1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1986, 1988, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_shutdown.c 8.3 (Berkeley) 1/21/94
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_ekcd.h"
44 #include "opt_kdb.h"
45 #include "opt_panic.h"
46 #include "opt_printf.h"
47 #include "opt_sched.h"
48 #include "opt_watchdog.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/bio.h>
53 #include <sys/boottrace.h>
54 #include <sys/buf.h>
55 #include <sys/conf.h>
56 #include <sys/compressor.h>
57 #include <sys/cons.h>
58 #include <sys/disk.h>
59 #include <sys/eventhandler.h>
60 #include <sys/filedesc.h>
61 #include <sys/jail.h>
62 #include <sys/kdb.h>
63 #include <sys/kernel.h>
64 #include <sys/kerneldump.h>
65 #include <sys/kthread.h>
66 #include <sys/ktr.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/mount.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/reboot.h>
73 #include <sys/resourcevar.h>
74 #include <sys/rwlock.h>
75 #include <sys/sbuf.h>
76 #include <sys/sched.h>
77 #include <sys/smp.h>
78 #include <sys/sysctl.h>
79 #include <sys/sysproto.h>
80 #include <sys/taskqueue.h>
81 #include <sys/vnode.h>
82 #include <sys/watchdog.h>
83
84 #include <crypto/chacha20/chacha.h>
85 #include <crypto/rijndael/rijndael-api-fst.h>
86 #include <crypto/sha2/sha256.h>
87
88 #include <ddb/ddb.h>
89
90 #include <machine/cpu.h>
91 #include <machine/dump.h>
92 #include <machine/pcb.h>
93 #include <machine/smp.h>
94
95 #include <security/mac/mac_framework.h>
96
97 #include <vm/vm.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pager.h>
101 #include <vm/swap_pager.h>
102
103 #include <sys/signalvar.h>
104
105 static MALLOC_DEFINE(M_DUMPER, "dumper", "dumper block buffer");
106
107 #ifndef PANIC_REBOOT_WAIT_TIME
108 #define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */
109 #endif
110 static int panic_reboot_wait_time = PANIC_REBOOT_WAIT_TIME;
111 SYSCTL_INT(_kern, OID_AUTO, panic_reboot_wait_time, CTLFLAG_RWTUN,
112 &panic_reboot_wait_time, 0,
113 "Seconds to wait before rebooting after a panic");
114 static int reboot_wait_time = 0;
115 SYSCTL_INT(_kern, OID_AUTO, reboot_wait_time, CTLFLAG_RWTUN,
116 &reboot_wait_time, 0,
117 "Seconds to wait before rebooting");
118
119 /*
120 * Note that stdarg.h and the ANSI style va_start macro is used for both
121 * ANSI and traditional C compilers.
122 */
123 #include <machine/stdarg.h>
124
125 #ifdef KDB
126 #ifdef KDB_UNATTENDED
127 int debugger_on_panic = 0;
128 #else
129 int debugger_on_panic = 1;
130 #endif
131 SYSCTL_INT(_debug, OID_AUTO, debugger_on_panic,
132 CTLFLAG_RWTUN | CTLFLAG_SECURE,
133 &debugger_on_panic, 0, "Run debugger on kernel panic");
134
135 static bool debugger_on_recursive_panic = false;
136 SYSCTL_BOOL(_debug, OID_AUTO, debugger_on_recursive_panic,
137 CTLFLAG_RWTUN | CTLFLAG_SECURE,
138 &debugger_on_recursive_panic, 0, "Run debugger on recursive kernel panic");
139
140 int debugger_on_trap = 0;
141 SYSCTL_INT(_debug, OID_AUTO, debugger_on_trap,
142 CTLFLAG_RWTUN | CTLFLAG_SECURE,
143 &debugger_on_trap, 0, "Run debugger on kernel trap before panic");
144
145 #ifdef KDB_TRACE
146 static int trace_on_panic = 1;
147 static bool trace_all_panics = true;
148 #else
149 static int trace_on_panic = 0;
150 static bool trace_all_panics = false;
151 #endif
152 SYSCTL_INT(_debug, OID_AUTO, trace_on_panic,
153 CTLFLAG_RWTUN | CTLFLAG_SECURE,
154 &trace_on_panic, 0, "Print stack trace on kernel panic");
155 SYSCTL_BOOL(_debug, OID_AUTO, trace_all_panics, CTLFLAG_RWTUN,
156 &trace_all_panics, 0, "Print stack traces on secondary kernel panics");
157 #endif /* KDB */
158
159 static int sync_on_panic = 0;
160 SYSCTL_INT(_kern, OID_AUTO, sync_on_panic, CTLFLAG_RWTUN,
161 &sync_on_panic, 0, "Do a sync before rebooting from a panic");
162
163 static bool poweroff_on_panic = 0;
164 SYSCTL_BOOL(_kern, OID_AUTO, poweroff_on_panic, CTLFLAG_RWTUN,
165 &poweroff_on_panic, 0, "Do a power off instead of a reboot on a panic");
166
167 static bool powercycle_on_panic = 0;
168 SYSCTL_BOOL(_kern, OID_AUTO, powercycle_on_panic, CTLFLAG_RWTUN,
169 &powercycle_on_panic, 0, "Do a power cycle instead of a reboot on a panic");
170
171 static SYSCTL_NODE(_kern, OID_AUTO, shutdown, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172 "Shutdown environment");
173
174 #ifndef DIAGNOSTIC
175 static int show_busybufs;
176 #else
177 static int show_busybufs = 1;
178 #endif
179 SYSCTL_INT(_kern_shutdown, OID_AUTO, show_busybufs, CTLFLAG_RW,
180 &show_busybufs, 0,
181 "Show busy buffers during shutdown");
182
183 int suspend_blocked = 0;
184 SYSCTL_INT(_kern, OID_AUTO, suspend_blocked, CTLFLAG_RW,
185 &suspend_blocked, 0, "Block suspend due to a pending shutdown");
186
187 #ifdef EKCD
188 FEATURE(ekcd, "Encrypted kernel crash dumps support");
189
190 MALLOC_DEFINE(M_EKCD, "ekcd", "Encrypted kernel crash dumps data");
191
192 struct kerneldumpcrypto {
193 uint8_t kdc_encryption;
194 uint8_t kdc_iv[KERNELDUMP_IV_MAX_SIZE];
195 union {
196 struct {
197 keyInstance aes_ki;
198 cipherInstance aes_ci;
199 } u_aes;
200 struct chacha_ctx u_chacha;
201 } u;
202 #define kdc_ki u.u_aes.aes_ki
203 #define kdc_ci u.u_aes.aes_ci
204 #define kdc_chacha u.u_chacha
205 uint32_t kdc_dumpkeysize;
206 struct kerneldumpkey kdc_dumpkey[];
207 };
208 #endif
209
210 struct kerneldumpcomp {
211 uint8_t kdc_format;
212 struct compressor *kdc_stream;
213 uint8_t *kdc_buf;
214 size_t kdc_resid;
215 };
216
217 static struct kerneldumpcomp *kerneldumpcomp_create(struct dumperinfo *di,
218 uint8_t compression);
219 static void kerneldumpcomp_destroy(struct dumperinfo *di);
220 static int kerneldumpcomp_write_cb(void *base, size_t len, off_t off, void *arg);
221
222 static int kerneldump_gzlevel = 6;
223 SYSCTL_INT(_kern, OID_AUTO, kerneldump_gzlevel, CTLFLAG_RWTUN,
224 &kerneldump_gzlevel, 0,
225 "Kernel crash dump compression level");
226
227 /*
228 * Variable panicstr contains argument to first call to panic; used as flag
229 * to indicate that the kernel has already called panic.
230 */
231 const char *panicstr;
232 bool __read_frequently panicked;
233
234 int __read_mostly dumping; /* system is dumping */
235 int rebooting; /* system is rebooting */
236 /*
237 * Used to serialize between sysctl kern.shutdown.dumpdevname and list
238 * modifications via ioctl.
239 */
240 static struct mtx dumpconf_list_lk;
241 MTX_SYSINIT(dumper_configs, &dumpconf_list_lk, "dumper config list", MTX_DEF);
242
243 /* Our selected dumper(s). */
244 static TAILQ_HEAD(dumpconflist, dumperinfo) dumper_configs =
245 TAILQ_HEAD_INITIALIZER(dumper_configs);
246
247 /* Context information for dump-debuggers. */
248 static struct pcb dumppcb; /* Registers. */
249 lwpid_t dumptid; /* Thread ID. */
250
251 static struct cdevsw reroot_cdevsw = {
252 .d_version = D_VERSION,
253 .d_name = "reroot",
254 };
255
256 static void poweroff_wait(void *, int);
257 static void shutdown_halt(void *junk, int howto);
258 static void shutdown_panic(void *junk, int howto);
259 static void shutdown_reset(void *junk, int howto);
260 static int kern_reroot(void);
261
262 /* register various local shutdown events */
263 static void
264 shutdown_conf(void *unused)
265 {
266
267 EVENTHANDLER_REGISTER(shutdown_final, poweroff_wait, NULL,
268 SHUTDOWN_PRI_FIRST);
269 EVENTHANDLER_REGISTER(shutdown_final, shutdown_halt, NULL,
270 SHUTDOWN_PRI_LAST + 100);
271 EVENTHANDLER_REGISTER(shutdown_final, shutdown_panic, NULL,
272 SHUTDOWN_PRI_LAST + 100);
273 }
274
275 SYSINIT(shutdown_conf, SI_SUB_INTRINSIC, SI_ORDER_ANY, shutdown_conf, NULL);
276
277 /*
278 * The only reason this exists is to create the /dev/reroot/ directory,
279 * used by reroot code in init(8) as a mountpoint for tmpfs.
280 */
281 static void
282 reroot_conf(void *unused)
283 {
284 int error;
285 struct cdev *cdev;
286
287 error = make_dev_p(MAKEDEV_CHECKNAME | MAKEDEV_WAITOK, &cdev,
288 &reroot_cdevsw, NULL, UID_ROOT, GID_WHEEL, 0600, "reroot/reroot");
289 if (error != 0) {
290 printf("%s: failed to create device node, error %d",
291 __func__, error);
292 }
293 }
294
295 SYSINIT(reroot_conf, SI_SUB_DEVFS, SI_ORDER_ANY, reroot_conf, NULL);
296
297 /*
298 * The system call that results in a reboot.
299 */
300 /* ARGSUSED */
301 int
302 sys_reboot(struct thread *td, struct reboot_args *uap)
303 {
304 int error;
305
306 error = 0;
307 #ifdef MAC
308 error = mac_system_check_reboot(td->td_ucred, uap->opt);
309 #endif
310 if (error == 0)
311 error = priv_check(td, PRIV_REBOOT);
312 if (error == 0) {
313 if (uap->opt & RB_REROOT)
314 error = kern_reroot();
315 else
316 kern_reboot(uap->opt);
317 }
318 return (error);
319 }
320
321 static void
322 shutdown_nice_task_fn(void *arg, int pending __unused)
323 {
324 int howto;
325
326 howto = (uintptr_t)arg;
327 /* Send a signal to init(8) and have it shutdown the world. */
328 PROC_LOCK(initproc);
329 if ((howto & RB_POWEROFF) != 0) {
330 BOOTTRACE("SIGUSR2 to init(8)");
331 kern_psignal(initproc, SIGUSR2);
332 } else if ((howto & RB_POWERCYCLE) != 0) {
333 BOOTTRACE("SIGWINCH to init(8)");
334 kern_psignal(initproc, SIGWINCH);
335 } else if ((howto & RB_HALT) != 0) {
336 BOOTTRACE("SIGUSR1 to init(8)");
337 kern_psignal(initproc, SIGUSR1);
338 } else {
339 BOOTTRACE("SIGINT to init(8)");
340 kern_psignal(initproc, SIGINT);
341 }
342 PROC_UNLOCK(initproc);
343 }
344
345 static struct task shutdown_nice_task = TASK_INITIALIZER(0,
346 &shutdown_nice_task_fn, NULL);
347
348 /*
349 * Called by events that want to shut down.. e.g <CTL><ALT><DEL> on a PC
350 */
351 void
352 shutdown_nice(int howto)
353 {
354
355 if (initproc != NULL && !SCHEDULER_STOPPED()) {
356 BOOTTRACE("shutdown initiated");
357 shutdown_nice_task.ta_context = (void *)(uintptr_t)howto;
358 taskqueue_enqueue(taskqueue_fast, &shutdown_nice_task);
359 } else {
360 /*
361 * No init(8) running, or scheduler would not allow it
362 * to run, so simply reboot.
363 */
364 kern_reboot(howto | RB_NOSYNC);
365 }
366 }
367
368 static void
369 print_uptime(void)
370 {
371 int f;
372 struct timespec ts;
373
374 getnanouptime(&ts);
375 printf("Uptime: ");
376 f = 0;
377 if (ts.tv_sec >= 86400) {
378 printf("%ldd", (long)ts.tv_sec / 86400);
379 ts.tv_sec %= 86400;
380 f = 1;
381 }
382 if (f || ts.tv_sec >= 3600) {
383 printf("%ldh", (long)ts.tv_sec / 3600);
384 ts.tv_sec %= 3600;
385 f = 1;
386 }
387 if (f || ts.tv_sec >= 60) {
388 printf("%ldm", (long)ts.tv_sec / 60);
389 ts.tv_sec %= 60;
390 f = 1;
391 }
392 printf("%lds\n", (long)ts.tv_sec);
393 }
394
395 /*
396 * Set up a context that can be extracted from the dump.
397 */
398 void
399 dump_savectx(void)
400 {
401
402 savectx(&dumppcb);
403 dumptid = curthread->td_tid;
404 }
405
406 int
407 doadump(boolean_t textdump)
408 {
409 boolean_t coredump;
410 int error;
411
412 error = 0;
413 if (dumping)
414 return (EBUSY);
415 if (TAILQ_EMPTY(&dumper_configs))
416 return (ENXIO);
417
418 dump_savectx();
419 dumping++;
420
421 coredump = TRUE;
422 #ifdef DDB
423 if (textdump && textdump_pending) {
424 coredump = FALSE;
425 textdump_dumpsys(TAILQ_FIRST(&dumper_configs));
426 }
427 #endif
428 if (coredump) {
429 struct dumperinfo *di;
430
431 TAILQ_FOREACH(di, &dumper_configs, di_next) {
432 error = dumpsys(di);
433 if (error == 0)
434 break;
435 }
436 }
437
438 dumping--;
439 return (error);
440 }
441
442 /*
443 * Trace the shutdown reason.
444 */
445 static void
446 reboottrace(int howto)
447 {
448 if ((howto & RB_DUMP) != 0) {
449 if ((howto & RB_HALT) != 0)
450 BOOTTRACE("system panic: halting...");
451 if ((howto & RB_POWEROFF) != 0)
452 BOOTTRACE("system panic: powering off...");
453 if ((howto & (RB_HALT|RB_POWEROFF)) == 0)
454 BOOTTRACE("system panic: rebooting...");
455 } else {
456 if ((howto & RB_HALT) != 0)
457 BOOTTRACE("system halting...");
458 if ((howto & RB_POWEROFF) != 0)
459 BOOTTRACE("system powering off...");
460 if ((howto & (RB_HALT|RB_POWEROFF)) == 0)
461 BOOTTRACE("system rebooting...");
462 }
463 }
464
465 /*
466 * kern_reboot(9): Shut down the system cleanly to prepare for reboot, halt, or
467 * power off.
468 */
469 void
470 kern_reboot(int howto)
471 {
472 static int once = 0;
473
474 if (initproc != NULL && curproc != initproc)
475 BOOTTRACE("kernel shutdown (dirty) started");
476 else
477 BOOTTRACE("kernel shutdown (clean) started");
478
479 /*
480 * Normal paths here don't hold Giant, but we can wind up here
481 * unexpectedly with it held. Drop it now so we don't have to
482 * drop and pick it up elsewhere. The paths it is locking will
483 * never be returned to, and it is preferable to preclude
484 * deadlock than to lock against code that won't ever
485 * continue.
486 */
487 while (mtx_owned(&Giant))
488 mtx_unlock(&Giant);
489
490 #if defined(SMP)
491 /*
492 * Bind us to the first CPU so that all shutdown code runs there. Some
493 * systems don't shutdown properly (i.e., ACPI power off) if we
494 * run on another processor.
495 */
496 if (!SCHEDULER_STOPPED()) {
497 thread_lock(curthread);
498 sched_bind(curthread, CPU_FIRST());
499 thread_unlock(curthread);
500 KASSERT(PCPU_GET(cpuid) == CPU_FIRST(),
501 ("%s: not running on cpu 0", __func__));
502 }
503 #endif
504 /* We're in the process of rebooting. */
505 rebooting = 1;
506 reboottrace(howto);
507
508 /* We are out of the debugger now. */
509 kdb_active = 0;
510
511 /*
512 * Do any callouts that should be done BEFORE syncing the filesystems.
513 */
514 EVENTHANDLER_INVOKE(shutdown_pre_sync, howto);
515 BOOTTRACE("shutdown pre sync complete");
516
517 /*
518 * Now sync filesystems
519 */
520 if (!cold && (howto & RB_NOSYNC) == 0 && once == 0) {
521 once = 1;
522 BOOTTRACE("bufshutdown begin");
523 bufshutdown(show_busybufs);
524 BOOTTRACE("bufshutdown end");
525 }
526
527 print_uptime();
528
529 cngrab();
530
531 /*
532 * Ok, now do things that assume all filesystem activity has
533 * been completed.
534 */
535 EVENTHANDLER_INVOKE(shutdown_post_sync, howto);
536 BOOTTRACE("shutdown post sync complete");
537
538 if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping)
539 doadump(TRUE);
540
541 /* Now that we're going to really halt the system... */
542 BOOTTRACE("shutdown final begin");
543
544 if (shutdown_trace)
545 boottrace_dump_console();
546
547 EVENTHANDLER_INVOKE(shutdown_final, howto);
548
549 /*
550 * Call this directly so that reset is attempted even if shutdown
551 * handlers are not yet registered.
552 */
553 shutdown_reset(NULL, howto);
554
555 for(;;) ; /* safety against shutdown_reset not working */
556 /* NOTREACHED */
557 }
558
559 /*
560 * The system call that results in changing the rootfs.
561 */
562 static int
563 kern_reroot(void)
564 {
565 struct vnode *oldrootvnode, *vp;
566 struct mount *mp, *devmp;
567 int error;
568
569 if (curproc != initproc)
570 return (EPERM);
571
572 /*
573 * Mark the filesystem containing currently-running executable
574 * (the temporary copy of init(8)) busy.
575 */
576 vp = curproc->p_textvp;
577 error = vn_lock(vp, LK_SHARED);
578 if (error != 0)
579 return (error);
580 mp = vp->v_mount;
581 error = vfs_busy(mp, MBF_NOWAIT);
582 if (error != 0) {
583 vfs_ref(mp);
584 VOP_UNLOCK(vp);
585 error = vfs_busy(mp, 0);
586 vn_lock(vp, LK_SHARED | LK_RETRY);
587 vfs_rel(mp);
588 if (error != 0) {
589 VOP_UNLOCK(vp);
590 return (ENOENT);
591 }
592 if (VN_IS_DOOMED(vp)) {
593 VOP_UNLOCK(vp);
594 vfs_unbusy(mp);
595 return (ENOENT);
596 }
597 }
598 VOP_UNLOCK(vp);
599
600 /*
601 * Remove the filesystem containing currently-running executable
602 * from the mount list, to prevent it from being unmounted
603 * by vfs_unmountall(), and to avoid confusing vfs_mountroot().
604 *
605 * Also preserve /dev - forcibly unmounting it could cause driver
606 * reinitialization.
607 */
608
609 vfs_ref(rootdevmp);
610 devmp = rootdevmp;
611 rootdevmp = NULL;
612
613 mtx_lock(&mountlist_mtx);
614 TAILQ_REMOVE(&mountlist, mp, mnt_list);
615 TAILQ_REMOVE(&mountlist, devmp, mnt_list);
616 mtx_unlock(&mountlist_mtx);
617
618 oldrootvnode = rootvnode;
619
620 /*
621 * Unmount everything except for the two filesystems preserved above.
622 */
623 vfs_unmountall();
624
625 /*
626 * Add /dev back; vfs_mountroot() will move it into its new place.
627 */
628 mtx_lock(&mountlist_mtx);
629 TAILQ_INSERT_HEAD(&mountlist, devmp, mnt_list);
630 mtx_unlock(&mountlist_mtx);
631 rootdevmp = devmp;
632 vfs_rel(rootdevmp);
633
634 /*
635 * Mount the new rootfs.
636 */
637 vfs_mountroot();
638
639 /*
640 * Update all references to the old rootvnode.
641 */
642 mountcheckdirs(oldrootvnode, rootvnode);
643
644 /*
645 * Add the temporary filesystem back and unbusy it.
646 */
647 mtx_lock(&mountlist_mtx);
648 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
649 mtx_unlock(&mountlist_mtx);
650 vfs_unbusy(mp);
651
652 return (0);
653 }
654
655 /*
656 * If the shutdown was a clean halt, behave accordingly.
657 */
658 static void
659 shutdown_halt(void *junk, int howto)
660 {
661
662 if (howto & RB_HALT) {
663 printf("\n");
664 printf("The operating system has halted.\n");
665 printf("Please press any key to reboot.\n\n");
666
667 wdog_kern_pat(WD_TO_NEVER);
668
669 switch (cngetc()) {
670 case -1: /* No console, just die */
671 cpu_halt();
672 /* NOTREACHED */
673 default:
674 break;
675 }
676 }
677 }
678
679 /*
680 * Check to see if the system panicked, pause and then reboot
681 * according to the specified delay.
682 */
683 static void
684 shutdown_panic(void *junk, int howto)
685 {
686 int loop;
687
688 if (howto & RB_DUMP) {
689 if (panic_reboot_wait_time != 0) {
690 if (panic_reboot_wait_time != -1) {
691 printf("Automatic reboot in %d seconds - "
692 "press a key on the console to abort\n",
693 panic_reboot_wait_time);
694 for (loop = panic_reboot_wait_time * 10;
695 loop > 0; --loop) {
696 DELAY(1000 * 100); /* 1/10th second */
697 /* Did user type a key? */
698 if (cncheckc() != -1)
699 break;
700 }
701 if (!loop)
702 return;
703 }
704 } else { /* zero time specified - reboot NOW */
705 return;
706 }
707 printf("--> Press a key on the console to reboot,\n");
708 printf("--> or switch off the system now.\n");
709 cngetc();
710 }
711 }
712
713 /*
714 * Everything done, now reset
715 */
716 static void
717 shutdown_reset(void *junk, int howto)
718 {
719
720 printf("Rebooting...\n");
721 DELAY(reboot_wait_time * 1000000);
722
723 /*
724 * Acquiring smp_ipi_mtx here has a double effect:
725 * - it disables interrupts avoiding CPU0 preemption
726 * by fast handlers (thus deadlocking against other CPUs)
727 * - it avoids deadlocks against smp_rendezvous() or, more
728 * generally, threads busy-waiting, with this spinlock held,
729 * and waiting for responses by threads on other CPUs
730 * (ie. smp_tlb_shootdown()).
731 *
732 * For the !SMP case it just needs to handle the former problem.
733 */
734 #ifdef SMP
735 mtx_lock_spin(&smp_ipi_mtx);
736 #else
737 spinlock_enter();
738 #endif
739
740 cpu_reset();
741 /* NOTREACHED */ /* assuming reset worked */
742 }
743
744 #if defined(WITNESS) || defined(INVARIANT_SUPPORT)
745 static int kassert_warn_only = 0;
746 #ifdef KDB
747 static int kassert_do_kdb = 0;
748 #endif
749 #ifdef KTR
750 static int kassert_do_ktr = 0;
751 #endif
752 static int kassert_do_log = 1;
753 static int kassert_log_pps_limit = 4;
754 static int kassert_log_mute_at = 0;
755 static int kassert_log_panic_at = 0;
756 static int kassert_suppress_in_panic = 0;
757 static int kassert_warnings = 0;
758
759 SYSCTL_NODE(_debug, OID_AUTO, kassert, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
760 "kassert options");
761
762 #ifdef KASSERT_PANIC_OPTIONAL
763 #define KASSERT_RWTUN CTLFLAG_RWTUN
764 #else
765 #define KASSERT_RWTUN CTLFLAG_RDTUN
766 #endif
767
768 SYSCTL_INT(_debug_kassert, OID_AUTO, warn_only, KASSERT_RWTUN,
769 &kassert_warn_only, 0,
770 "KASSERT triggers a panic (0) or just a warning (1)");
771
772 #ifdef KDB
773 SYSCTL_INT(_debug_kassert, OID_AUTO, do_kdb, KASSERT_RWTUN,
774 &kassert_do_kdb, 0, "KASSERT will enter the debugger");
775 #endif
776
777 #ifdef KTR
778 SYSCTL_UINT(_debug_kassert, OID_AUTO, do_ktr, KASSERT_RWTUN,
779 &kassert_do_ktr, 0,
780 "KASSERT does a KTR, set this to the KTRMASK you want");
781 #endif
782
783 SYSCTL_INT(_debug_kassert, OID_AUTO, do_log, KASSERT_RWTUN,
784 &kassert_do_log, 0,
785 "If warn_only is enabled, log (1) or do not log (0) assertion violations");
786
787 SYSCTL_INT(_debug_kassert, OID_AUTO, warnings, CTLFLAG_RD | CTLFLAG_STATS,
788 &kassert_warnings, 0, "number of KASSERTs that have been triggered");
789
790 SYSCTL_INT(_debug_kassert, OID_AUTO, log_panic_at, KASSERT_RWTUN,
791 &kassert_log_panic_at, 0, "max number of KASSERTS before we will panic");
792
793 SYSCTL_INT(_debug_kassert, OID_AUTO, log_pps_limit, KASSERT_RWTUN,
794 &kassert_log_pps_limit, 0, "limit number of log messages per second");
795
796 SYSCTL_INT(_debug_kassert, OID_AUTO, log_mute_at, KASSERT_RWTUN,
797 &kassert_log_mute_at, 0, "max number of KASSERTS to log");
798
799 SYSCTL_INT(_debug_kassert, OID_AUTO, suppress_in_panic, KASSERT_RWTUN,
800 &kassert_suppress_in_panic, 0,
801 "KASSERTs will be suppressed while handling a panic");
802 #undef KASSERT_RWTUN
803
804 static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS);
805
806 SYSCTL_PROC(_debug_kassert, OID_AUTO, kassert,
807 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE | CTLFLAG_MPSAFE, NULL, 0,
808 kassert_sysctl_kassert, "I",
809 "set to trigger a test kassert");
810
811 static int
812 kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS)
813 {
814 int error, i;
815
816 error = sysctl_wire_old_buffer(req, sizeof(int));
817 if (error == 0) {
818 i = 0;
819 error = sysctl_handle_int(oidp, &i, 0, req);
820 }
821 if (error != 0 || req->newptr == NULL)
822 return (error);
823 KASSERT(0, ("kassert_sysctl_kassert triggered kassert %d", i));
824 return (0);
825 }
826
827 #ifdef KASSERT_PANIC_OPTIONAL
828 /*
829 * Called by KASSERT, this decides if we will panic
830 * or if we will log via printf and/or ktr.
831 */
832 void
833 kassert_panic(const char *fmt, ...)
834 {
835 static char buf[256];
836 va_list ap;
837
838 va_start(ap, fmt);
839 (void)vsnprintf(buf, sizeof(buf), fmt, ap);
840 va_end(ap);
841
842 /*
843 * If we are suppressing secondary panics, log the warning but do not
844 * re-enter panic/kdb.
845 */
846 if (KERNEL_PANICKED() && kassert_suppress_in_panic) {
847 if (kassert_do_log) {
848 printf("KASSERT failed: %s\n", buf);
849 #ifdef KDB
850 if (trace_all_panics && trace_on_panic)
851 kdb_backtrace();
852 #endif
853 }
854 return;
855 }
856
857 /*
858 * panic if we're not just warning, or if we've exceeded
859 * kassert_log_panic_at warnings.
860 */
861 if (!kassert_warn_only ||
862 (kassert_log_panic_at > 0 &&
863 kassert_warnings >= kassert_log_panic_at)) {
864 va_start(ap, fmt);
865 vpanic(fmt, ap);
866 /* NORETURN */
867 }
868 #ifdef KTR
869 if (kassert_do_ktr)
870 CTR0(ktr_mask, buf);
871 #endif /* KTR */
872 /*
873 * log if we've not yet met the mute limit.
874 */
875 if (kassert_do_log &&
876 (kassert_log_mute_at == 0 ||
877 kassert_warnings < kassert_log_mute_at)) {
878 static struct timeval lasterr;
879 static int curerr;
880
881 if (ppsratecheck(&lasterr, &curerr, kassert_log_pps_limit)) {
882 printf("KASSERT failed: %s\n", buf);
883 kdb_backtrace();
884 }
885 }
886 #ifdef KDB
887 if (kassert_do_kdb) {
888 kdb_enter(KDB_WHY_KASSERT, buf);
889 }
890 #endif
891 atomic_add_int(&kassert_warnings, 1);
892 }
893 #endif /* KASSERT_PANIC_OPTIONAL */
894 #endif
895
896 /*
897 * Panic is called on unresolvable fatal errors. It prints "panic: mesg",
898 * and then reboots. If we are called twice, then we avoid trying to sync
899 * the disks as this often leads to recursive panics.
900 */
901 void
902 panic(const char *fmt, ...)
903 {
904 va_list ap;
905
906 va_start(ap, fmt);
907 vpanic(fmt, ap);
908 }
909
910 void
911 vpanic(const char *fmt, va_list ap)
912 {
913 #ifdef SMP
914 cpuset_t other_cpus;
915 #endif
916 struct thread *td = curthread;
917 int bootopt, newpanic;
918 static char buf[256];
919
920 spinlock_enter();
921
922 #ifdef SMP
923 /*
924 * stop_cpus_hard(other_cpus) should prevent multiple CPUs from
925 * concurrently entering panic. Only the winner will proceed
926 * further.
927 */
928 if (panicstr == NULL && !kdb_active) {
929 other_cpus = all_cpus;
930 CPU_CLR(PCPU_GET(cpuid), &other_cpus);
931 stop_cpus_hard(other_cpus);
932 }
933 #endif
934
935 /*
936 * Ensure that the scheduler is stopped while panicking, even if panic
937 * has been entered from kdb.
938 */
939 td->td_stopsched = 1;
940
941 bootopt = RB_AUTOBOOT;
942 newpanic = 0;
943 if (KERNEL_PANICKED())
944 bootopt |= RB_NOSYNC;
945 else {
946 bootopt |= RB_DUMP;
947 panicstr = fmt;
948 panicked = true;
949 newpanic = 1;
950 }
951
952 if (newpanic) {
953 (void)vsnprintf(buf, sizeof(buf), fmt, ap);
954 panicstr = buf;
955 cngrab();
956 printf("panic: %s\n", buf);
957 } else {
958 printf("panic: ");
959 vprintf(fmt, ap);
960 printf("\n");
961 }
962 #ifdef SMP
963 printf("cpuid = %d\n", PCPU_GET(cpuid));
964 #endif
965 printf("time = %jd\n", (intmax_t )time_second);
966 #ifdef KDB
967 if ((newpanic || trace_all_panics) && trace_on_panic)
968 kdb_backtrace();
969 if (debugger_on_panic)
970 kdb_enter(KDB_WHY_PANIC, "panic");
971 else if (!newpanic && debugger_on_recursive_panic)
972 kdb_enter(KDB_WHY_PANIC, "re-panic");
973 #endif
974 /*thread_lock(td); */
975 td->td_flags |= TDF_INPANIC;
976 /* thread_unlock(td); */
977 if (!sync_on_panic)
978 bootopt |= RB_NOSYNC;
979 if (poweroff_on_panic)
980 bootopt |= RB_POWEROFF;
981 if (powercycle_on_panic)
982 bootopt |= RB_POWERCYCLE;
983 kern_reboot(bootopt);
984 }
985
986 /*
987 * Support for poweroff delay.
988 *
989 * Please note that setting this delay too short might power off your machine
990 * before the write cache on your hard disk has been flushed, leading to
991 * soft-updates inconsistencies.
992 */
993 #ifndef POWEROFF_DELAY
994 # define POWEROFF_DELAY 5000
995 #endif
996 static int poweroff_delay = POWEROFF_DELAY;
997
998 SYSCTL_INT(_kern_shutdown, OID_AUTO, poweroff_delay, CTLFLAG_RW,
999 &poweroff_delay, 0, "Delay before poweroff to write disk caches (msec)");
1000
1001 static void
1002 poweroff_wait(void *junk, int howto)
1003 {
1004
1005 if ((howto & (RB_POWEROFF | RB_POWERCYCLE)) == 0 || poweroff_delay <= 0)
1006 return;
1007 DELAY(poweroff_delay * 1000);
1008 }
1009
1010 /*
1011 * Some system processes (e.g. syncer) need to be stopped at appropriate
1012 * points in their main loops prior to a system shutdown, so that they
1013 * won't interfere with the shutdown process (e.g. by holding a disk buf
1014 * to cause sync to fail). For each of these system processes, register
1015 * shutdown_kproc() as a handler for one of shutdown events.
1016 */
1017 static int kproc_shutdown_wait = 60;
1018 SYSCTL_INT(_kern_shutdown, OID_AUTO, kproc_shutdown_wait, CTLFLAG_RW,
1019 &kproc_shutdown_wait, 0, "Max wait time (sec) to stop for each process");
1020
1021 void
1022 kproc_shutdown(void *arg, int howto)
1023 {
1024 struct proc *p;
1025 int error;
1026
1027 if (KERNEL_PANICKED())
1028 return;
1029
1030 p = (struct proc *)arg;
1031 printf("Waiting (max %d seconds) for system process `%s' to stop... ",
1032 kproc_shutdown_wait, p->p_comm);
1033 error = kproc_suspend(p, kproc_shutdown_wait * hz);
1034
1035 if (error == EWOULDBLOCK)
1036 printf("timed out\n");
1037 else
1038 printf("done\n");
1039 }
1040
1041 void
1042 kthread_shutdown(void *arg, int howto)
1043 {
1044 struct thread *td;
1045 int error;
1046
1047 if (KERNEL_PANICKED())
1048 return;
1049
1050 td = (struct thread *)arg;
1051 printf("Waiting (max %d seconds) for system thread `%s' to stop... ",
1052 kproc_shutdown_wait, td->td_name);
1053 error = kthread_suspend(td, kproc_shutdown_wait * hz);
1054
1055 if (error == EWOULDBLOCK)
1056 printf("timed out\n");
1057 else
1058 printf("done\n");
1059 }
1060
1061 static int
1062 dumpdevname_sysctl_handler(SYSCTL_HANDLER_ARGS)
1063 {
1064 char buf[256];
1065 struct dumperinfo *di;
1066 struct sbuf sb;
1067 int error;
1068
1069 error = sysctl_wire_old_buffer(req, 0);
1070 if (error != 0)
1071 return (error);
1072
1073 sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1074
1075 mtx_lock(&dumpconf_list_lk);
1076 TAILQ_FOREACH(di, &dumper_configs, di_next) {
1077 if (di != TAILQ_FIRST(&dumper_configs))
1078 sbuf_putc(&sb, ',');
1079 sbuf_cat(&sb, di->di_devname);
1080 }
1081 mtx_unlock(&dumpconf_list_lk);
1082
1083 error = sbuf_finish(&sb);
1084 sbuf_delete(&sb);
1085 return (error);
1086 }
1087 SYSCTL_PROC(_kern_shutdown, OID_AUTO, dumpdevname,
1088 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, &dumper_configs, 0,
1089 dumpdevname_sysctl_handler, "A",
1090 "Device(s) for kernel dumps");
1091
1092 static int _dump_append(struct dumperinfo *di, void *virtual, size_t length);
1093
1094 #ifdef EKCD
1095 static struct kerneldumpcrypto *
1096 kerneldumpcrypto_create(size_t blocksize, uint8_t encryption,
1097 const uint8_t *key, uint32_t encryptedkeysize, const uint8_t *encryptedkey)
1098 {
1099 struct kerneldumpcrypto *kdc;
1100 struct kerneldumpkey *kdk;
1101 uint32_t dumpkeysize;
1102
1103 dumpkeysize = roundup2(sizeof(*kdk) + encryptedkeysize, blocksize);
1104 kdc = malloc(sizeof(*kdc) + dumpkeysize, M_EKCD, M_WAITOK | M_ZERO);
1105
1106 arc4rand(kdc->kdc_iv, sizeof(kdc->kdc_iv), 0);
1107
1108 kdc->kdc_encryption = encryption;
1109 switch (kdc->kdc_encryption) {
1110 case KERNELDUMP_ENC_AES_256_CBC:
1111 if (rijndael_makeKey(&kdc->kdc_ki, DIR_ENCRYPT, 256, key) <= 0)
1112 goto failed;
1113 break;
1114 case KERNELDUMP_ENC_CHACHA20:
1115 chacha_keysetup(&kdc->kdc_chacha, key, 256);
1116 break;
1117 default:
1118 goto failed;
1119 }
1120
1121 kdc->kdc_dumpkeysize = dumpkeysize;
1122 kdk = kdc->kdc_dumpkey;
1123 kdk->kdk_encryption = kdc->kdc_encryption;
1124 memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
1125 kdk->kdk_encryptedkeysize = htod32(encryptedkeysize);
1126 memcpy(kdk->kdk_encryptedkey, encryptedkey, encryptedkeysize);
1127
1128 return (kdc);
1129 failed:
1130 zfree(kdc, M_EKCD);
1131 return (NULL);
1132 }
1133
1134 static int
1135 kerneldumpcrypto_init(struct kerneldumpcrypto *kdc)
1136 {
1137 uint8_t hash[SHA256_DIGEST_LENGTH];
1138 SHA256_CTX ctx;
1139 struct kerneldumpkey *kdk;
1140 int error;
1141
1142 error = 0;
1143
1144 if (kdc == NULL)
1145 return (0);
1146
1147 /*
1148 * When a user enters ddb it can write a crash dump multiple times.
1149 * Each time it should be encrypted using a different IV.
1150 */
1151 SHA256_Init(&ctx);
1152 SHA256_Update(&ctx, kdc->kdc_iv, sizeof(kdc->kdc_iv));
1153 SHA256_Final(hash, &ctx);
1154 bcopy(hash, kdc->kdc_iv, sizeof(kdc->kdc_iv));
1155
1156 switch (kdc->kdc_encryption) {
1157 case KERNELDUMP_ENC_AES_256_CBC:
1158 if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
1159 kdc->kdc_iv) <= 0) {
1160 error = EINVAL;
1161 goto out;
1162 }
1163 break;
1164 case KERNELDUMP_ENC_CHACHA20:
1165 chacha_ivsetup(&kdc->kdc_chacha, kdc->kdc_iv, NULL);
1166 break;
1167 default:
1168 error = EINVAL;
1169 goto out;
1170 }
1171
1172 kdk = kdc->kdc_dumpkey;
1173 memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
1174 out:
1175 explicit_bzero(hash, sizeof(hash));
1176 return (error);
1177 }
1178
1179 static uint32_t
1180 kerneldumpcrypto_dumpkeysize(const struct kerneldumpcrypto *kdc)
1181 {
1182
1183 if (kdc == NULL)
1184 return (0);
1185 return (kdc->kdc_dumpkeysize);
1186 }
1187 #endif /* EKCD */
1188
1189 static struct kerneldumpcomp *
1190 kerneldumpcomp_create(struct dumperinfo *di, uint8_t compression)
1191 {
1192 struct kerneldumpcomp *kdcomp;
1193 int format;
1194
1195 switch (compression) {
1196 case KERNELDUMP_COMP_GZIP:
1197 format = COMPRESS_GZIP;
1198 break;
1199 case KERNELDUMP_COMP_ZSTD:
1200 format = COMPRESS_ZSTD;
1201 break;
1202 default:
1203 return (NULL);
1204 }
1205
1206 kdcomp = malloc(sizeof(*kdcomp), M_DUMPER, M_WAITOK | M_ZERO);
1207 kdcomp->kdc_format = compression;
1208 kdcomp->kdc_stream = compressor_init(kerneldumpcomp_write_cb,
1209 format, di->maxiosize, kerneldump_gzlevel, di);
1210 if (kdcomp->kdc_stream == NULL) {
1211 free(kdcomp, M_DUMPER);
1212 return (NULL);
1213 }
1214 kdcomp->kdc_buf = malloc(di->maxiosize, M_DUMPER, M_WAITOK | M_NODUMP);
1215 return (kdcomp);
1216 }
1217
1218 static void
1219 kerneldumpcomp_destroy(struct dumperinfo *di)
1220 {
1221 struct kerneldumpcomp *kdcomp;
1222
1223 kdcomp = di->kdcomp;
1224 if (kdcomp == NULL)
1225 return;
1226 compressor_fini(kdcomp->kdc_stream);
1227 zfree(kdcomp->kdc_buf, M_DUMPER);
1228 free(kdcomp, M_DUMPER);
1229 }
1230
1231 /*
1232 * Free a dumper. Must not be present on global list.
1233 */
1234 void
1235 dumper_destroy(struct dumperinfo *di)
1236 {
1237
1238 if (di == NULL)
1239 return;
1240
1241 zfree(di->blockbuf, M_DUMPER);
1242 kerneldumpcomp_destroy(di);
1243 #ifdef EKCD
1244 zfree(di->kdcrypto, M_EKCD);
1245 #endif
1246 zfree(di, M_DUMPER);
1247 }
1248
1249 /*
1250 * Allocate and set up a new dumper from the provided template.
1251 */
1252 int
1253 dumper_create(const struct dumperinfo *di_template, const char *devname,
1254 const struct diocskerneldump_arg *kda, struct dumperinfo **dip)
1255 {
1256 struct dumperinfo *newdi;
1257 int error = 0;
1258
1259 if (dip == NULL)
1260 return (EINVAL);
1261
1262 /* Allocate a new dumper */
1263 newdi = malloc(sizeof(*newdi) + strlen(devname) + 1, M_DUMPER,
1264 M_WAITOK | M_ZERO);
1265 memcpy(newdi, di_template, sizeof(*newdi));
1266 newdi->blockbuf = NULL;
1267 newdi->kdcrypto = NULL;
1268 newdi->kdcomp = NULL;
1269 strcpy(newdi->di_devname, devname);
1270
1271 if (kda->kda_encryption != KERNELDUMP_ENC_NONE) {
1272 #ifdef EKCD
1273 newdi->kdcrypto = kerneldumpcrypto_create(newdi->blocksize,
1274 kda->kda_encryption, kda->kda_key,
1275 kda->kda_encryptedkeysize, kda->kda_encryptedkey);
1276 if (newdi->kdcrypto == NULL) {
1277 error = EINVAL;
1278 goto cleanup;
1279 }
1280 #else
1281 error = EOPNOTSUPP;
1282 goto cleanup;
1283 #endif
1284 }
1285 if (kda->kda_compression != KERNELDUMP_COMP_NONE) {
1286 #ifdef EKCD
1287 /*
1288 * We can't support simultaneous unpadded block cipher
1289 * encryption and compression because there is no guarantee the
1290 * length of the compressed result is exactly a multiple of the
1291 * cipher block size.
1292 */
1293 if (kda->kda_encryption == KERNELDUMP_ENC_AES_256_CBC) {
1294 error = EOPNOTSUPP;
1295 goto cleanup;
1296 }
1297 #endif
1298 newdi->kdcomp = kerneldumpcomp_create(newdi,
1299 kda->kda_compression);
1300 if (newdi->kdcomp == NULL) {
1301 error = EINVAL;
1302 goto cleanup;
1303 }
1304 }
1305 newdi->blockbuf = malloc(newdi->blocksize, M_DUMPER, M_WAITOK | M_ZERO);
1306
1307 *dip = newdi;
1308 return (0);
1309 cleanup:
1310 dumper_destroy(newdi);
1311 return (error);
1312 }
1313
1314 /*
1315 * Create a new dumper and register it in the global list.
1316 */
1317 int
1318 dumper_insert(const struct dumperinfo *di_template, const char *devname,
1319 const struct diocskerneldump_arg *kda)
1320 {
1321 struct dumperinfo *newdi, *listdi;
1322 bool inserted;
1323 uint8_t index;
1324 int error;
1325
1326 index = kda->kda_index;
1327 MPASS(index != KDA_REMOVE && index != KDA_REMOVE_DEV &&
1328 index != KDA_REMOVE_ALL);
1329
1330 error = priv_check(curthread, PRIV_SETDUMPER);
1331 if (error != 0)
1332 return (error);
1333
1334 error = dumper_create(di_template, devname, kda, &newdi);
1335 if (error != 0)
1336 return (error);
1337
1338 /* Add the new configuration to the queue */
1339 mtx_lock(&dumpconf_list_lk);
1340 inserted = false;
1341 TAILQ_FOREACH(listdi, &dumper_configs, di_next) {
1342 if (index == 0) {
1343 TAILQ_INSERT_BEFORE(listdi, newdi, di_next);
1344 inserted = true;
1345 break;
1346 }
1347 index--;
1348 }
1349 if (!inserted)
1350 TAILQ_INSERT_TAIL(&dumper_configs, newdi, di_next);
1351 mtx_unlock(&dumpconf_list_lk);
1352
1353 return (0);
1354 }
1355
1356 #ifdef DDB
1357 void
1358 dumper_ddb_insert(struct dumperinfo *newdi)
1359 {
1360 TAILQ_INSERT_HEAD(&dumper_configs, newdi, di_next);
1361 }
1362
1363 void
1364 dumper_ddb_remove(struct dumperinfo *di)
1365 {
1366 TAILQ_REMOVE(&dumper_configs, di, di_next);
1367 }
1368 #endif
1369
1370 static bool
1371 dumper_config_match(const struct dumperinfo *di, const char *devname,
1372 const struct diocskerneldump_arg *kda)
1373 {
1374 if (kda->kda_index == KDA_REMOVE_ALL)
1375 return (true);
1376
1377 if (strcmp(di->di_devname, devname) != 0)
1378 return (false);
1379
1380 /*
1381 * Allow wildcard removal of configs matching a device on g_dev_orphan.
1382 */
1383 if (kda->kda_index == KDA_REMOVE_DEV)
1384 return (true);
1385
1386 if (di->kdcomp != NULL) {
1387 if (di->kdcomp->kdc_format != kda->kda_compression)
1388 return (false);
1389 } else if (kda->kda_compression != KERNELDUMP_COMP_NONE)
1390 return (false);
1391 #ifdef EKCD
1392 if (di->kdcrypto != NULL) {
1393 if (di->kdcrypto->kdc_encryption != kda->kda_encryption)
1394 return (false);
1395 /*
1396 * Do we care to verify keys match to delete? It seems weird
1397 * to expect multiple fallback dump configurations on the same
1398 * device that only differ in crypto key.
1399 */
1400 } else
1401 #endif
1402 if (kda->kda_encryption != KERNELDUMP_ENC_NONE)
1403 return (false);
1404
1405 return (true);
1406 }
1407
1408 /*
1409 * Remove and free the requested dumper(s) from the global list.
1410 */
1411 int
1412 dumper_remove(const char *devname, const struct diocskerneldump_arg *kda)
1413 {
1414 struct dumperinfo *di, *sdi;
1415 bool found;
1416 int error;
1417
1418 error = priv_check(curthread, PRIV_SETDUMPER);
1419 if (error != 0)
1420 return (error);
1421
1422 /*
1423 * Try to find a matching configuration, and kill it.
1424 *
1425 * NULL 'kda' indicates remove any configuration matching 'devname',
1426 * which may remove multiple configurations in atypical configurations.
1427 */
1428 found = false;
1429 mtx_lock(&dumpconf_list_lk);
1430 TAILQ_FOREACH_SAFE(di, &dumper_configs, di_next, sdi) {
1431 if (dumper_config_match(di, devname, kda)) {
1432 found = true;
1433 TAILQ_REMOVE(&dumper_configs, di, di_next);
1434 dumper_destroy(di);
1435 }
1436 }
1437 mtx_unlock(&dumpconf_list_lk);
1438
1439 /* Only produce ENOENT if a more targeted match didn't match. */
1440 if (!found && kda->kda_index == KDA_REMOVE)
1441 return (ENOENT);
1442 return (0);
1443 }
1444
1445 static int
1446 dump_check_bounds(struct dumperinfo *di, off_t offset, size_t length)
1447 {
1448
1449 if (di->mediasize > 0 && length != 0 && (offset < di->mediaoffset ||
1450 offset - di->mediaoffset + length > di->mediasize)) {
1451 if (di->kdcomp != NULL && offset >= di->mediaoffset) {
1452 printf(
1453 "Compressed dump failed to fit in device boundaries.\n");
1454 return (E2BIG);
1455 }
1456
1457 printf("Attempt to write outside dump device boundaries.\n"
1458 "offset(%jd), mediaoffset(%jd), length(%ju), mediasize(%jd).\n",
1459 (intmax_t)offset, (intmax_t)di->mediaoffset,
1460 (uintmax_t)length, (intmax_t)di->mediasize);
1461 return (ENOSPC);
1462 }
1463 if (length % di->blocksize != 0) {
1464 printf("Attempt to write partial block of length %ju.\n",
1465 (uintmax_t)length);
1466 return (EINVAL);
1467 }
1468 if (offset % di->blocksize != 0) {
1469 printf("Attempt to write at unaligned offset %jd.\n",
1470 (intmax_t)offset);
1471 return (EINVAL);
1472 }
1473
1474 return (0);
1475 }
1476
1477 #ifdef EKCD
1478 static int
1479 dump_encrypt(struct kerneldumpcrypto *kdc, uint8_t *buf, size_t size)
1480 {
1481
1482 switch (kdc->kdc_encryption) {
1483 case KERNELDUMP_ENC_AES_256_CBC:
1484 if (rijndael_blockEncrypt(&kdc->kdc_ci, &kdc->kdc_ki, buf,
1485 8 * size, buf) <= 0) {
1486 return (EIO);
1487 }
1488 if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
1489 buf + size - 16 /* IV size for AES-256-CBC */) <= 0) {
1490 return (EIO);
1491 }
1492 break;
1493 case KERNELDUMP_ENC_CHACHA20:
1494 chacha_encrypt_bytes(&kdc->kdc_chacha, buf, buf, size);
1495 break;
1496 default:
1497 return (EINVAL);
1498 }
1499
1500 return (0);
1501 }
1502
1503 /* Encrypt data and call dumper. */
1504 static int
1505 dump_encrypted_write(struct dumperinfo *di, void *virtual, off_t offset,
1506 size_t length)
1507 {
1508 static uint8_t buf[KERNELDUMP_BUFFER_SIZE];
1509 struct kerneldumpcrypto *kdc;
1510 int error;
1511 size_t nbytes;
1512
1513 kdc = di->kdcrypto;
1514
1515 while (length > 0) {
1516 nbytes = MIN(length, sizeof(buf));
1517 bcopy(virtual, buf, nbytes);
1518
1519 if (dump_encrypt(kdc, buf, nbytes) != 0)
1520 return (EIO);
1521
1522 error = dump_write(di, buf, offset, nbytes);
1523 if (error != 0)
1524 return (error);
1525
1526 offset += nbytes;
1527 virtual = (void *)((uint8_t *)virtual + nbytes);
1528 length -= nbytes;
1529 }
1530
1531 return (0);
1532 }
1533 #endif /* EKCD */
1534
1535 static int
1536 kerneldumpcomp_write_cb(void *base, size_t length, off_t offset, void *arg)
1537 {
1538 struct dumperinfo *di;
1539 size_t resid, rlength;
1540 int error;
1541
1542 di = arg;
1543
1544 if (length % di->blocksize != 0) {
1545 /*
1546 * This must be the final write after flushing the compression
1547 * stream. Write as many full blocks as possible and stash the
1548 * residual data in the dumper's block buffer. It will be
1549 * padded and written in dump_finish().
1550 */
1551 rlength = rounddown(length, di->blocksize);
1552 if (rlength != 0) {
1553 error = _dump_append(di, base, rlength);
1554 if (error != 0)
1555 return (error);
1556 }
1557 resid = length - rlength;
1558 memmove(di->blockbuf, (uint8_t *)base + rlength, resid);
1559 bzero((uint8_t *)di->blockbuf + resid, di->blocksize - resid);
1560 di->kdcomp->kdc_resid = resid;
1561 return (EAGAIN);
1562 }
1563 return (_dump_append(di, base, length));
1564 }
1565
1566 /*
1567 * Write kernel dump headers at the beginning and end of the dump extent.
1568 * Write the kernel dump encryption key after the leading header if we were
1569 * configured to do so.
1570 */
1571 static int
1572 dump_write_headers(struct dumperinfo *di, struct kerneldumpheader *kdh)
1573 {
1574 #ifdef EKCD
1575 struct kerneldumpcrypto *kdc;
1576 #endif
1577 void *buf;
1578 size_t hdrsz;
1579 uint64_t extent;
1580 uint32_t keysize;
1581 int error;
1582
1583 hdrsz = sizeof(*kdh);
1584 if (hdrsz > di->blocksize)
1585 return (ENOMEM);
1586
1587 #ifdef EKCD
1588 kdc = di->kdcrypto;
1589 keysize = kerneldumpcrypto_dumpkeysize(kdc);
1590 #else
1591 keysize = 0;
1592 #endif
1593
1594 /*
1595 * If the dump device has special handling for headers, let it take care
1596 * of writing them out.
1597 */
1598 if (di->dumper_hdr != NULL)
1599 return (di->dumper_hdr(di, kdh));
1600
1601 if (hdrsz == di->blocksize)
1602 buf = kdh;
1603 else {
1604 buf = di->blockbuf;
1605 memset(buf, 0, di->blocksize);
1606 memcpy(buf, kdh, hdrsz);
1607 }
1608
1609 extent = dtoh64(kdh->dumpextent);
1610 #ifdef EKCD
1611 if (kdc != NULL) {
1612 error = dump_write(di, kdc->kdc_dumpkey,
1613 di->mediaoffset + di->mediasize - di->blocksize - extent -
1614 keysize, keysize);
1615 if (error != 0)
1616 return (error);
1617 }
1618 #endif
1619
1620 error = dump_write(di, buf,
1621 di->mediaoffset + di->mediasize - 2 * di->blocksize - extent -
1622 keysize, di->blocksize);
1623 if (error == 0)
1624 error = dump_write(di, buf, di->mediaoffset + di->mediasize -
1625 di->blocksize, di->blocksize);
1626 return (error);
1627 }
1628
1629 /*
1630 * Don't touch the first SIZEOF_METADATA bytes on the dump device. This is to
1631 * protect us from metadata and metadata from us.
1632 */
1633 #define SIZEOF_METADATA (64 * 1024)
1634
1635 /*
1636 * Do some preliminary setup for a kernel dump: initialize state for encryption,
1637 * if requested, and make sure that we have enough space on the dump device.
1638 *
1639 * We set things up so that the dump ends before the last sector of the dump
1640 * device, at which the trailing header is written.
1641 *
1642 * +-----------+------+-----+----------------------------+------+
1643 * | | lhdr | key | ... kernel dump ... | thdr |
1644 * +-----------+------+-----+----------------------------+------+
1645 * 1 blk opt <------- dump extent --------> 1 blk
1646 *
1647 * Dumps written using dump_append() start at the beginning of the extent.
1648 * Uncompressed dumps will use the entire extent, but compressed dumps typically
1649 * will not. The true length of the dump is recorded in the leading and trailing
1650 * headers once the dump has been completed.
1651 *
1652 * The dump device may provide a callback, in which case it will initialize
1653 * dumpoff and take care of laying out the headers.
1654 */
1655 int
1656 dump_start(struct dumperinfo *di, struct kerneldumpheader *kdh)
1657 {
1658 #ifdef EKCD
1659 struct kerneldumpcrypto *kdc;
1660 #endif
1661 void *key;
1662 uint64_t dumpextent, span;
1663 uint32_t keysize;
1664 int error;
1665
1666 #ifdef EKCD
1667 /* Send the key before the dump so a partial dump is still usable. */
1668 kdc = di->kdcrypto;
1669 error = kerneldumpcrypto_init(kdc);
1670 if (error != 0)
1671 return (error);
1672 keysize = kerneldumpcrypto_dumpkeysize(kdc);
1673 key = keysize > 0 ? kdc->kdc_dumpkey : NULL;
1674 #else
1675 error = 0;
1676 keysize = 0;
1677 key = NULL;
1678 #endif
1679
1680 if (di->dumper_start != NULL) {
1681 error = di->dumper_start(di, key, keysize);
1682 } else {
1683 dumpextent = dtoh64(kdh->dumpextent);
1684 span = SIZEOF_METADATA + dumpextent + 2 * di->blocksize +
1685 keysize;
1686 if (di->mediasize < span) {
1687 if (di->kdcomp == NULL)
1688 return (E2BIG);
1689
1690 /*
1691 * We don't yet know how much space the compressed dump
1692 * will occupy, so try to use the whole swap partition
1693 * (minus the first 64KB) in the hope that the
1694 * compressed dump will fit. If that doesn't turn out to
1695 * be enough, the bounds checking in dump_write()
1696 * will catch us and cause the dump to fail.
1697 */
1698 dumpextent = di->mediasize - span + dumpextent;
1699 kdh->dumpextent = htod64(dumpextent);
1700 }
1701
1702 /*
1703 * The offset at which to begin writing the dump.
1704 */
1705 di->dumpoff = di->mediaoffset + di->mediasize - di->blocksize -
1706 dumpextent;
1707 }
1708 di->origdumpoff = di->dumpoff;
1709 return (error);
1710 }
1711
1712 static int
1713 _dump_append(struct dumperinfo *di, void *virtual, size_t length)
1714 {
1715 int error;
1716
1717 #ifdef EKCD
1718 if (di->kdcrypto != NULL)
1719 error = dump_encrypted_write(di, virtual, di->dumpoff, length);
1720 else
1721 #endif
1722 error = dump_write(di, virtual, di->dumpoff, length);
1723 if (error == 0)
1724 di->dumpoff += length;
1725 return (error);
1726 }
1727
1728 /*
1729 * Write to the dump device starting at dumpoff. When compression is enabled,
1730 * writes to the device will be performed using a callback that gets invoked
1731 * when the compression stream's output buffer is full.
1732 */
1733 int
1734 dump_append(struct dumperinfo *di, void *virtual, size_t length)
1735 {
1736 void *buf;
1737
1738 if (di->kdcomp != NULL) {
1739 /* Bounce through a buffer to avoid CRC errors. */
1740 if (length > di->maxiosize)
1741 return (EINVAL);
1742 buf = di->kdcomp->kdc_buf;
1743 memmove(buf, virtual, length);
1744 return (compressor_write(di->kdcomp->kdc_stream, buf, length));
1745 }
1746 return (_dump_append(di, virtual, length));
1747 }
1748
1749 /*
1750 * Write to the dump device at the specified offset.
1751 */
1752 int
1753 dump_write(struct dumperinfo *di, void *virtual, off_t offset, size_t length)
1754 {
1755 int error;
1756
1757 error = dump_check_bounds(di, offset, length);
1758 if (error != 0)
1759 return (error);
1760 return (di->dumper(di->priv, virtual, offset, length));
1761 }
1762
1763 /*
1764 * Perform kernel dump finalization: flush the compression stream, if necessary,
1765 * write the leading and trailing kernel dump headers now that we know the true
1766 * length of the dump, and optionally write the encryption key following the
1767 * leading header.
1768 */
1769 int
1770 dump_finish(struct dumperinfo *di, struct kerneldumpheader *kdh)
1771 {
1772 int error;
1773
1774 if (di->kdcomp != NULL) {
1775 error = compressor_flush(di->kdcomp->kdc_stream);
1776 if (error == EAGAIN) {
1777 /* We have residual data in di->blockbuf. */
1778 error = _dump_append(di, di->blockbuf, di->blocksize);
1779 if (error == 0)
1780 /* Compensate for _dump_append()'s adjustment. */
1781 di->dumpoff -= di->blocksize - di->kdcomp->kdc_resid;
1782 di->kdcomp->kdc_resid = 0;
1783 }
1784 if (error != 0)
1785 return (error);
1786
1787 /*
1788 * We now know the size of the compressed dump, so update the
1789 * header accordingly and recompute parity.
1790 */
1791 kdh->dumplength = htod64(di->dumpoff - di->origdumpoff);
1792 kdh->parity = 0;
1793 kdh->parity = kerneldump_parity(kdh);
1794
1795 compressor_reset(di->kdcomp->kdc_stream);
1796 }
1797
1798 error = dump_write_headers(di, kdh);
1799 if (error != 0)
1800 return (error);
1801
1802 (void)dump_write(di, NULL, 0, 0);
1803 return (0);
1804 }
1805
1806 void
1807 dump_init_header(const struct dumperinfo *di, struct kerneldumpheader *kdh,
1808 const char *magic, uint32_t archver, uint64_t dumplen)
1809 {
1810 size_t dstsize;
1811
1812 bzero(kdh, sizeof(*kdh));
1813 strlcpy(kdh->magic, magic, sizeof(kdh->magic));
1814 strlcpy(kdh->architecture, MACHINE_ARCH, sizeof(kdh->architecture));
1815 kdh->version = htod32(KERNELDUMPVERSION);
1816 kdh->architectureversion = htod32(archver);
1817 kdh->dumplength = htod64(dumplen);
1818 kdh->dumpextent = kdh->dumplength;
1819 kdh->dumptime = htod64(time_second);
1820 #ifdef EKCD
1821 kdh->dumpkeysize = htod32(kerneldumpcrypto_dumpkeysize(di->kdcrypto));
1822 #else
1823 kdh->dumpkeysize = 0;
1824 #endif
1825 kdh->blocksize = htod32(di->blocksize);
1826 strlcpy(kdh->hostname, prison0.pr_hostname, sizeof(kdh->hostname));
1827 dstsize = sizeof(kdh->versionstring);
1828 if (strlcpy(kdh->versionstring, version, dstsize) >= dstsize)
1829 kdh->versionstring[dstsize - 2] = '\n';
1830 if (panicstr != NULL)
1831 strlcpy(kdh->panicstring, panicstr, sizeof(kdh->panicstring));
1832 if (di->kdcomp != NULL)
1833 kdh->compression = di->kdcomp->kdc_format;
1834 kdh->parity = kerneldump_parity(kdh);
1835 }
1836
1837 #ifdef DDB
1838 DB_SHOW_COMMAND_FLAGS(panic, db_show_panic, DB_CMD_MEMSAFE)
1839 {
1840
1841 if (panicstr == NULL)
1842 db_printf("panicstr not set\n");
1843 else
1844 db_printf("panic: %s\n", panicstr);
1845 }
1846 #endif
Cache object: df0dafd0721c43e9868e4d1f64aaf0a3
|