plimit structure.
  945  * We share these structures copy-on-write after fork.
  946  */
  947 void
  948 lim_copy(dst, src)
  949         struct plimit *dst, *src;
  950 {
  951 
  952         KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
  953         bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
  954 }
  955 
  956 /*
  957  * Return the hard limit for a particular system resource.  The
  958  * which parameter specifies the index into the rlimit array.
  959  */
  960 rlim_t
  961 lim_max(struct proc *p, int which)
  962 {
  963         struct rlimit rl;
  964 
  965         lim_rlimit(p, which, &rl);
  966         return (rl.rlim_max);
  967 }
  968 
  969 /*
  970  * Return the current (soft) limit for a particular system resource.
  971  * The which parameter which specifies the index into the rlimit array
  972  */
  973 rlim_t
  974 lim_cur(struct proc *p, int which)
  975 {
  976         struct rlimit rl;
  977 
  978         lim_rlimit(p, which, &rl);
  979         return (rl.rlim_cur);
  980 }
  981 
  982 /*
  983  * Return a copy of the entire rlimit structure for the system limit
  984  * specified by 'which' in the rlimit structure pointed to by 'rlp'.
  985  */
  986 void
  987 lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
  988 {
  989 
  990         PROC_LOCK_ASSERT(p, MA_OWNED);
  991         KASSERT(which >= 0 && which < RLIM_NLIMITS,
  992             ("request for invalid resource limit"));
  993         *rlp = p->p_limit->pl_rlimit[which];
  994 }
  995 
  996 /*
  997  * Find the uidinfo structure for a uid.  This structure is used to
  998  * track the total resource consumption (process count, socket buffer
  999  * size, etc.) for the uid and impose limits.
 1000  */
 1001 void
 1002 uihashinit()
 1003 {
 1004 
 1005         uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
 1006         mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF);
 1007 }
 1008 
 1009 /*
 1010  * Look up a uidinfo struct for the parameter uid.
 1011  * uihashtbl_mtx must be locked.
 1012  */
 1013 static struct uidinfo *
 1014 uilookup(uid)
 1015         uid_t uid;
 1016 {
 1017         struct uihashhead *uipp;
 1018         struct uidinfo *uip;
 1019 
 1020         mtx_assert(&uihashtbl_mtx, MA_OWNED);
 1021         uipp = UIHASH(uid);
 1022         LIST_FOREACH(uip, uipp, ui_hash)
 1023                 if (uip->ui_uid == uid)
 1024                         break;
 1025 
 1026         return (uip);
 1027 }
 1028 
 1029 /*
 1030  * Find or allocate a struct uidinfo for a particular uid.
 1031  * Increase refcount on uidinfo struct returned.
 1032  * uifree() should be called on a struct uidinfo when released.
 1033  */
 1034 struct uidinfo *
 1035 uifind(uid)
 1036         uid_t uid;
 1037 {
 1038         struct uidinfo *old_uip, *uip;
 1039 
 1040         mtx_lock(&uihashtbl_mtx);
 1041         uip = uilookup(uid);
 1042         if (uip == NULL) {
 1043                 mtx_unlock(&uihashtbl_mtx);
 1044                 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
 1045                 mtx_lock(&uihashtbl_mtx);
 1046                 /*
 1047                  * There's a chance someone created our uidinfo while we
 1048                  * were in malloc and not holding the lock, so we have to
 1049                  * make sure we don't insert a duplicate uidinfo.
 1050                  */
 1051                 if ((old_uip = uilookup(uid)) != NULL) {
 1052                         /* Someone else beat us to it. */
 1053                         free(uip, M_UIDINFO);
 1054                         uip = old_uip;
 1055                 } else {
 1056                         uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep);
 1057                         uip->ui_uid = uid;
 1058                         LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
 1059                 }
 1060         }
 1061         uihold(uip);
 1062         mtx_unlock(&uihashtbl_mtx);
 1063         return (uip);
 1064 }
 1065 
 1066 /*
 1067  * Place another refcount on a uidinfo struct.
 1068  */
 1069 void
 1070 uihold(uip)
 1071         struct uidinfo *uip;
 1072 {
 1073 
 1074         UIDINFO_LOCK(uip);
 1075         uip->ui_ref++;
 1076         UIDINFO_UNLOCK(uip);
 1077 }
 1078 
 1079 /*-
 1080  * Since uidinfo structs have a long lifetime, we use an
 1081  * opportunistic refcounting scheme to avoid locking the lookup hash
 1082  * for each release.
 1083  *
 1084  * If the refcount hits 0, we need to free the structure,
 1085  * which means we need to lock the hash.
 1086  * Optimal case:
 1087  *   After locking the struct and lowering the refcount, if we find
 1088  *   that we don't need to free, simply unlock and return.
 1089  * Suboptimal case:
 1090  *   If refcount lowering results in need to free, bump the count
 1091  *   back up, loose the lock and aquire the locks in the proper
 1092  *   order to try again.
 1093  */
 1094 void
 1095 uifree(uip)
 1096         struct uidinfo *uip;
 1097 {
 1098 
 1099         /* Prepare for optimal case. */
 1100         UIDINFO_LOCK(uip);
 1101 
 1102         if (--uip->ui_ref != 0) {
 1103                 UIDINFO_UNLOCK(uip);
 1104                 return;
 1105         }
 1106 
 1107         /* Prepare for suboptimal case. */
 1108         uip->ui_ref++;
 1109         UIDINFO_UNLOCK(uip);
 1110         mtx_lock(&uihashtbl_mtx);
 1111         UIDINFO_LOCK(uip);
 1112 
 1113         /*
 1114          * We must subtract one from the count again because we backed out
 1115          * our initial subtraction before dropping the lock.
 1116          * Since another thread may have added a reference after we dropped the
 1117          * initial lock we have to test for zero again.
 1118          */
 1119         if (--uip->ui_ref == 0) {
 1120                 LIST_REMOVE(uip, ui_hash);
 1121                 mtx_unlock(&uihashtbl_mtx);
 1122                 if (uip->ui_sbsize != 0)
 1123                         printf("freeing uidinfo: uid = %d, sbsize = %jd\n",
 1124                             uip->ui_uid, (intmax_t)uip->ui_sbsize);
 1125                 if (uip->ui_proccnt != 0)
 1126                         printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
 1127                             uip->ui_uid, uip->ui_proccnt);
 1128                 UIDINFO_UNLOCK(uip);
 1129                 FREE(uip, M_UIDINFO);
 1130                 return;
 1131         }
 1132 
 1133         mtx_unlock(&uihashtbl_mtx);
 1134         UIDINFO_UNLOCK(uip);
 1135 }
 1136 
 1137 /*
 1138  * Change the count associated with number of processes
 1139  * a given user is using.  When 'max' is 0, don't enforce a limit
 1140  */
 1141 int
 1142 chgproccnt(uip, diff, max)
 1143         struct  uidinfo *uip;
 1144         int     diff;
 1145         int     max;
 1146 {
 1147 
 1148         UIDINFO_LOCK(uip);
 1149         /* Don't allow them to exceed max, but allow subtraction. */
 1150         if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
 1151                 UIDINFO_UNLOCK(uip);
 1152                 return (0);
 1153         }
 1154         uip->ui_proccnt += diff;
 1155         if (uip->ui_proccnt < 0)
 1156                 printf("negative proccnt for uid = %d\n", uip->ui_uid);
 1157         UIDINFO_UNLOCK(uip);
 1158         return (1);
 1159 }
 1160 
 1161 /*
 1162  * Change the total socket buffer size a user has used.
 1163  */
 1164 int
 1165 chgsbsize(uip, hiwat, to, max)
 1166         struct  uidinfo *uip;
 1167         u_int  *hiwat;
 1168         u_int   to;
 1169         rlim_t  max;
 1170 {
 1171         rlim_t new;
 1172 
 1173         UIDINFO_LOCK(uip);
 1174         new = uip->ui_sbsize + to - *hiwat;
 1175         /* Don't allow them to exceed max, but allow subtraction. */
 1176         if (to > *hiwat && new > max) {
 1177                 UIDINFO_UNLOCK(uip);
 1178                 return (0);
 1179         }
 1180         uip->ui_sbsize = new;
 1181         UIDINFO_UNLOCK(uip);
 1182         *hiwat = to;
 1183         if (new < 0)
 1184                 printf("negative sbsize for uid = %d\n", uip->ui_uid);
 1185         return (1);
 1186 }

Cache object: 2a0f07c6086845b27414c9dd37ebb9cc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.