The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_rmlock.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2007 Stephan Uphoff <ups@FreeBSD.org>
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the author nor the names of any co-contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  */
   31 
   32 /*
   33  * Machine independent bits of reader/writer lock implementation.
   34  */
   35 
   36 #include <sys/cdefs.h>
   37 __FBSDID("$FreeBSD$");
   38 
   39 #include "opt_ddb.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 
   44 #include <sys/kernel.h>
   45 #include <sys/kdb.h>
   46 #include <sys/ktr.h>
   47 #include <sys/lock.h>
   48 #include <sys/mutex.h>
   49 #include <sys/proc.h>
   50 #include <sys/rmlock.h>
   51 #include <sys/sched.h>
   52 #include <sys/smp.h>
   53 #include <sys/turnstile.h>
   54 #include <sys/lock_profile.h>
   55 #include <machine/cpu.h>
   56 #include <vm/uma.h>
   57 
   58 #ifdef DDB
   59 #include <ddb/ddb.h>
   60 #endif
   61 
   62 /*
   63  * A cookie to mark destroyed rmlocks.  This is stored in the head of
   64  * rm_activeReaders.
   65  */
   66 #define RM_DESTROYED    ((void *)0xdead)
   67 
   68 #define rm_destroyed(rm)                                                \
   69         (LIST_FIRST(&(rm)->rm_activeReaders) == RM_DESTROYED)
   70 
   71 #define RMPF_ONQUEUE    1
   72 #define RMPF_SIGNAL     2
   73 
   74 #ifndef INVARIANTS
   75 #define _rm_assert(c, what, file, line)
   76 #endif
   77 
   78 static void     assert_rm(const struct lock_object *lock, int what);
   79 #ifdef DDB
   80 static void     db_show_rm(const struct lock_object *lock);
   81 #endif
   82 static void     lock_rm(struct lock_object *lock, uintptr_t how);
   83 #ifdef KDTRACE_HOOKS
   84 static int      owner_rm(const struct lock_object *lock, struct thread **owner);
   85 #endif
   86 static uintptr_t unlock_rm(struct lock_object *lock);
   87 
   88 struct lock_class lock_class_rm = {
   89         .lc_name = "rm",
   90         .lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
   91         .lc_assert = assert_rm,
   92 #ifdef DDB
   93         .lc_ddb_show = db_show_rm,
   94 #endif
   95         .lc_lock = lock_rm,
   96         .lc_unlock = unlock_rm,
   97 #ifdef KDTRACE_HOOKS
   98         .lc_owner = owner_rm,
   99 #endif
  100 };
  101 
  102 struct lock_class lock_class_rm_sleepable = {
  103         .lc_name = "sleepable rm",
  104         .lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_RECURSABLE,
  105         .lc_assert = assert_rm,
  106 #ifdef DDB
  107         .lc_ddb_show = db_show_rm,
  108 #endif
  109         .lc_lock = lock_rm,
  110         .lc_unlock = unlock_rm,
  111 #ifdef KDTRACE_HOOKS
  112         .lc_owner = owner_rm,
  113 #endif
  114 };
  115 
  116 static void
  117 assert_rm(const struct lock_object *lock, int what)
  118 {
  119 
  120         rm_assert((const struct rmlock *)lock, what);
  121 }
  122 
  123 static void
  124 lock_rm(struct lock_object *lock, uintptr_t how)
  125 {
  126         struct rmlock *rm;
  127         struct rm_priotracker *tracker;
  128 
  129         rm = (struct rmlock *)lock;
  130         if (how == 0)
  131                 rm_wlock(rm);
  132         else {
  133                 tracker = (struct rm_priotracker *)how;
  134                 rm_rlock(rm, tracker);
  135         }
  136 }
  137 
  138 static uintptr_t
  139 unlock_rm(struct lock_object *lock)
  140 {
  141         struct thread *td;
  142         struct pcpu *pc;
  143         struct rmlock *rm;
  144         struct rm_queue *queue;
  145         struct rm_priotracker *tracker;
  146         uintptr_t how;
  147 
  148         rm = (struct rmlock *)lock;
  149         tracker = NULL;
  150         how = 0;
  151         rm_assert(rm, RA_LOCKED | RA_NOTRECURSED);
  152         if (rm_wowned(rm))
  153                 rm_wunlock(rm);
  154         else {
  155                 /*
  156                  * Find the right rm_priotracker structure for curthread.
  157                  * The guarantee about its uniqueness is given by the fact
  158                  * we already asserted the lock wasn't recursively acquired.
  159                  */
  160                 critical_enter();
  161                 td = curthread;
  162                 pc = get_pcpu();
  163                 for (queue = pc->pc_rm_queue.rmq_next;
  164                     queue != &pc->pc_rm_queue; queue = queue->rmq_next) {
  165                         tracker = (struct rm_priotracker *)queue;
  166                                 if ((tracker->rmp_rmlock == rm) &&
  167                                     (tracker->rmp_thread == td)) {
  168                                         how = (uintptr_t)tracker;
  169                                         break;
  170                                 }
  171                 }
  172                 KASSERT(tracker != NULL,
  173                     ("rm_priotracker is non-NULL when lock held in read mode"));
  174                 critical_exit();
  175                 rm_runlock(rm, tracker);
  176         }
  177         return (how);
  178 }
  179 
  180 #ifdef KDTRACE_HOOKS
  181 static int
  182 owner_rm(const struct lock_object *lock, struct thread **owner)
  183 {
  184         const struct rmlock *rm;
  185         struct lock_class *lc;
  186 
  187         rm = (const struct rmlock *)lock;
  188         lc = LOCK_CLASS(&rm->rm_wlock_object);
  189         return (lc->lc_owner(&rm->rm_wlock_object, owner));
  190 }
  191 #endif
  192 
  193 static struct mtx rm_spinlock;
  194 
  195 MTX_SYSINIT(rm_spinlock, &rm_spinlock, "rm_spinlock", MTX_SPIN);
  196 
  197 /*
  198  * Add or remove tracker from per-cpu list.
  199  *
  200  * The per-cpu list can be traversed at any time in forward direction from an
  201  * interrupt on the *local* cpu.
  202  */
  203 static void inline
  204 rm_tracker_add(struct pcpu *pc, struct rm_priotracker *tracker)
  205 {
  206         struct rm_queue *next;
  207 
  208         /* Initialize all tracker pointers */
  209         tracker->rmp_cpuQueue.rmq_prev = &pc->pc_rm_queue;
  210         next = pc->pc_rm_queue.rmq_next;
  211         tracker->rmp_cpuQueue.rmq_next = next;
  212 
  213         /* rmq_prev is not used during froward traversal. */
  214         next->rmq_prev = &tracker->rmp_cpuQueue;
  215 
  216         /* Update pointer to first element. */
  217         pc->pc_rm_queue.rmq_next = &tracker->rmp_cpuQueue;
  218 }
  219 
  220 /*
  221  * Return a count of the number of trackers the thread 'td' already
  222  * has on this CPU for the lock 'rm'.
  223  */
  224 static int
  225 rm_trackers_present(const struct pcpu *pc, const struct rmlock *rm,
  226     const struct thread *td)
  227 {
  228         struct rm_queue *queue;
  229         struct rm_priotracker *tracker;
  230         int count;
  231 
  232         count = 0;
  233         for (queue = pc->pc_rm_queue.rmq_next; queue != &pc->pc_rm_queue;
  234             queue = queue->rmq_next) {
  235                 tracker = (struct rm_priotracker *)queue;
  236                 if ((tracker->rmp_rmlock == rm) && (tracker->rmp_thread == td))
  237                         count++;
  238         }
  239         return (count);
  240 }
  241 
  242 static void inline
  243 rm_tracker_remove(struct pcpu *pc, struct rm_priotracker *tracker)
  244 {
  245         struct rm_queue *next, *prev;
  246 
  247         next = tracker->rmp_cpuQueue.rmq_next;
  248         prev = tracker->rmp_cpuQueue.rmq_prev;
  249 
  250         /* Not used during forward traversal. */
  251         next->rmq_prev = prev;
  252 
  253         /* Remove from list. */
  254         prev->rmq_next = next;
  255 }
  256 
  257 static void
  258 rm_cleanIPI(void *arg)
  259 {
  260         struct pcpu *pc;
  261         struct rmlock *rm = arg;
  262         struct rm_priotracker *tracker;
  263         struct rm_queue *queue;
  264         pc = get_pcpu();
  265 
  266         for (queue = pc->pc_rm_queue.rmq_next; queue != &pc->pc_rm_queue;
  267             queue = queue->rmq_next) {
  268                 tracker = (struct rm_priotracker *)queue;
  269                 if (tracker->rmp_rmlock == rm && tracker->rmp_flags == 0) {
  270                         tracker->rmp_flags = RMPF_ONQUEUE;
  271                         mtx_lock_spin(&rm_spinlock);
  272                         LIST_INSERT_HEAD(&rm->rm_activeReaders, tracker,
  273                             rmp_qentry);
  274                         mtx_unlock_spin(&rm_spinlock);
  275                 }
  276         }
  277 }
  278 
  279 void
  280 rm_init_flags(struct rmlock *rm, const char *name, int opts)
  281 {
  282         struct lock_class *lc;
  283         int liflags, xflags;
  284 
  285         liflags = 0;
  286         if (!(opts & RM_NOWITNESS))
  287                 liflags |= LO_WITNESS;
  288         if (opts & RM_RECURSE)
  289                 liflags |= LO_RECURSABLE;
  290         if (opts & RM_NEW)
  291                 liflags |= LO_NEW;
  292         rm->rm_writecpus = all_cpus;
  293         LIST_INIT(&rm->rm_activeReaders);
  294         if (opts & RM_SLEEPABLE) {
  295                 liflags |= LO_SLEEPABLE;
  296                 lc = &lock_class_rm_sleepable;
  297                 xflags = (opts & RM_NEW ? SX_NEW : 0);
  298                 sx_init_flags(&rm->rm_lock_sx, "rmlock_sx",
  299                     xflags | SX_NOWITNESS);
  300         } else {
  301                 lc = &lock_class_rm;
  302                 xflags = (opts & RM_NEW ? MTX_NEW : 0);
  303                 mtx_init(&rm->rm_lock_mtx, name, "rmlock_mtx",
  304                     xflags | MTX_NOWITNESS);
  305         }
  306         lock_init(&rm->lock_object, lc, name, NULL, liflags);
  307 }
  308 
  309 void
  310 rm_init(struct rmlock *rm, const char *name)
  311 {
  312 
  313         rm_init_flags(rm, name, 0);
  314 }
  315 
  316 void
  317 rm_destroy(struct rmlock *rm)
  318 {
  319 
  320         rm_assert(rm, RA_UNLOCKED);
  321         LIST_FIRST(&rm->rm_activeReaders) = RM_DESTROYED;
  322         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
  323                 sx_destroy(&rm->rm_lock_sx);
  324         else
  325                 mtx_destroy(&rm->rm_lock_mtx);
  326         lock_destroy(&rm->lock_object);
  327 }
  328 
  329 int
  330 rm_wowned(const struct rmlock *rm)
  331 {
  332 
  333         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
  334                 return (sx_xlocked(&rm->rm_lock_sx));
  335         else
  336                 return (mtx_owned(&rm->rm_lock_mtx));
  337 }
  338 
  339 void
  340 rm_sysinit(void *arg)
  341 {
  342         struct rm_args *args;
  343 
  344         args = arg;
  345         rm_init_flags(args->ra_rm, args->ra_desc, args->ra_flags);
  346 }
  347 
  348 static __noinline int
  349 _rm_rlock_hard(struct rmlock *rm, struct rm_priotracker *tracker, int trylock)
  350 {
  351         struct pcpu *pc;
  352 
  353         critical_enter();
  354         pc = get_pcpu();
  355 
  356         /* Check if we just need to do a proper critical_exit. */
  357         if (!CPU_ISSET(pc->pc_cpuid, &rm->rm_writecpus)) {
  358                 critical_exit();
  359                 return (1);
  360         }
  361 
  362         /* Remove our tracker from the per-cpu list. */
  363         rm_tracker_remove(pc, tracker);
  364 
  365         /*
  366          * Check to see if the IPI granted us the lock after all.  The load of
  367          * rmp_flags must happen after the tracker is removed from the list.
  368          */
  369         atomic_interrupt_fence();
  370         if (tracker->rmp_flags) {
  371                 /* Just add back tracker - we hold the lock. */
  372                 rm_tracker_add(pc, tracker);
  373                 critical_exit();
  374                 return (1);
  375         }
  376 
  377         /*
  378          * We allow readers to acquire a lock even if a writer is blocked if
  379          * the lock is recursive and the reader already holds the lock.
  380          */
  381         if ((rm->lock_object.lo_flags & LO_RECURSABLE) != 0) {
  382                 /*
  383                  * Just grant the lock if this thread already has a tracker
  384                  * for this lock on the per-cpu queue.
  385                  */
  386                 if (rm_trackers_present(pc, rm, curthread) != 0) {
  387                         mtx_lock_spin(&rm_spinlock);
  388                         LIST_INSERT_HEAD(&rm->rm_activeReaders, tracker,
  389                             rmp_qentry);
  390                         tracker->rmp_flags = RMPF_ONQUEUE;
  391                         mtx_unlock_spin(&rm_spinlock);
  392                         rm_tracker_add(pc, tracker);
  393                         critical_exit();
  394                         return (1);
  395                 }
  396         }
  397 
  398         sched_unpin();
  399         critical_exit();
  400 
  401         if (trylock) {
  402                 if (rm->lock_object.lo_flags & LO_SLEEPABLE) {
  403                         if (!sx_try_xlock(&rm->rm_lock_sx))
  404                                 return (0);
  405                 } else {
  406                         if (!mtx_trylock(&rm->rm_lock_mtx))
  407                                 return (0);
  408                 }
  409         } else {
  410                 if (rm->lock_object.lo_flags & LO_SLEEPABLE) {
  411                         THREAD_SLEEPING_OK();
  412                         sx_xlock(&rm->rm_lock_sx);
  413                         THREAD_NO_SLEEPING();
  414                 } else
  415                         mtx_lock(&rm->rm_lock_mtx);
  416         }
  417 
  418         critical_enter();
  419         pc = get_pcpu();
  420         CPU_CLR(pc->pc_cpuid, &rm->rm_writecpus);
  421         rm_tracker_add(pc, tracker);
  422         sched_pin();
  423         critical_exit();
  424 
  425         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
  426                 sx_xunlock(&rm->rm_lock_sx);
  427         else
  428                 mtx_unlock(&rm->rm_lock_mtx);
  429 
  430         return (1);
  431 }
  432 
  433 int
  434 _rm_rlock(struct rmlock *rm, struct rm_priotracker *tracker, int trylock)
  435 {
  436         struct thread *td = curthread;
  437         struct pcpu *pc;
  438 
  439         if (SCHEDULER_STOPPED())
  440                 return (1);
  441 
  442         tracker->rmp_flags  = 0;
  443         tracker->rmp_thread = td;
  444         tracker->rmp_rmlock = rm;
  445 
  446         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
  447                 THREAD_NO_SLEEPING();
  448 
  449         td->td_critnest++;      /* critical_enter(); */
  450 
  451         atomic_interrupt_fence();
  452 
  453         pc = cpuid_to_pcpu[td->td_oncpu]; /* pcpu_find(td->td_oncpu); */
  454 
  455         rm_tracker_add(pc, tracker);
  456 
  457         sched_pin();
  458 
  459         atomic_interrupt_fence();
  460 
  461         td->td_critnest--;
  462 
  463         /*
  464          * Fast path to combine two common conditions into a single
  465          * conditional jump.
  466          */
  467         if (__predict_true(0 == (td->td_owepreempt |
  468             CPU_ISSET(pc->pc_cpuid, &rm->rm_writecpus))))
  469                 return (1);
  470 
  471         /* We do not have a read token and need to acquire one. */
  472         return _rm_rlock_hard(rm, tracker, trylock);
  473 }
  474 
  475 static __noinline void
  476 _rm_unlock_hard(struct thread *td,struct rm_priotracker *tracker)
  477 {
  478 
  479         if (td->td_owepreempt) {
  480                 td->td_critnest++;
  481                 critical_exit();
  482         }
  483 
  484         if (!tracker->rmp_flags)
  485                 return;
  486 
  487         mtx_lock_spin(&rm_spinlock);
  488         LIST_REMOVE(tracker, rmp_qentry);
  489 
  490         if (tracker->rmp_flags & RMPF_SIGNAL) {
  491                 struct rmlock *rm;
  492                 struct turnstile *ts;
  493 
  494                 rm = tracker->rmp_rmlock;
  495 
  496                 turnstile_chain_lock(&rm->lock_object);
  497                 mtx_unlock_spin(&rm_spinlock);
  498 
  499                 ts = turnstile_lookup(&rm->lock_object);
  500 
  501                 turnstile_signal(ts, TS_EXCLUSIVE_QUEUE);
  502                 turnstile_unpend(ts);
  503                 turnstile_chain_unlock(&rm->lock_object);
  504         } else
  505                 mtx_unlock_spin(&rm_spinlock);
  506 }
  507 
  508 void
  509 _rm_runlock(struct rmlock *rm, struct rm_priotracker *tracker)
  510 {
  511         struct pcpu *pc;
  512         struct thread *td = tracker->rmp_thread;
  513 
  514         if (SCHEDULER_STOPPED())
  515                 return;
  516 
  517         td->td_critnest++;      /* critical_enter(); */
  518         pc = cpuid_to_pcpu[td->td_oncpu]; /* pcpu_find(td->td_oncpu); */
  519         rm_tracker_remove(pc, tracker);
  520         td->td_critnest--;
  521         sched_unpin();
  522 
  523         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
  524                 THREAD_SLEEPING_OK();
  525 
  526         if (__predict_true(0 == (td->td_owepreempt | tracker->rmp_flags)))
  527                 return;
  528 
  529         _rm_unlock_hard(td, tracker);
  530 }
  531 
  532 void
  533 _rm_wlock(struct rmlock *rm)
  534 {
  535         struct rm_priotracker *prio;
  536         struct turnstile *ts;
  537         cpuset_t readcpus;
  538 
  539         if (SCHEDULER_STOPPED())
  540                 return;
  541 
  542         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
  543                 sx_xlock(&rm->rm_lock_sx);
  544         else
  545                 mtx_lock(&rm->rm_lock_mtx);
  546 
  547         if (CPU_CMP(&rm->rm_writecpus, &all_cpus)) {
  548                 /* Get all read tokens back */
  549                 readcpus = all_cpus;
  550                 CPU_ANDNOT(&readcpus, &rm->rm_writecpus);
  551                 rm->rm_writecpus = all_cpus;
  552 
  553                 /*
  554                  * Assumes rm->rm_writecpus update is visible on other CPUs
  555                  * before rm_cleanIPI is called.
  556                  */
  557 #ifdef SMP
  558                 smp_rendezvous_cpus(readcpus,
  559                     smp_no_rendezvous_barrier,
  560                     rm_cleanIPI,
  561                     smp_no_rendezvous_barrier,
  562                     rm);
  563 
  564 #else
  565                 rm_cleanIPI(rm);
  566 #endif
  567 
  568                 mtx_lock_spin(&rm_spinlock);
  569                 while ((prio = LIST_FIRST(&rm->rm_activeReaders)) != NULL) {
  570                         ts = turnstile_trywait(&rm->lock_object);
  571                         prio->rmp_flags = RMPF_ONQUEUE | RMPF_SIGNAL;
  572                         mtx_unlock_spin(&rm_spinlock);
  573                         turnstile_wait(ts, prio->rmp_thread,
  574                             TS_EXCLUSIVE_QUEUE);
  575                         mtx_lock_spin(&rm_spinlock);
  576                 }
  577                 mtx_unlock_spin(&rm_spinlock);
  578         }
  579 }
  580 
  581 void
  582 _rm_wunlock(struct rmlock *rm)
  583 {
  584 
  585         if (rm->lock_object.lo_flags & LO_SLEEPABLE)
  586                 sx_xunlock(&rm->rm_lock_sx);
  587         else
  588                 mtx_unlock(&rm->rm_lock_mtx);
  589 }
  590 
  591 #if LOCK_DEBUG > 0
  592 
  593 void
  594 _rm_wlock_debug(struct rmlock *rm, const char *file, int line)
  595 {
  596 
  597         if (SCHEDULER_STOPPED())
  598                 return;
  599 
  600         KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
  601             ("rm_wlock() by idle thread %p on rmlock %s @ %s:%d",
  602             curthread, rm->lock_object.lo_name, file, line));
  603         KASSERT(!rm_destroyed(rm),
  604             ("rm_wlock() of destroyed rmlock @ %s:%d", file, line));
  605         _rm_assert(rm, RA_UNLOCKED, file, line);
  606 
  607         WITNESS_CHECKORDER(&rm->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE,
  608             file, line, NULL);
  609 
  610         _rm_wlock(rm);
  611 
  612         LOCK_LOG_LOCK("RMWLOCK", &rm->lock_object, 0, 0, file, line);
  613         WITNESS_LOCK(&rm->lock_object, LOP_EXCLUSIVE, file, line);
  614         TD_LOCKS_INC(curthread);
  615 }
  616 
  617 void
  618 _rm_wunlock_debug(struct rmlock *rm, const char *file, int line)
  619 {
  620 
  621         if (SCHEDULER_STOPPED())
  622                 return;
  623 
  624         KASSERT(!rm_destroyed(rm),
  625             ("rm_wunlock() of destroyed rmlock @ %s:%d", file, line));
  626         _rm_assert(rm, RA_WLOCKED, file, line);
  627         WITNESS_UNLOCK(&rm->lock_object, LOP_EXCLUSIVE, file, line);
  628         LOCK_LOG_LOCK("RMWUNLOCK", &rm->lock_object, 0, 0, file, line);
  629         _rm_wunlock(rm);
  630         TD_LOCKS_DEC(curthread);
  631 }
  632 
  633 int
  634 _rm_rlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
  635     int trylock, const char *file, int line)
  636 {
  637 
  638         if (SCHEDULER_STOPPED())
  639                 return (1);
  640 
  641 #ifdef INVARIANTS
  642         if (!(rm->lock_object.lo_flags & LO_RECURSABLE) && !trylock) {
  643                 critical_enter();
  644                 KASSERT(rm_trackers_present(get_pcpu(), rm,
  645                     curthread) == 0,
  646                     ("rm_rlock: recursed on non-recursive rmlock %s @ %s:%d\n",
  647                     rm->lock_object.lo_name, file, line));
  648                 critical_exit();
  649         }
  650 #endif
  651         KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(curthread),
  652             ("rm_rlock() by idle thread %p on rmlock %s @ %s:%d",
  653             curthread, rm->lock_object.lo_name, file, line));
  654         KASSERT(!rm_destroyed(rm),
  655             ("rm_rlock() of destroyed rmlock @ %s:%d", file, line));
  656         if (!trylock) {
  657                 KASSERT(!rm_wowned(rm),
  658                     ("rm_rlock: wlock already held for %s @ %s:%d",
  659                     rm->lock_object.lo_name, file, line));
  660                 WITNESS_CHECKORDER(&rm->lock_object,
  661                     LOP_NEWORDER | LOP_NOSLEEP, file, line, NULL);
  662         }
  663 
  664         if (_rm_rlock(rm, tracker, trylock)) {
  665                 if (trylock)
  666                         LOCK_LOG_TRY("RMRLOCK", &rm->lock_object, 0, 1, file,
  667                             line);
  668                 else
  669                         LOCK_LOG_LOCK("RMRLOCK", &rm->lock_object, 0, 0, file,
  670                             line);
  671                 WITNESS_LOCK(&rm->lock_object, LOP_NOSLEEP, file, line);
  672                 TD_LOCKS_INC(curthread);
  673                 return (1);
  674         } else if (trylock)
  675                 LOCK_LOG_TRY("RMRLOCK", &rm->lock_object, 0, 0, file, line);
  676 
  677         return (0);
  678 }
  679 
  680 void
  681 _rm_runlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
  682     const char *file, int line)
  683 {
  684 
  685         if (SCHEDULER_STOPPED())
  686                 return;
  687 
  688         KASSERT(!rm_destroyed(rm),
  689             ("rm_runlock() of destroyed rmlock @ %s:%d", file, line));
  690         _rm_assert(rm, RA_RLOCKED, file, line);
  691         WITNESS_UNLOCK(&rm->lock_object, 0, file, line);
  692         LOCK_LOG_LOCK("RMRUNLOCK", &rm->lock_object, 0, 0, file, line);
  693         _rm_runlock(rm, tracker);
  694         TD_LOCKS_DEC(curthread);
  695 }
  696 
  697 #else
  698 
  699 /*
  700  * Just strip out file and line arguments if no lock debugging is enabled in
  701  * the kernel - we are called from a kernel module.
  702  */
  703 void
  704 _rm_wlock_debug(struct rmlock *rm, const char *file, int line)
  705 {
  706 
  707         _rm_wlock(rm);
  708 }
  709 
  710 void
  711 _rm_wunlock_debug(struct rmlock *rm, const char *file, int line)
  712 {
  713 
  714         _rm_wunlock(rm);
  715 }
  716 
  717 int
  718 _rm_rlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
  719     int trylock, const char *file, int line)
  720 {
  721 
  722         return _rm_rlock(rm, tracker, trylock);
  723 }
  724 
  725 void
  726 _rm_runlock_debug(struct rmlock *rm, struct rm_priotracker *tracker,
  727     const char *file, int line)
  728 {
  729 
  730         _rm_runlock(rm, tracker);
  731 }
  732 
  733 #endif
  734 
  735 #ifdef INVARIANT_SUPPORT
  736 #ifndef INVARIANTS
  737 #undef _rm_assert
  738 #endif
  739 
  740 /*
  741  * Note that this does not need to use witness_assert() for read lock
  742  * assertions since an exact count of read locks held by this thread
  743  * is computable.
  744  */
  745 void
  746 _rm_assert(const struct rmlock *rm, int what, const char *file, int line)
  747 {
  748         int count;
  749 
  750         if (SCHEDULER_STOPPED())
  751                 return;
  752         switch (what) {
  753         case RA_LOCKED:
  754         case RA_LOCKED | RA_RECURSED:
  755         case RA_LOCKED | RA_NOTRECURSED:
  756         case RA_RLOCKED:
  757         case RA_RLOCKED | RA_RECURSED:
  758         case RA_RLOCKED | RA_NOTRECURSED:
  759                 /*
  760                  * Handle the write-locked case.  Unlike other
  761                  * primitives, writers can never recurse.
  762                  */
  763                 if (rm_wowned(rm)) {
  764                         if (what & RA_RLOCKED)
  765                                 panic("Lock %s exclusively locked @ %s:%d\n",
  766                                     rm->lock_object.lo_name, file, line);
  767                         if (what & RA_RECURSED)
  768                                 panic("Lock %s not recursed @ %s:%d\n",
  769                                     rm->lock_object.lo_name, file, line);
  770                         break;
  771                 }
  772 
  773                 critical_enter();
  774                 count = rm_trackers_present(get_pcpu(), rm, curthread);
  775                 critical_exit();
  776 
  777                 if (count == 0)
  778                         panic("Lock %s not %slocked @ %s:%d\n",
  779                             rm->lock_object.lo_name, (what & RA_RLOCKED) ?
  780                             "read " : "", file, line);
  781                 if (count > 1) {
  782                         if (what & RA_NOTRECURSED)
  783                                 panic("Lock %s recursed @ %s:%d\n",
  784                                     rm->lock_object.lo_name, file, line);
  785                 } else if (what & RA_RECURSED)
  786                         panic("Lock %s not recursed @ %s:%d\n",
  787                             rm->lock_object.lo_name, file, line);
  788                 break;
  789         case RA_WLOCKED:
  790                 if (!rm_wowned(rm))
  791                         panic("Lock %s not exclusively locked @ %s:%d\n",
  792                             rm->lock_object.lo_name, file, line);
  793                 break;
  794         case RA_UNLOCKED:
  795                 if (rm_wowned(rm))
  796                         panic("Lock %s exclusively locked @ %s:%d\n",
  797                             rm->lock_object.lo_name, file, line);
  798 
  799                 critical_enter();
  800                 count = rm_trackers_present(get_pcpu(), rm, curthread);
  801                 critical_exit();
  802 
  803                 if (count != 0)
  804                         panic("Lock %s read locked @ %s:%d\n",
  805                             rm->lock_object.lo_name, file, line);
  806                 break;
  807         default:
  808                 panic("Unknown rm lock assertion: %d @ %s:%d", what, file,
  809                     line);
  810         }
  811 }
  812 #endif /* INVARIANT_SUPPORT */
  813 
  814 #ifdef DDB
  815 static void
  816 print_tracker(struct rm_priotracker *tr)
  817 {
  818         struct thread *td;
  819 
  820         td = tr->rmp_thread;
  821         db_printf("   thread %p (tid %d, pid %d, \"%s\") {", td, td->td_tid,
  822             td->td_proc->p_pid, td->td_name);
  823         if (tr->rmp_flags & RMPF_ONQUEUE) {
  824                 db_printf("ONQUEUE");
  825                 if (tr->rmp_flags & RMPF_SIGNAL)
  826                         db_printf(",SIGNAL");
  827         } else
  828                 db_printf("");
  829         db_printf("}\n");
  830 }
  831 
  832 static void
  833 db_show_rm(const struct lock_object *lock)
  834 {
  835         struct rm_priotracker *tr;
  836         struct rm_queue *queue;
  837         const struct rmlock *rm;
  838         struct lock_class *lc;
  839         struct pcpu *pc;
  840 
  841         rm = (const struct rmlock *)lock;
  842         db_printf(" writecpus: ");
  843         ddb_display_cpuset(__DEQUALIFY(const cpuset_t *, &rm->rm_writecpus));
  844         db_printf("\n");
  845         db_printf(" per-CPU readers:\n");
  846         STAILQ_FOREACH(pc, &cpuhead, pc_allcpu)
  847                 for (queue = pc->pc_rm_queue.rmq_next;
  848                     queue != &pc->pc_rm_queue; queue = queue->rmq_next) {
  849                         tr = (struct rm_priotracker *)queue;
  850                         if (tr->rmp_rmlock == rm)
  851                                 print_tracker(tr);
  852                 }
  853         db_printf(" active readers:\n");
  854         LIST_FOREACH(tr, &rm->rm_activeReaders, rmp_qentry)
  855                 print_tracker(tr);
  856         lc = LOCK_CLASS(&rm->rm_wlock_object);
  857         db_printf("Backing write-lock (%s):\n", lc->lc_name);
  858         lc->lc_ddb_show(&rm->rm_wlock_object);
  859 }
  860 #endif
  861 
  862 /*
  863  * Read-mostly sleepable locks.
  864  *
  865  * These primitives allow both readers and writers to sleep. However, neither
  866  * readers nor writers are tracked and subsequently there is no priority
  867  * propagation.
  868  *
  869  * They are intended to be only used when write-locking is almost never needed
  870  * (e.g., they can guard against unloading a kernel module) while read-locking
  871  * happens all the time.
  872  *
  873  * Concurrent writers take turns taking the lock while going off cpu. If this is
  874  * of concern for your usecase, this is not the right primitive.
  875  *
  876  * Neither rms_rlock nor rms_runlock use thread fences. Instead interrupt
  877  * fences are inserted to ensure ordering with the code executed in the IPI
  878  * handler.
  879  *
  880  * No attempt is made to track which CPUs read locked at least once,
  881  * consequently write locking sends IPIs to all of them. This will become a
  882  * problem at some point. The easiest way to lessen it is to provide a bitmap.
  883  */
  884 
  885 #define RMS_NOOWNER     ((void *)0x1)
  886 #define RMS_TRANSIENT   ((void *)0x2)
  887 #define RMS_FLAGMASK    0xf
  888 
  889 struct rmslock_pcpu {
  890         int influx;
  891         int readers;
  892 };
  893 
  894 _Static_assert(sizeof(struct rmslock_pcpu) == 8, "bad size");
  895 
  896 /*
  897  * Internal routines
  898  */
  899 static struct rmslock_pcpu *
  900 rms_int_pcpu(struct rmslock *rms)
  901 {
  902 
  903         CRITICAL_ASSERT(curthread);
  904         return (zpcpu_get(rms->pcpu));
  905 }
  906 
  907 static struct rmslock_pcpu *
  908 rms_int_remote_pcpu(struct rmslock *rms, int cpu)
  909 {
  910 
  911         return (zpcpu_get_cpu(rms->pcpu, cpu));
  912 }
  913 
  914 static void
  915 rms_int_influx_enter(struct rmslock *rms, struct rmslock_pcpu *pcpu)
  916 {
  917 
  918         CRITICAL_ASSERT(curthread);
  919         MPASS(pcpu->influx == 0);
  920         pcpu->influx = 1;
  921 }
  922 
  923 static void
  924 rms_int_influx_exit(struct rmslock *rms, struct rmslock_pcpu *pcpu)
  925 {
  926 
  927         CRITICAL_ASSERT(curthread);
  928         MPASS(pcpu->influx == 1);
  929         pcpu->influx = 0;
  930 }
  931 
  932 #ifdef INVARIANTS
  933 static void
  934 rms_int_debug_readers_inc(struct rmslock *rms)
  935 {
  936         int old;
  937         old = atomic_fetchadd_int(&rms->debug_readers, 1);
  938         KASSERT(old >= 0, ("%s: bad readers count %d\n", __func__, old));
  939 }
  940 
  941 static void
  942 rms_int_debug_readers_dec(struct rmslock *rms)
  943 {
  944         int old;
  945 
  946         old = atomic_fetchadd_int(&rms->debug_readers, -1);
  947         KASSERT(old > 0, ("%s: bad readers count %d\n", __func__, old));
  948 }
  949 #else
  950 static void
  951 rms_int_debug_readers_inc(struct rmslock *rms)
  952 {
  953 }
  954 
  955 static void
  956 rms_int_debug_readers_dec(struct rmslock *rms)
  957 {
  958 }
  959 #endif
  960 
  961 static void
  962 rms_int_readers_inc(struct rmslock *rms, struct rmslock_pcpu *pcpu)
  963 {
  964 
  965         CRITICAL_ASSERT(curthread);
  966         rms_int_debug_readers_inc(rms);
  967         pcpu->readers++;
  968 }
  969 
  970 static void
  971 rms_int_readers_dec(struct rmslock *rms, struct rmslock_pcpu *pcpu)
  972 {
  973 
  974         CRITICAL_ASSERT(curthread);
  975         rms_int_debug_readers_dec(rms);
  976         pcpu->readers--;
  977 }
  978 
  979 /*
  980  * Public API
  981  */
  982 void
  983 rms_init(struct rmslock *rms, const char *name)
  984 {
  985 
  986         rms->owner = RMS_NOOWNER;
  987         rms->writers = 0;
  988         rms->readers = 0;
  989         rms->debug_readers = 0;
  990         mtx_init(&rms->mtx, name, NULL, MTX_DEF | MTX_NEW);
  991         rms->pcpu = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK | M_ZERO);
  992 }
  993 
  994 void
  995 rms_destroy(struct rmslock *rms)
  996 {
  997 
  998         MPASS(rms->writers == 0);
  999         MPASS(rms->readers == 0);
 1000         mtx_destroy(&rms->mtx);
 1001         uma_zfree_pcpu(pcpu_zone_8, rms->pcpu);
 1002 }
 1003 
 1004 static void __noinline
 1005 rms_rlock_fallback(struct rmslock *rms)
 1006 {
 1007 
 1008         rms_int_influx_exit(rms, rms_int_pcpu(rms));
 1009         critical_exit();
 1010 
 1011         mtx_lock(&rms->mtx);
 1012         while (rms->writers > 0)
 1013                 msleep(&rms->readers, &rms->mtx, PUSER - 1, mtx_name(&rms->mtx), 0);
 1014         critical_enter();
 1015         rms_int_readers_inc(rms, rms_int_pcpu(rms));
 1016         mtx_unlock(&rms->mtx);
 1017         critical_exit();
 1018 }
 1019 
 1020 void
 1021 rms_rlock(struct rmslock *rms)
 1022 {
 1023         struct rmslock_pcpu *pcpu;
 1024 
 1025         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
 1026         MPASS(atomic_load_ptr(&rms->owner) != curthread);
 1027 
 1028         critical_enter();
 1029         pcpu = rms_int_pcpu(rms);
 1030         rms_int_influx_enter(rms, pcpu);
 1031         atomic_interrupt_fence();
 1032         if (__predict_false(rms->writers > 0)) {
 1033                 rms_rlock_fallback(rms);
 1034                 return;
 1035         }
 1036         atomic_interrupt_fence();
 1037         rms_int_readers_inc(rms, pcpu);
 1038         atomic_interrupt_fence();
 1039         rms_int_influx_exit(rms, pcpu);
 1040         critical_exit();
 1041 }
 1042 
 1043 int
 1044 rms_try_rlock(struct rmslock *rms)
 1045 {
 1046         struct rmslock_pcpu *pcpu;
 1047 
 1048         MPASS(atomic_load_ptr(&rms->owner) != curthread);
 1049 
 1050         critical_enter();
 1051         pcpu = rms_int_pcpu(rms);
 1052         rms_int_influx_enter(rms, pcpu);
 1053         atomic_interrupt_fence();
 1054         if (__predict_false(rms->writers > 0)) {
 1055                 rms_int_influx_exit(rms, pcpu);
 1056                 critical_exit();
 1057                 return (0);
 1058         }
 1059         atomic_interrupt_fence();
 1060         rms_int_readers_inc(rms, pcpu);
 1061         atomic_interrupt_fence();
 1062         rms_int_influx_exit(rms, pcpu);
 1063         critical_exit();
 1064         return (1);
 1065 }
 1066 
 1067 static void __noinline
 1068 rms_runlock_fallback(struct rmslock *rms)
 1069 {
 1070 
 1071         rms_int_influx_exit(rms, rms_int_pcpu(rms));
 1072         critical_exit();
 1073 
 1074         mtx_lock(&rms->mtx);
 1075         MPASS(rms->writers > 0);
 1076         MPASS(rms->readers > 0);
 1077         MPASS(rms->debug_readers == rms->readers);
 1078         rms_int_debug_readers_dec(rms);
 1079         rms->readers--;
 1080         if (rms->readers == 0)
 1081                 wakeup_one(&rms->writers);
 1082         mtx_unlock(&rms->mtx);
 1083 }
 1084 
 1085 void
 1086 rms_runlock(struct rmslock *rms)
 1087 {
 1088         struct rmslock_pcpu *pcpu;
 1089 
 1090         critical_enter();
 1091         pcpu = rms_int_pcpu(rms);
 1092         rms_int_influx_enter(rms, pcpu);
 1093         atomic_interrupt_fence();
 1094         if (__predict_false(rms->writers > 0)) {
 1095                 rms_runlock_fallback(rms);
 1096                 return;
 1097         }
 1098         atomic_interrupt_fence();
 1099         rms_int_readers_dec(rms, pcpu);
 1100         atomic_interrupt_fence();
 1101         rms_int_influx_exit(rms, pcpu);
 1102         critical_exit();
 1103 }
 1104 
 1105 struct rmslock_ipi {
 1106         struct rmslock *rms;
 1107         struct smp_rendezvous_cpus_retry_arg srcra;
 1108 };
 1109 
 1110 static void
 1111 rms_action_func(void *arg)
 1112 {
 1113         struct rmslock_ipi *rmsipi;
 1114         struct rmslock_pcpu *pcpu;
 1115         struct rmslock *rms;
 1116 
 1117         rmsipi = __containerof(arg, struct rmslock_ipi, srcra);
 1118         rms = rmsipi->rms;
 1119         pcpu = rms_int_pcpu(rms);
 1120 
 1121         if (pcpu->influx)
 1122                 return;
 1123         if (pcpu->readers != 0) {
 1124                 atomic_add_int(&rms->readers, pcpu->readers);
 1125                 pcpu->readers = 0;
 1126         }
 1127         smp_rendezvous_cpus_done(arg);
 1128 }
 1129 
 1130 static void
 1131 rms_wait_func(void *arg, int cpu)
 1132 {
 1133         struct rmslock_ipi *rmsipi;
 1134         struct rmslock_pcpu *pcpu;
 1135         struct rmslock *rms;
 1136 
 1137         rmsipi = __containerof(arg, struct rmslock_ipi, srcra);
 1138         rms = rmsipi->rms;
 1139         pcpu = rms_int_remote_pcpu(rms, cpu);
 1140 
 1141         while (atomic_load_int(&pcpu->influx))
 1142                 cpu_spinwait();
 1143 }
 1144 
 1145 #ifdef INVARIANTS
 1146 static void
 1147 rms_assert_no_pcpu_readers(struct rmslock *rms)
 1148 {
 1149         struct rmslock_pcpu *pcpu;
 1150         int cpu;
 1151 
 1152         CPU_FOREACH(cpu) {
 1153                 pcpu = rms_int_remote_pcpu(rms, cpu);
 1154                 if (pcpu->readers != 0) {
 1155                         panic("%s: got %d readers on cpu %d\n", __func__,
 1156                             pcpu->readers, cpu);
 1157                 }
 1158         }
 1159 }
 1160 #else
 1161 static void
 1162 rms_assert_no_pcpu_readers(struct rmslock *rms)
 1163 {
 1164 }
 1165 #endif
 1166 
 1167 static void
 1168 rms_wlock_switch(struct rmslock *rms)
 1169 {
 1170         struct rmslock_ipi rmsipi;
 1171 
 1172         MPASS(rms->readers == 0);
 1173         MPASS(rms->writers == 1);
 1174 
 1175         rmsipi.rms = rms;
 1176 
 1177         smp_rendezvous_cpus_retry(all_cpus,
 1178             smp_no_rendezvous_barrier,
 1179             rms_action_func,
 1180             smp_no_rendezvous_barrier,
 1181             rms_wait_func,
 1182             &rmsipi.srcra);
 1183 }
 1184 
 1185 void
 1186 rms_wlock(struct rmslock *rms)
 1187 {
 1188 
 1189         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
 1190         MPASS(atomic_load_ptr(&rms->owner) != curthread);
 1191 
 1192         mtx_lock(&rms->mtx);
 1193         rms->writers++;
 1194         if (rms->writers > 1) {
 1195                 msleep(&rms->owner, &rms->mtx, (PUSER - 1),
 1196                     mtx_name(&rms->mtx), 0);
 1197                 MPASS(rms->readers == 0);
 1198                 KASSERT(rms->owner == RMS_TRANSIENT,
 1199                     ("%s: unexpected owner value %p\n", __func__,
 1200                     rms->owner));
 1201                 goto out_grab;
 1202         }
 1203 
 1204         KASSERT(rms->owner == RMS_NOOWNER,
 1205             ("%s: unexpected owner value %p\n", __func__, rms->owner));
 1206 
 1207         rms_wlock_switch(rms);
 1208         rms_assert_no_pcpu_readers(rms);
 1209 
 1210         if (rms->readers > 0) {
 1211                 msleep(&rms->writers, &rms->mtx, (PUSER - 1),
 1212                     mtx_name(&rms->mtx), 0);
 1213         }
 1214 
 1215 out_grab:
 1216         rms->owner = curthread;
 1217         rms_assert_no_pcpu_readers(rms);
 1218         mtx_unlock(&rms->mtx);
 1219         MPASS(rms->readers == 0);
 1220 }
 1221 
 1222 void
 1223 rms_wunlock(struct rmslock *rms)
 1224 {
 1225 
 1226         mtx_lock(&rms->mtx);
 1227         KASSERT(rms->owner == curthread,
 1228             ("%s: unexpected owner value %p\n", __func__, rms->owner));
 1229         MPASS(rms->writers >= 1);
 1230         MPASS(rms->readers == 0);
 1231         rms->writers--;
 1232         if (rms->writers > 0) {
 1233                 wakeup_one(&rms->owner);
 1234                 rms->owner = RMS_TRANSIENT;
 1235         } else {
 1236                 wakeup(&rms->readers);
 1237                 rms->owner = RMS_NOOWNER;
 1238         }
 1239         mtx_unlock(&rms->mtx);
 1240 }
 1241 
 1242 void
 1243 rms_unlock(struct rmslock *rms)
 1244 {
 1245 
 1246         if (rms_wowned(rms))
 1247                 rms_wunlock(rms);
 1248         else
 1249                 rms_runlock(rms);
 1250 }

Cache object: 69c08aa9f613e312231b97ad61aa6141


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.