The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_shutdown.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1986, 1988, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)kern_shutdown.c     8.3 (Berkeley) 1/21/94
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD$");
   41 
   42 #include "opt_ddb.h"
   43 #include "opt_ekcd.h"
   44 #include "opt_kdb.h"
   45 #include "opt_panic.h"
   46 #include "opt_printf.h"
   47 #include "opt_sched.h"
   48 #include "opt_watchdog.h"
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/bio.h>
   53 #include <sys/buf.h>
   54 #include <sys/conf.h>
   55 #include <sys/compressor.h>
   56 #include <sys/cons.h>
   57 #include <sys/disk.h>
   58 #include <sys/eventhandler.h>
   59 #include <sys/filedesc.h>
   60 #include <sys/jail.h>
   61 #include <sys/kdb.h>
   62 #include <sys/kernel.h>
   63 #include <sys/kerneldump.h>
   64 #include <sys/kthread.h>
   65 #include <sys/ktr.h>
   66 #include <sys/malloc.h>
   67 #include <sys/mbuf.h>
   68 #include <sys/mount.h>
   69 #include <sys/priv.h>
   70 #include <sys/proc.h>
   71 #include <sys/reboot.h>
   72 #include <sys/resourcevar.h>
   73 #include <sys/rwlock.h>
   74 #include <sys/sbuf.h>
   75 #include <sys/sched.h>
   76 #include <sys/smp.h>
   77 #include <sys/sysctl.h>
   78 #include <sys/sysproto.h>
   79 #include <sys/taskqueue.h>
   80 #include <sys/vnode.h>
   81 #include <sys/watchdog.h>
   82 
   83 #include <crypto/chacha20/chacha.h>
   84 #include <crypto/rijndael/rijndael-api-fst.h>
   85 #include <crypto/sha2/sha256.h>
   86 
   87 #include <ddb/ddb.h>
   88 
   89 #include <machine/cpu.h>
   90 #include <machine/dump.h>
   91 #include <machine/pcb.h>
   92 #include <machine/smp.h>
   93 
   94 #include <security/mac/mac_framework.h>
   95 
   96 #include <vm/vm.h>
   97 #include <vm/vm_object.h>
   98 #include <vm/vm_page.h>
   99 #include <vm/vm_pager.h>
  100 #include <vm/swap_pager.h>
  101 
  102 #include <sys/signalvar.h>
  103 
  104 static MALLOC_DEFINE(M_DUMPER, "dumper", "dumper block buffer");
  105 
  106 #ifndef PANIC_REBOOT_WAIT_TIME
  107 #define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */
  108 #endif
  109 static int panic_reboot_wait_time = PANIC_REBOOT_WAIT_TIME;
  110 SYSCTL_INT(_kern, OID_AUTO, panic_reboot_wait_time, CTLFLAG_RWTUN,
  111     &panic_reboot_wait_time, 0,
  112     "Seconds to wait before rebooting after a panic");
  113 
  114 /*
  115  * Note that stdarg.h and the ANSI style va_start macro is used for both
  116  * ANSI and traditional C compilers.
  117  */
  118 #include <machine/stdarg.h>
  119 
  120 #ifdef KDB
  121 #ifdef KDB_UNATTENDED
  122 int debugger_on_panic = 0;
  123 #else
  124 int debugger_on_panic = 1;
  125 #endif
  126 SYSCTL_INT(_debug, OID_AUTO, debugger_on_panic,
  127     CTLFLAG_RWTUN | CTLFLAG_SECURE,
  128     &debugger_on_panic, 0, "Run debugger on kernel panic");
  129 
  130 static bool debugger_on_recursive_panic = false;
  131 SYSCTL_BOOL(_debug, OID_AUTO, debugger_on_recursive_panic,
  132     CTLFLAG_RWTUN | CTLFLAG_SECURE,
  133     &debugger_on_recursive_panic, 0, "Run debugger on recursive kernel panic");
  134 
  135 int debugger_on_trap = 0;
  136 SYSCTL_INT(_debug, OID_AUTO, debugger_on_trap,
  137     CTLFLAG_RWTUN | CTLFLAG_SECURE,
  138     &debugger_on_trap, 0, "Run debugger on kernel trap before panic");
  139 
  140 #ifdef KDB_TRACE
  141 static int trace_on_panic = 1;
  142 static bool trace_all_panics = true;
  143 #else
  144 static int trace_on_panic = 0;
  145 static bool trace_all_panics = false;
  146 #endif
  147 SYSCTL_INT(_debug, OID_AUTO, trace_on_panic,
  148     CTLFLAG_RWTUN | CTLFLAG_SECURE,
  149     &trace_on_panic, 0, "Print stack trace on kernel panic");
  150 SYSCTL_BOOL(_debug, OID_AUTO, trace_all_panics, CTLFLAG_RWTUN,
  151     &trace_all_panics, 0, "Print stack traces on secondary kernel panics");
  152 #endif /* KDB */
  153 
  154 static int sync_on_panic = 0;
  155 SYSCTL_INT(_kern, OID_AUTO, sync_on_panic, CTLFLAG_RWTUN,
  156         &sync_on_panic, 0, "Do a sync before rebooting from a panic");
  157 
  158 static bool poweroff_on_panic = 0;
  159 SYSCTL_BOOL(_kern, OID_AUTO, poweroff_on_panic, CTLFLAG_RWTUN,
  160         &poweroff_on_panic, 0, "Do a power off instead of a reboot on a panic");
  161 
  162 static bool powercycle_on_panic = 0;
  163 SYSCTL_BOOL(_kern, OID_AUTO, powercycle_on_panic, CTLFLAG_RWTUN,
  164         &powercycle_on_panic, 0, "Do a power cycle instead of a reboot on a panic");
  165 
  166 static SYSCTL_NODE(_kern, OID_AUTO, shutdown, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  167     "Shutdown environment");
  168 
  169 #ifndef DIAGNOSTIC
  170 static int show_busybufs;
  171 #else
  172 static int show_busybufs = 1;
  173 #endif
  174 SYSCTL_INT(_kern_shutdown, OID_AUTO, show_busybufs, CTLFLAG_RW,
  175     &show_busybufs, 0,
  176     "Show busy buffers during shutdown");
  177 
  178 int suspend_blocked = 0;
  179 SYSCTL_INT(_kern, OID_AUTO, suspend_blocked, CTLFLAG_RW,
  180         &suspend_blocked, 0, "Block suspend due to a pending shutdown");
  181 
  182 #ifdef EKCD
  183 FEATURE(ekcd, "Encrypted kernel crash dumps support");
  184 
  185 MALLOC_DEFINE(M_EKCD, "ekcd", "Encrypted kernel crash dumps data");
  186 
  187 struct kerneldumpcrypto {
  188         uint8_t                 kdc_encryption;
  189         uint8_t                 kdc_iv[KERNELDUMP_IV_MAX_SIZE];
  190         union {
  191                 struct {
  192                         keyInstance     aes_ki;
  193                         cipherInstance  aes_ci;
  194                 } u_aes;
  195                 struct chacha_ctx       u_chacha;
  196         } u;
  197 #define kdc_ki  u.u_aes.aes_ki
  198 #define kdc_ci  u.u_aes.aes_ci
  199 #define kdc_chacha      u.u_chacha
  200         uint32_t                kdc_dumpkeysize;
  201         struct kerneldumpkey    kdc_dumpkey[];
  202 };
  203 #endif
  204 
  205 struct kerneldumpcomp {
  206         uint8_t                 kdc_format;
  207         struct compressor       *kdc_stream;
  208         uint8_t                 *kdc_buf;
  209         size_t                  kdc_resid;
  210 };
  211 
  212 static struct kerneldumpcomp *kerneldumpcomp_create(struct dumperinfo *di,
  213                     uint8_t compression);
  214 static void     kerneldumpcomp_destroy(struct dumperinfo *di);
  215 static int      kerneldumpcomp_write_cb(void *base, size_t len, off_t off, void *arg);
  216 
  217 static int kerneldump_gzlevel = 6;
  218 SYSCTL_INT(_kern, OID_AUTO, kerneldump_gzlevel, CTLFLAG_RWTUN,
  219     &kerneldump_gzlevel, 0,
  220     "Kernel crash dump compression level");
  221 
  222 /*
  223  * Variable panicstr contains argument to first call to panic; used as flag
  224  * to indicate that the kernel has already called panic.
  225  */
  226 const char *panicstr;
  227 bool __read_frequently panicked;
  228 
  229 int __read_mostly dumping;              /* system is dumping */
  230 int rebooting;                          /* system is rebooting */
  231 /*
  232  * Used to serialize between sysctl kern.shutdown.dumpdevname and list
  233  * modifications via ioctl.
  234  */
  235 static struct mtx dumpconf_list_lk;
  236 MTX_SYSINIT(dumper_configs, &dumpconf_list_lk, "dumper config list", MTX_DEF);
  237 
  238 /* Our selected dumper(s). */
  239 static TAILQ_HEAD(dumpconflist, dumperinfo) dumper_configs =
  240     TAILQ_HEAD_INITIALIZER(dumper_configs);
  241 
  242 /* Context information for dump-debuggers. */
  243 static struct pcb dumppcb;              /* Registers. */
  244 lwpid_t dumptid;                        /* Thread ID. */
  245 
  246 static struct cdevsw reroot_cdevsw = {
  247      .d_version = D_VERSION,
  248      .d_name    = "reroot",
  249 };
  250 
  251 static void poweroff_wait(void *, int);
  252 static void shutdown_halt(void *junk, int howto);
  253 static void shutdown_panic(void *junk, int howto);
  254 static void shutdown_reset(void *junk, int howto);
  255 static int kern_reroot(void);
  256 
  257 /* register various local shutdown events */
  258 static void
  259 shutdown_conf(void *unused)
  260 {
  261 
  262         EVENTHANDLER_REGISTER(shutdown_final, poweroff_wait, NULL,
  263             SHUTDOWN_PRI_FIRST);
  264         EVENTHANDLER_REGISTER(shutdown_final, shutdown_halt, NULL,
  265             SHUTDOWN_PRI_LAST + 100);
  266         EVENTHANDLER_REGISTER(shutdown_final, shutdown_panic, NULL,
  267             SHUTDOWN_PRI_LAST + 100);
  268         EVENTHANDLER_REGISTER(shutdown_final, shutdown_reset, NULL,
  269             SHUTDOWN_PRI_LAST + 200);
  270 }
  271 
  272 SYSINIT(shutdown_conf, SI_SUB_INTRINSIC, SI_ORDER_ANY, shutdown_conf, NULL);
  273 
  274 /*
  275  * The only reason this exists is to create the /dev/reroot/ directory,
  276  * used by reroot code in init(8) as a mountpoint for tmpfs.
  277  */
  278 static void
  279 reroot_conf(void *unused)
  280 {
  281         int error;
  282         struct cdev *cdev;
  283 
  284         error = make_dev_p(MAKEDEV_CHECKNAME | MAKEDEV_WAITOK, &cdev,
  285             &reroot_cdevsw, NULL, UID_ROOT, GID_WHEEL, 0600, "reroot/reroot");
  286         if (error != 0) {
  287                 printf("%s: failed to create device node, error %d",
  288                     __func__, error);
  289         }
  290 }
  291 
  292 SYSINIT(reroot_conf, SI_SUB_DEVFS, SI_ORDER_ANY, reroot_conf, NULL);
  293 
  294 /*
  295  * The system call that results in a reboot.
  296  */
  297 /* ARGSUSED */
  298 int
  299 sys_reboot(struct thread *td, struct reboot_args *uap)
  300 {
  301         int error;
  302 
  303         error = 0;
  304 #ifdef MAC
  305         error = mac_system_check_reboot(td->td_ucred, uap->opt);
  306 #endif
  307         if (error == 0)
  308                 error = priv_check(td, PRIV_REBOOT);
  309         if (error == 0) {
  310                 if (uap->opt & RB_REROOT)
  311                         error = kern_reroot();
  312                 else
  313                         kern_reboot(uap->opt);
  314         }
  315         return (error);
  316 }
  317 
  318 static void
  319 shutdown_nice_task_fn(void *arg, int pending __unused)
  320 {
  321         int howto;
  322 
  323         howto = (uintptr_t)arg;
  324         /* Send a signal to init(8) and have it shutdown the world. */
  325         PROC_LOCK(initproc);
  326         if (howto & RB_POWEROFF)
  327                 kern_psignal(initproc, SIGUSR2);
  328         else if (howto & RB_POWERCYCLE)
  329                 kern_psignal(initproc, SIGWINCH);
  330         else if (howto & RB_HALT)
  331                 kern_psignal(initproc, SIGUSR1);
  332         else
  333                 kern_psignal(initproc, SIGINT);
  334         PROC_UNLOCK(initproc);
  335 }
  336 
  337 static struct task shutdown_nice_task = TASK_INITIALIZER(0,
  338     &shutdown_nice_task_fn, NULL);
  339 
  340 /*
  341  * Called by events that want to shut down.. e.g  <CTL><ALT><DEL> on a PC
  342  */
  343 void
  344 shutdown_nice(int howto)
  345 {
  346 
  347         if (initproc != NULL && !SCHEDULER_STOPPED()) {
  348                 shutdown_nice_task.ta_context = (void *)(uintptr_t)howto;
  349                 taskqueue_enqueue(taskqueue_fast, &shutdown_nice_task);
  350         } else {
  351                 /*
  352                  * No init(8) running, or scheduler would not allow it
  353                  * to run, so simply reboot.
  354                  */
  355                 kern_reboot(howto | RB_NOSYNC);
  356         }
  357 }
  358 
  359 static void
  360 print_uptime(void)
  361 {
  362         int f;
  363         struct timespec ts;
  364 
  365         getnanouptime(&ts);
  366         printf("Uptime: ");
  367         f = 0;
  368         if (ts.tv_sec >= 86400) {
  369                 printf("%ldd", (long)ts.tv_sec / 86400);
  370                 ts.tv_sec %= 86400;
  371                 f = 1;
  372         }
  373         if (f || ts.tv_sec >= 3600) {
  374                 printf("%ldh", (long)ts.tv_sec / 3600);
  375                 ts.tv_sec %= 3600;
  376                 f = 1;
  377         }
  378         if (f || ts.tv_sec >= 60) {
  379                 printf("%ldm", (long)ts.tv_sec / 60);
  380                 ts.tv_sec %= 60;
  381                 f = 1;
  382         }
  383         printf("%lds\n", (long)ts.tv_sec);
  384 }
  385 
  386 /*
  387  * Set up a context that can be extracted from the dump.
  388  */
  389 void
  390 dump_savectx(void)
  391 {
  392 
  393         savectx(&dumppcb);
  394         dumptid = curthread->td_tid;
  395 }
  396 
  397 int
  398 doadump(boolean_t textdump)
  399 {
  400         boolean_t coredump;
  401         int error;
  402 
  403         error = 0;
  404         if (dumping)
  405                 return (EBUSY);
  406         if (TAILQ_EMPTY(&dumper_configs))
  407                 return (ENXIO);
  408 
  409         dump_savectx();
  410         dumping++;
  411 
  412         coredump = TRUE;
  413 #ifdef DDB
  414         if (textdump && textdump_pending) {
  415                 coredump = FALSE;
  416                 textdump_dumpsys(TAILQ_FIRST(&dumper_configs));
  417         }
  418 #endif
  419         if (coredump) {
  420                 struct dumperinfo *di;
  421 
  422                 TAILQ_FOREACH(di, &dumper_configs, di_next) {
  423                         error = dumpsys(di);
  424                         if (error == 0)
  425                                 break;
  426                 }
  427         }
  428 
  429         dumping--;
  430         return (error);
  431 }
  432 
  433 /*
  434  * kern_reboot(9): Shut down the system cleanly to prepare for reboot, halt, or
  435  * power off.
  436  */
  437 void
  438 kern_reboot(int howto)
  439 {
  440         static int once = 0;
  441 
  442         /*
  443          * Normal paths here don't hold Giant, but we can wind up here
  444          * unexpectedly with it held.  Drop it now so we don't have to
  445          * drop and pick it up elsewhere. The paths it is locking will
  446          * never be returned to, and it is preferable to preclude
  447          * deadlock than to lock against code that won't ever
  448          * continue.
  449          */
  450         while (mtx_owned(&Giant))
  451                 mtx_unlock(&Giant);
  452 
  453 #if defined(SMP)
  454         /*
  455          * Bind us to the first CPU so that all shutdown code runs there.  Some
  456          * systems don't shutdown properly (i.e., ACPI power off) if we
  457          * run on another processor.
  458          */
  459         if (!SCHEDULER_STOPPED()) {
  460                 thread_lock(curthread);
  461                 sched_bind(curthread, CPU_FIRST());
  462                 thread_unlock(curthread);
  463                 KASSERT(PCPU_GET(cpuid) == CPU_FIRST(),
  464                     ("%s: not running on cpu 0", __func__));
  465         }
  466 #endif
  467         /* We're in the process of rebooting. */
  468         rebooting = 1;
  469 
  470         /* We are out of the debugger now. */
  471         kdb_active = 0;
  472 
  473         /*
  474          * Do any callouts that should be done BEFORE syncing the filesystems.
  475          */
  476         EVENTHANDLER_INVOKE(shutdown_pre_sync, howto);
  477 
  478         /* 
  479          * Now sync filesystems
  480          */
  481         if (!cold && (howto & RB_NOSYNC) == 0 && once == 0) {
  482                 once = 1;
  483                 bufshutdown(show_busybufs);
  484         }
  485 
  486         print_uptime();
  487 
  488         cngrab();
  489 
  490         /*
  491          * Ok, now do things that assume all filesystem activity has
  492          * been completed.
  493          */
  494         EVENTHANDLER_INVOKE(shutdown_post_sync, howto);
  495 
  496         if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping) 
  497                 doadump(TRUE);
  498 
  499         /* Now that we're going to really halt the system... */
  500         EVENTHANDLER_INVOKE(shutdown_final, howto);
  501 
  502         for(;;) ;       /* safety against shutdown_reset not working */
  503         /* NOTREACHED */
  504 }
  505 
  506 /*
  507  * The system call that results in changing the rootfs.
  508  */
  509 static int
  510 kern_reroot(void)
  511 {
  512         struct vnode *oldrootvnode, *vp;
  513         struct mount *mp, *devmp;
  514         int error;
  515 
  516         if (curproc != initproc)
  517                 return (EPERM);
  518 
  519         /*
  520          * Mark the filesystem containing currently-running executable
  521          * (the temporary copy of init(8)) busy.
  522          */
  523         vp = curproc->p_textvp;
  524         error = vn_lock(vp, LK_SHARED);
  525         if (error != 0)
  526                 return (error);
  527         mp = vp->v_mount;
  528         error = vfs_busy(mp, MBF_NOWAIT);
  529         if (error != 0) {
  530                 vfs_ref(mp);
  531                 VOP_UNLOCK(vp);
  532                 error = vfs_busy(mp, 0);
  533                 vn_lock(vp, LK_SHARED | LK_RETRY);
  534                 vfs_rel(mp);
  535                 if (error != 0) {
  536                         VOP_UNLOCK(vp);
  537                         return (ENOENT);
  538                 }
  539                 if (VN_IS_DOOMED(vp)) {
  540                         VOP_UNLOCK(vp);
  541                         vfs_unbusy(mp);
  542                         return (ENOENT);
  543                 }
  544         }
  545         VOP_UNLOCK(vp);
  546 
  547         /*
  548          * Remove the filesystem containing currently-running executable
  549          * from the mount list, to prevent it from being unmounted
  550          * by vfs_unmountall(), and to avoid confusing vfs_mountroot().
  551          *
  552          * Also preserve /dev - forcibly unmounting it could cause driver
  553          * reinitialization.
  554          */
  555 
  556         vfs_ref(rootdevmp);
  557         devmp = rootdevmp;
  558         rootdevmp = NULL;
  559 
  560         mtx_lock(&mountlist_mtx);
  561         TAILQ_REMOVE(&mountlist, mp, mnt_list);
  562         TAILQ_REMOVE(&mountlist, devmp, mnt_list);
  563         mtx_unlock(&mountlist_mtx);
  564 
  565         oldrootvnode = rootvnode;
  566 
  567         /*
  568          * Unmount everything except for the two filesystems preserved above.
  569          */
  570         vfs_unmountall();
  571 
  572         /*
  573          * Add /dev back; vfs_mountroot() will move it into its new place.
  574          */
  575         mtx_lock(&mountlist_mtx);
  576         TAILQ_INSERT_HEAD(&mountlist, devmp, mnt_list);
  577         mtx_unlock(&mountlist_mtx);
  578         rootdevmp = devmp;
  579         vfs_rel(rootdevmp);
  580 
  581         /*
  582          * Mount the new rootfs.
  583          */
  584         vfs_mountroot();
  585 
  586         /*
  587          * Update all references to the old rootvnode.
  588          */
  589         mountcheckdirs(oldrootvnode, rootvnode);
  590 
  591         /*
  592          * Add the temporary filesystem back and unbusy it.
  593          */
  594         mtx_lock(&mountlist_mtx);
  595         TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
  596         mtx_unlock(&mountlist_mtx);
  597         vfs_unbusy(mp);
  598 
  599         return (0);
  600 }
  601 
  602 /*
  603  * If the shutdown was a clean halt, behave accordingly.
  604  */
  605 static void
  606 shutdown_halt(void *junk, int howto)
  607 {
  608 
  609         if (howto & RB_HALT) {
  610                 printf("\n");
  611                 printf("The operating system has halted.\n");
  612                 printf("Please press any key to reboot.\n\n");
  613 
  614                 wdog_kern_pat(WD_TO_NEVER);
  615 
  616                 switch (cngetc()) {
  617                 case -1:                /* No console, just die */
  618                         cpu_halt();
  619                         /* NOTREACHED */
  620                 default:
  621                         break;
  622                 }
  623         }
  624 }
  625 
  626 /*
  627  * Check to see if the system panicked, pause and then reboot
  628  * according to the specified delay.
  629  */
  630 static void
  631 shutdown_panic(void *junk, int howto)
  632 {
  633         int loop;
  634 
  635         if (howto & RB_DUMP) {
  636                 if (panic_reboot_wait_time != 0) {
  637                         if (panic_reboot_wait_time != -1) {
  638                                 printf("Automatic reboot in %d seconds - "
  639                                        "press a key on the console to abort\n",
  640                                         panic_reboot_wait_time);
  641                                 for (loop = panic_reboot_wait_time * 10;
  642                                      loop > 0; --loop) {
  643                                         DELAY(1000 * 100); /* 1/10th second */
  644                                         /* Did user type a key? */
  645                                         if (cncheckc() != -1)
  646                                                 break;
  647                                 }
  648                                 if (!loop)
  649                                         return;
  650                         }
  651                 } else { /* zero time specified - reboot NOW */
  652                         return;
  653                 }
  654                 printf("--> Press a key on the console to reboot,\n");
  655                 printf("--> or switch off the system now.\n");
  656                 cngetc();
  657         }
  658 }
  659 
  660 /*
  661  * Everything done, now reset
  662  */
  663 static void
  664 shutdown_reset(void *junk, int howto)
  665 {
  666 
  667         printf("Rebooting...\n");
  668         DELAY(1000000); /* wait 1 sec for printf's to complete and be read */
  669 
  670         /*
  671          * Acquiring smp_ipi_mtx here has a double effect:
  672          * - it disables interrupts avoiding CPU0 preemption
  673          *   by fast handlers (thus deadlocking  against other CPUs)
  674          * - it avoids deadlocks against smp_rendezvous() or, more 
  675          *   generally, threads busy-waiting, with this spinlock held,
  676          *   and waiting for responses by threads on other CPUs
  677          *   (ie. smp_tlb_shootdown()).
  678          *
  679          * For the !SMP case it just needs to handle the former problem.
  680          */
  681 #ifdef SMP
  682         mtx_lock_spin(&smp_ipi_mtx);
  683 #else
  684         spinlock_enter();
  685 #endif
  686 
  687         cpu_reset();
  688         /* NOTREACHED */ /* assuming reset worked */
  689 }
  690 
  691 #if defined(WITNESS) || defined(INVARIANT_SUPPORT)
  692 static int kassert_warn_only = 0;
  693 #ifdef KDB
  694 static int kassert_do_kdb = 0;
  695 #endif
  696 #ifdef KTR
  697 static int kassert_do_ktr = 0;
  698 #endif
  699 static int kassert_do_log = 1;
  700 static int kassert_log_pps_limit = 4;
  701 static int kassert_log_mute_at = 0;
  702 static int kassert_log_panic_at = 0;
  703 static int kassert_suppress_in_panic = 0;
  704 static int kassert_warnings = 0;
  705 
  706 SYSCTL_NODE(_debug, OID_AUTO, kassert, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
  707     "kassert options");
  708 
  709 #ifdef KASSERT_PANIC_OPTIONAL
  710 #define KASSERT_RWTUN   CTLFLAG_RWTUN
  711 #else
  712 #define KASSERT_RWTUN   CTLFLAG_RDTUN
  713 #endif
  714 
  715 SYSCTL_INT(_debug_kassert, OID_AUTO, warn_only, KASSERT_RWTUN,
  716     &kassert_warn_only, 0,
  717     "KASSERT triggers a panic (0) or just a warning (1)");
  718 
  719 #ifdef KDB
  720 SYSCTL_INT(_debug_kassert, OID_AUTO, do_kdb, KASSERT_RWTUN,
  721     &kassert_do_kdb, 0, "KASSERT will enter the debugger");
  722 #endif
  723 
  724 #ifdef KTR
  725 SYSCTL_UINT(_debug_kassert, OID_AUTO, do_ktr, KASSERT_RWTUN,
  726     &kassert_do_ktr, 0,
  727     "KASSERT does a KTR, set this to the KTRMASK you want");
  728 #endif
  729 
  730 SYSCTL_INT(_debug_kassert, OID_AUTO, do_log, KASSERT_RWTUN,
  731     &kassert_do_log, 0,
  732     "If warn_only is enabled, log (1) or do not log (0) assertion violations");
  733 
  734 SYSCTL_INT(_debug_kassert, OID_AUTO, warnings, CTLFLAG_RD | CTLFLAG_STATS,
  735     &kassert_warnings, 0, "number of KASSERTs that have been triggered");
  736 
  737 SYSCTL_INT(_debug_kassert, OID_AUTO, log_panic_at, KASSERT_RWTUN,
  738     &kassert_log_panic_at, 0, "max number of KASSERTS before we will panic");
  739 
  740 SYSCTL_INT(_debug_kassert, OID_AUTO, log_pps_limit, KASSERT_RWTUN,
  741     &kassert_log_pps_limit, 0, "limit number of log messages per second");
  742 
  743 SYSCTL_INT(_debug_kassert, OID_AUTO, log_mute_at, KASSERT_RWTUN,
  744     &kassert_log_mute_at, 0, "max number of KASSERTS to log");
  745 
  746 SYSCTL_INT(_debug_kassert, OID_AUTO, suppress_in_panic, KASSERT_RWTUN,
  747     &kassert_suppress_in_panic, 0,
  748     "KASSERTs will be suppressed while handling a panic");
  749 #undef KASSERT_RWTUN
  750 
  751 static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS);
  752 
  753 SYSCTL_PROC(_debug_kassert, OID_AUTO, kassert,
  754     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE | CTLFLAG_MPSAFE, NULL, 0,
  755     kassert_sysctl_kassert, "I",
  756     "set to trigger a test kassert");
  757 
  758 static int
  759 kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS)
  760 {
  761         int error, i;
  762 
  763         error = sysctl_wire_old_buffer(req, sizeof(int));
  764         if (error == 0) {
  765                 i = 0;
  766                 error = sysctl_handle_int(oidp, &i, 0, req);
  767         }
  768         if (error != 0 || req->newptr == NULL)
  769                 return (error);
  770         KASSERT(0, ("kassert_sysctl_kassert triggered kassert %d", i));
  771         return (0);
  772 }
  773 
  774 #ifdef KASSERT_PANIC_OPTIONAL
  775 /*
  776  * Called by KASSERT, this decides if we will panic
  777  * or if we will log via printf and/or ktr.
  778  */
  779 void
  780 kassert_panic(const char *fmt, ...)
  781 {
  782         static char buf[256];
  783         va_list ap;
  784 
  785         va_start(ap, fmt);
  786         (void)vsnprintf(buf, sizeof(buf), fmt, ap);
  787         va_end(ap);
  788 
  789         /*
  790          * If we are suppressing secondary panics, log the warning but do not
  791          * re-enter panic/kdb.
  792          */
  793         if (KERNEL_PANICKED() && kassert_suppress_in_panic) {
  794                 if (kassert_do_log) {
  795                         printf("KASSERT failed: %s\n", buf);
  796 #ifdef KDB
  797                         if (trace_all_panics && trace_on_panic)
  798                                 kdb_backtrace();
  799 #endif
  800                 }
  801                 return;
  802         }
  803 
  804         /*
  805          * panic if we're not just warning, or if we've exceeded
  806          * kassert_log_panic_at warnings.
  807          */
  808         if (!kassert_warn_only ||
  809             (kassert_log_panic_at > 0 &&
  810              kassert_warnings >= kassert_log_panic_at)) {
  811                 va_start(ap, fmt);
  812                 vpanic(fmt, ap);
  813                 /* NORETURN */
  814         }
  815 #ifdef KTR
  816         if (kassert_do_ktr)
  817                 CTR0(ktr_mask, buf);
  818 #endif /* KTR */
  819         /*
  820          * log if we've not yet met the mute limit.
  821          */
  822         if (kassert_do_log &&
  823             (kassert_log_mute_at == 0 ||
  824              kassert_warnings < kassert_log_mute_at)) {
  825                 static  struct timeval lasterr;
  826                 static  int curerr;
  827 
  828                 if (ppsratecheck(&lasterr, &curerr, kassert_log_pps_limit)) {
  829                         printf("KASSERT failed: %s\n", buf);
  830                         kdb_backtrace();
  831                 }
  832         }
  833 #ifdef KDB
  834         if (kassert_do_kdb) {
  835                 kdb_enter(KDB_WHY_KASSERT, buf);
  836         }
  837 #endif
  838         atomic_add_int(&kassert_warnings, 1);
  839 }
  840 #endif /* KASSERT_PANIC_OPTIONAL */
  841 #endif
  842 
  843 /*
  844  * Panic is called on unresolvable fatal errors.  It prints "panic: mesg",
  845  * and then reboots.  If we are called twice, then we avoid trying to sync
  846  * the disks as this often leads to recursive panics.
  847  */
  848 void
  849 panic(const char *fmt, ...)
  850 {
  851         va_list ap;
  852 
  853         va_start(ap, fmt);
  854         vpanic(fmt, ap);
  855 }
  856 
  857 void
  858 vpanic(const char *fmt, va_list ap)
  859 {
  860 #ifdef SMP
  861         cpuset_t other_cpus;
  862 #endif
  863         struct thread *td = curthread;
  864         int bootopt, newpanic;
  865         static char buf[256];
  866 
  867         spinlock_enter();
  868 
  869 #ifdef SMP
  870         /*
  871          * stop_cpus_hard(other_cpus) should prevent multiple CPUs from
  872          * concurrently entering panic.  Only the winner will proceed
  873          * further.
  874          */
  875         if (panicstr == NULL && !kdb_active) {
  876                 other_cpus = all_cpus;
  877                 CPU_CLR(PCPU_GET(cpuid), &other_cpus);
  878                 stop_cpus_hard(other_cpus);
  879         }
  880 #endif
  881 
  882         /*
  883          * Ensure that the scheduler is stopped while panicking, even if panic
  884          * has been entered from kdb.
  885          */
  886         td->td_stopsched = 1;
  887 
  888         bootopt = RB_AUTOBOOT;
  889         newpanic = 0;
  890         if (KERNEL_PANICKED())
  891                 bootopt |= RB_NOSYNC;
  892         else {
  893                 bootopt |= RB_DUMP;
  894                 panicstr = fmt;
  895                 panicked = true;
  896                 newpanic = 1;
  897         }
  898 
  899         if (newpanic) {
  900                 (void)vsnprintf(buf, sizeof(buf), fmt, ap);
  901                 panicstr = buf;
  902                 cngrab();
  903                 printf("panic: %s\n", buf);
  904         } else {
  905                 printf("panic: ");
  906                 vprintf(fmt, ap);
  907                 printf("\n");
  908         }
  909 #ifdef SMP
  910         printf("cpuid = %d\n", PCPU_GET(cpuid));
  911 #endif
  912         printf("time = %jd\n", (intmax_t )time_second);
  913 #ifdef KDB
  914         if ((newpanic || trace_all_panics) && trace_on_panic)
  915                 kdb_backtrace();
  916         if (debugger_on_panic)
  917                 kdb_enter(KDB_WHY_PANIC, "panic");
  918         else if (!newpanic && debugger_on_recursive_panic)
  919                 kdb_enter(KDB_WHY_PANIC, "re-panic");
  920 #endif
  921         /*thread_lock(td); */
  922         td->td_flags |= TDF_INPANIC;
  923         /* thread_unlock(td); */
  924         if (!sync_on_panic)
  925                 bootopt |= RB_NOSYNC;
  926         if (poweroff_on_panic)
  927                 bootopt |= RB_POWEROFF;
  928         if (powercycle_on_panic)
  929                 bootopt |= RB_POWERCYCLE;
  930         kern_reboot(bootopt);
  931 }
  932 
  933 /*
  934  * Support for poweroff delay.
  935  *
  936  * Please note that setting this delay too short might power off your machine
  937  * before the write cache on your hard disk has been flushed, leading to
  938  * soft-updates inconsistencies.
  939  */
  940 #ifndef POWEROFF_DELAY
  941 # define POWEROFF_DELAY 5000
  942 #endif
  943 static int poweroff_delay = POWEROFF_DELAY;
  944 
  945 SYSCTL_INT(_kern_shutdown, OID_AUTO, poweroff_delay, CTLFLAG_RW,
  946     &poweroff_delay, 0, "Delay before poweroff to write disk caches (msec)");
  947 
  948 static void
  949 poweroff_wait(void *junk, int howto)
  950 {
  951 
  952         if ((howto & (RB_POWEROFF | RB_POWERCYCLE)) == 0 || poweroff_delay <= 0)
  953                 return;
  954         DELAY(poweroff_delay * 1000);
  955 }
  956 
  957 /*
  958  * Some system processes (e.g. syncer) need to be stopped at appropriate
  959  * points in their main loops prior to a system shutdown, so that they
  960  * won't interfere with the shutdown process (e.g. by holding a disk buf
  961  * to cause sync to fail).  For each of these system processes, register
  962  * shutdown_kproc() as a handler for one of shutdown events.
  963  */
  964 static int kproc_shutdown_wait = 60;
  965 SYSCTL_INT(_kern_shutdown, OID_AUTO, kproc_shutdown_wait, CTLFLAG_RW,
  966     &kproc_shutdown_wait, 0, "Max wait time (sec) to stop for each process");
  967 
  968 void
  969 kproc_shutdown(void *arg, int howto)
  970 {
  971         struct proc *p;
  972         int error;
  973 
  974         if (KERNEL_PANICKED())
  975                 return;
  976 
  977         p = (struct proc *)arg;
  978         printf("Waiting (max %d seconds) for system process `%s' to stop... ",
  979             kproc_shutdown_wait, p->p_comm);
  980         error = kproc_suspend(p, kproc_shutdown_wait * hz);
  981 
  982         if (error == EWOULDBLOCK)
  983                 printf("timed out\n");
  984         else
  985                 printf("done\n");
  986 }
  987 
  988 void
  989 kthread_shutdown(void *arg, int howto)
  990 {
  991         struct thread *td;
  992         int error;
  993 
  994         if (KERNEL_PANICKED())
  995                 return;
  996 
  997         td = (struct thread *)arg;
  998         printf("Waiting (max %d seconds) for system thread `%s' to stop... ",
  999             kproc_shutdown_wait, td->td_name);
 1000         error = kthread_suspend(td, kproc_shutdown_wait * hz);
 1001 
 1002         if (error == EWOULDBLOCK)
 1003                 printf("timed out\n");
 1004         else
 1005                 printf("done\n");
 1006 }
 1007 
 1008 static int
 1009 dumpdevname_sysctl_handler(SYSCTL_HANDLER_ARGS)
 1010 {
 1011         char buf[256];
 1012         struct dumperinfo *di;
 1013         struct sbuf sb;
 1014         int error;
 1015 
 1016         error = sysctl_wire_old_buffer(req, 0);
 1017         if (error != 0)
 1018                 return (error);
 1019 
 1020         sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
 1021 
 1022         mtx_lock(&dumpconf_list_lk);
 1023         TAILQ_FOREACH(di, &dumper_configs, di_next) {
 1024                 if (di != TAILQ_FIRST(&dumper_configs))
 1025                         sbuf_putc(&sb, ',');
 1026                 sbuf_cat(&sb, di->di_devname);
 1027         }
 1028         mtx_unlock(&dumpconf_list_lk);
 1029 
 1030         error = sbuf_finish(&sb);
 1031         sbuf_delete(&sb);
 1032         return (error);
 1033 }
 1034 SYSCTL_PROC(_kern_shutdown, OID_AUTO, dumpdevname,
 1035     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, &dumper_configs, 0,
 1036     dumpdevname_sysctl_handler, "A",
 1037     "Device(s) for kernel dumps");
 1038 
 1039 static int _dump_append(struct dumperinfo *di, void *virtual, size_t length);
 1040 
 1041 #ifdef EKCD
 1042 static struct kerneldumpcrypto *
 1043 kerneldumpcrypto_create(size_t blocksize, uint8_t encryption,
 1044     const uint8_t *key, uint32_t encryptedkeysize, const uint8_t *encryptedkey)
 1045 {
 1046         struct kerneldumpcrypto *kdc;
 1047         struct kerneldumpkey *kdk;
 1048         uint32_t dumpkeysize;
 1049 
 1050         dumpkeysize = roundup2(sizeof(*kdk) + encryptedkeysize, blocksize);
 1051         kdc = malloc(sizeof(*kdc) + dumpkeysize, M_EKCD, M_WAITOK | M_ZERO);
 1052 
 1053         arc4rand(kdc->kdc_iv, sizeof(kdc->kdc_iv), 0);
 1054 
 1055         kdc->kdc_encryption = encryption;
 1056         switch (kdc->kdc_encryption) {
 1057         case KERNELDUMP_ENC_AES_256_CBC:
 1058                 if (rijndael_makeKey(&kdc->kdc_ki, DIR_ENCRYPT, 256, key) <= 0)
 1059                         goto failed;
 1060                 break;
 1061         case KERNELDUMP_ENC_CHACHA20:
 1062                 chacha_keysetup(&kdc->kdc_chacha, key, 256);
 1063                 break;
 1064         default:
 1065                 goto failed;
 1066         }
 1067 
 1068         kdc->kdc_dumpkeysize = dumpkeysize;
 1069         kdk = kdc->kdc_dumpkey;
 1070         kdk->kdk_encryption = kdc->kdc_encryption;
 1071         memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
 1072         kdk->kdk_encryptedkeysize = htod32(encryptedkeysize);
 1073         memcpy(kdk->kdk_encryptedkey, encryptedkey, encryptedkeysize);
 1074 
 1075         return (kdc);
 1076 failed:
 1077         zfree(kdc, M_EKCD);
 1078         return (NULL);
 1079 }
 1080 
 1081 static int
 1082 kerneldumpcrypto_init(struct kerneldumpcrypto *kdc)
 1083 {
 1084         uint8_t hash[SHA256_DIGEST_LENGTH];
 1085         SHA256_CTX ctx;
 1086         struct kerneldumpkey *kdk;
 1087         int error;
 1088 
 1089         error = 0;
 1090 
 1091         if (kdc == NULL)
 1092                 return (0);
 1093 
 1094         /*
 1095          * When a user enters ddb it can write a crash dump multiple times.
 1096          * Each time it should be encrypted using a different IV.
 1097          */
 1098         SHA256_Init(&ctx);
 1099         SHA256_Update(&ctx, kdc->kdc_iv, sizeof(kdc->kdc_iv));
 1100         SHA256_Final(hash, &ctx);
 1101         bcopy(hash, kdc->kdc_iv, sizeof(kdc->kdc_iv));
 1102 
 1103         switch (kdc->kdc_encryption) {
 1104         case KERNELDUMP_ENC_AES_256_CBC:
 1105                 if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
 1106                     kdc->kdc_iv) <= 0) {
 1107                         error = EINVAL;
 1108                         goto out;
 1109                 }
 1110                 break;
 1111         case KERNELDUMP_ENC_CHACHA20:
 1112                 chacha_ivsetup(&kdc->kdc_chacha, kdc->kdc_iv, NULL);
 1113                 break;
 1114         default:
 1115                 error = EINVAL;
 1116                 goto out;
 1117         }
 1118 
 1119         kdk = kdc->kdc_dumpkey;
 1120         memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
 1121 out:
 1122         explicit_bzero(hash, sizeof(hash));
 1123         return (error);
 1124 }
 1125 
 1126 static uint32_t
 1127 kerneldumpcrypto_dumpkeysize(const struct kerneldumpcrypto *kdc)
 1128 {
 1129 
 1130         if (kdc == NULL)
 1131                 return (0);
 1132         return (kdc->kdc_dumpkeysize);
 1133 }
 1134 #endif /* EKCD */
 1135 
 1136 static struct kerneldumpcomp *
 1137 kerneldumpcomp_create(struct dumperinfo *di, uint8_t compression)
 1138 {
 1139         struct kerneldumpcomp *kdcomp;
 1140         int format;
 1141 
 1142         switch (compression) {
 1143         case KERNELDUMP_COMP_GZIP:
 1144                 format = COMPRESS_GZIP;
 1145                 break;
 1146         case KERNELDUMP_COMP_ZSTD:
 1147                 format = COMPRESS_ZSTD;
 1148                 break;
 1149         default:
 1150                 return (NULL);
 1151         }
 1152 
 1153         kdcomp = malloc(sizeof(*kdcomp), M_DUMPER, M_WAITOK | M_ZERO);
 1154         kdcomp->kdc_format = compression;
 1155         kdcomp->kdc_stream = compressor_init(kerneldumpcomp_write_cb,
 1156             format, di->maxiosize, kerneldump_gzlevel, di);
 1157         if (kdcomp->kdc_stream == NULL) {
 1158                 free(kdcomp, M_DUMPER);
 1159                 return (NULL);
 1160         }
 1161         kdcomp->kdc_buf = malloc(di->maxiosize, M_DUMPER, M_WAITOK | M_NODUMP);
 1162         return (kdcomp);
 1163 }
 1164 
 1165 static void
 1166 kerneldumpcomp_destroy(struct dumperinfo *di)
 1167 {
 1168         struct kerneldumpcomp *kdcomp;
 1169 
 1170         kdcomp = di->kdcomp;
 1171         if (kdcomp == NULL)
 1172                 return;
 1173         compressor_fini(kdcomp->kdc_stream);
 1174         zfree(kdcomp->kdc_buf, M_DUMPER);
 1175         free(kdcomp, M_DUMPER);
 1176 }
 1177 
 1178 /*
 1179  * Free a dumper. Must not be present on global list.
 1180  */
 1181 void
 1182 dumper_destroy(struct dumperinfo *di)
 1183 {
 1184 
 1185         if (di == NULL)
 1186                 return;
 1187 
 1188         zfree(di->blockbuf, M_DUMPER);
 1189         kerneldumpcomp_destroy(di);
 1190 #ifdef EKCD
 1191         zfree(di->kdcrypto, M_EKCD);
 1192 #endif
 1193         zfree(di, M_DUMPER);
 1194 }
 1195 
 1196 /*
 1197  * Allocate and set up a new dumper from the provided template.
 1198  */
 1199 int
 1200 dumper_create(const struct dumperinfo *di_template, const char *devname,
 1201     const struct diocskerneldump_arg *kda, struct dumperinfo **dip)
 1202 {
 1203         struct dumperinfo *newdi;
 1204         int error = 0;
 1205 
 1206         if (dip == NULL)
 1207                 return (EINVAL);
 1208 
 1209         /* Allocate a new dumper */
 1210         newdi = malloc(sizeof(*newdi) + strlen(devname) + 1, M_DUMPER,
 1211             M_WAITOK | M_ZERO);
 1212         memcpy(newdi, di_template, sizeof(*newdi));
 1213         newdi->blockbuf = NULL;
 1214         newdi->kdcrypto = NULL;
 1215         newdi->kdcomp = NULL;
 1216         strcpy(newdi->di_devname, devname);
 1217 
 1218         if (kda->kda_encryption != KERNELDUMP_ENC_NONE) {
 1219 #ifdef EKCD
 1220                 newdi->kdcrypto = kerneldumpcrypto_create(newdi->blocksize,
 1221                     kda->kda_encryption, kda->kda_key,
 1222                     kda->kda_encryptedkeysize, kda->kda_encryptedkey);
 1223                 if (newdi->kdcrypto == NULL) {
 1224                         error = EINVAL;
 1225                         goto cleanup;
 1226                 }
 1227 #else
 1228                 error = EOPNOTSUPP;
 1229                 goto cleanup;
 1230 #endif
 1231         }
 1232         if (kda->kda_compression != KERNELDUMP_COMP_NONE) {
 1233 #ifdef EKCD
 1234                 /*
 1235                  * We can't support simultaneous unpadded block cipher
 1236                  * encryption and compression because there is no guarantee the
 1237                  * length of the compressed result is exactly a multiple of the
 1238                  * cipher block size.
 1239                  */
 1240                 if (kda->kda_encryption == KERNELDUMP_ENC_AES_256_CBC) {
 1241                         error = EOPNOTSUPP;
 1242                         goto cleanup;
 1243                 }
 1244 #endif
 1245                 newdi->kdcomp = kerneldumpcomp_create(newdi,
 1246                     kda->kda_compression);
 1247                 if (newdi->kdcomp == NULL) {
 1248                         error = EINVAL;
 1249                         goto cleanup;
 1250                 }
 1251         }
 1252         newdi->blockbuf = malloc(newdi->blocksize, M_DUMPER, M_WAITOK | M_ZERO);
 1253 
 1254         *dip = newdi;
 1255         return (0);
 1256 cleanup:
 1257         dumper_destroy(newdi);
 1258         return (error);
 1259 }
 1260 
 1261 /*
 1262  * Create a new dumper and register it in the global list.
 1263  */
 1264 int
 1265 dumper_insert(const struct dumperinfo *di_template, const char *devname,
 1266     const struct diocskerneldump_arg *kda)
 1267 {
 1268         struct dumperinfo *newdi, *listdi;
 1269         bool inserted;
 1270         uint8_t index;
 1271         int error;
 1272 
 1273         index = kda->kda_index;
 1274         MPASS(index != KDA_REMOVE && index != KDA_REMOVE_DEV &&
 1275             index != KDA_REMOVE_ALL);
 1276 
 1277         error = priv_check(curthread, PRIV_SETDUMPER);
 1278         if (error != 0)
 1279                 return (error);
 1280 
 1281         error = dumper_create(di_template, devname, kda, &newdi);
 1282         if (error != 0)
 1283                 return (error);
 1284 
 1285         /* Add the new configuration to the queue */
 1286         mtx_lock(&dumpconf_list_lk);
 1287         inserted = false;
 1288         TAILQ_FOREACH(listdi, &dumper_configs, di_next) {
 1289                 if (index == 0) {
 1290                         TAILQ_INSERT_BEFORE(listdi, newdi, di_next);
 1291                         inserted = true;
 1292                         break;
 1293                 }
 1294                 index--;
 1295         }
 1296         if (!inserted)
 1297                 TAILQ_INSERT_TAIL(&dumper_configs, newdi, di_next);
 1298         mtx_unlock(&dumpconf_list_lk);
 1299 
 1300         return (0);
 1301 }
 1302 
 1303 #ifdef DDB
 1304 void
 1305 dumper_ddb_insert(struct dumperinfo *newdi)
 1306 {
 1307         TAILQ_INSERT_HEAD(&dumper_configs, newdi, di_next);
 1308 }
 1309 
 1310 void
 1311 dumper_ddb_remove(struct dumperinfo *di)
 1312 {
 1313         TAILQ_REMOVE(&dumper_configs, di, di_next);
 1314 }
 1315 #endif
 1316 
 1317 static bool
 1318 dumper_config_match(const struct dumperinfo *di, const char *devname,
 1319     const struct diocskerneldump_arg *kda)
 1320 {
 1321         if (kda->kda_index == KDA_REMOVE_ALL)
 1322                 return (true);
 1323 
 1324         if (strcmp(di->di_devname, devname) != 0)
 1325                 return (false);
 1326 
 1327         /*
 1328          * Allow wildcard removal of configs matching a device on g_dev_orphan.
 1329          */
 1330         if (kda->kda_index == KDA_REMOVE_DEV)
 1331                 return (true);
 1332 
 1333         if (di->kdcomp != NULL) {
 1334                 if (di->kdcomp->kdc_format != kda->kda_compression)
 1335                         return (false);
 1336         } else if (kda->kda_compression != KERNELDUMP_COMP_NONE)
 1337                 return (false);
 1338 #ifdef EKCD
 1339         if (di->kdcrypto != NULL) {
 1340                 if (di->kdcrypto->kdc_encryption != kda->kda_encryption)
 1341                         return (false);
 1342                 /*
 1343                  * Do we care to verify keys match to delete?  It seems weird
 1344                  * to expect multiple fallback dump configurations on the same
 1345                  * device that only differ in crypto key.
 1346                  */
 1347         } else
 1348 #endif
 1349                 if (kda->kda_encryption != KERNELDUMP_ENC_NONE)
 1350                         return (false);
 1351 
 1352         return (true);
 1353 }
 1354 
 1355 /*
 1356  * Remove and free the requested dumper(s) from the global list.
 1357  */
 1358 int
 1359 dumper_remove(const char *devname, const struct diocskerneldump_arg *kda)
 1360 {
 1361         struct dumperinfo *di, *sdi;
 1362         bool found;
 1363         int error;
 1364 
 1365         error = priv_check(curthread, PRIV_SETDUMPER);
 1366         if (error != 0)
 1367                 return (error);
 1368 
 1369         /*
 1370          * Try to find a matching configuration, and kill it.
 1371          *
 1372          * NULL 'kda' indicates remove any configuration matching 'devname',
 1373          * which may remove multiple configurations in atypical configurations.
 1374          */
 1375         found = false;
 1376         mtx_lock(&dumpconf_list_lk);
 1377         TAILQ_FOREACH_SAFE(di, &dumper_configs, di_next, sdi) {
 1378                 if (dumper_config_match(di, devname, kda)) {
 1379                         found = true;
 1380                         TAILQ_REMOVE(&dumper_configs, di, di_next);
 1381                         dumper_destroy(di);
 1382                 }
 1383         }
 1384         mtx_unlock(&dumpconf_list_lk);
 1385 
 1386         /* Only produce ENOENT if a more targeted match didn't match. */
 1387         if (!found && kda->kda_index == KDA_REMOVE)
 1388                 return (ENOENT);
 1389         return (0);
 1390 }
 1391 
 1392 static int
 1393 dump_check_bounds(struct dumperinfo *di, off_t offset, size_t length)
 1394 {
 1395 
 1396         if (di->mediasize > 0 && length != 0 && (offset < di->mediaoffset ||
 1397             offset - di->mediaoffset + length > di->mediasize)) {
 1398                 if (di->kdcomp != NULL && offset >= di->mediaoffset) {
 1399                         printf(
 1400                     "Compressed dump failed to fit in device boundaries.\n");
 1401                         return (E2BIG);
 1402                 }
 1403 
 1404                 printf("Attempt to write outside dump device boundaries.\n"
 1405             "offset(%jd), mediaoffset(%jd), length(%ju), mediasize(%jd).\n",
 1406                     (intmax_t)offset, (intmax_t)di->mediaoffset,
 1407                     (uintmax_t)length, (intmax_t)di->mediasize);
 1408                 return (ENOSPC);
 1409         }
 1410         if (length % di->blocksize != 0) {
 1411                 printf("Attempt to write partial block of length %ju.\n",
 1412                     (uintmax_t)length);
 1413                 return (EINVAL);
 1414         }
 1415         if (offset % di->blocksize != 0) {
 1416                 printf("Attempt to write at unaligned offset %jd.\n",
 1417                     (intmax_t)offset);
 1418                 return (EINVAL);
 1419         }
 1420 
 1421         return (0);
 1422 }
 1423 
 1424 #ifdef EKCD
 1425 static int
 1426 dump_encrypt(struct kerneldumpcrypto *kdc, uint8_t *buf, size_t size)
 1427 {
 1428 
 1429         switch (kdc->kdc_encryption) {
 1430         case KERNELDUMP_ENC_AES_256_CBC:
 1431                 if (rijndael_blockEncrypt(&kdc->kdc_ci, &kdc->kdc_ki, buf,
 1432                     8 * size, buf) <= 0) {
 1433                         return (EIO);
 1434                 }
 1435                 if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
 1436                     buf + size - 16 /* IV size for AES-256-CBC */) <= 0) {
 1437                         return (EIO);
 1438                 }
 1439                 break;
 1440         case KERNELDUMP_ENC_CHACHA20:
 1441                 chacha_encrypt_bytes(&kdc->kdc_chacha, buf, buf, size);
 1442                 break;
 1443         default:
 1444                 return (EINVAL);
 1445         }
 1446 
 1447         return (0);
 1448 }
 1449 
 1450 /* Encrypt data and call dumper. */
 1451 static int
 1452 dump_encrypted_write(struct dumperinfo *di, void *virtual, off_t offset,
 1453     size_t length)
 1454 {
 1455         static uint8_t buf[KERNELDUMP_BUFFER_SIZE];
 1456         struct kerneldumpcrypto *kdc;
 1457         int error;
 1458         size_t nbytes;
 1459 
 1460         kdc = di->kdcrypto;
 1461 
 1462         while (length > 0) {
 1463                 nbytes = MIN(length, sizeof(buf));
 1464                 bcopy(virtual, buf, nbytes);
 1465 
 1466                 if (dump_encrypt(kdc, buf, nbytes) != 0)
 1467                         return (EIO);
 1468 
 1469                 error = dump_write(di, buf, offset, nbytes);
 1470                 if (error != 0)
 1471                         return (error);
 1472 
 1473                 offset += nbytes;
 1474                 virtual = (void *)((uint8_t *)virtual + nbytes);
 1475                 length -= nbytes;
 1476         }
 1477 
 1478         return (0);
 1479 }
 1480 #endif /* EKCD */
 1481 
 1482 static int
 1483 kerneldumpcomp_write_cb(void *base, size_t length, off_t offset, void *arg)
 1484 {
 1485         struct dumperinfo *di;
 1486         size_t resid, rlength;
 1487         int error;
 1488 
 1489         di = arg;
 1490 
 1491         if (length % di->blocksize != 0) {
 1492                 /*
 1493                  * This must be the final write after flushing the compression
 1494                  * stream. Write as many full blocks as possible and stash the
 1495                  * residual data in the dumper's block buffer. It will be
 1496                  * padded and written in dump_finish().
 1497                  */
 1498                 rlength = rounddown(length, di->blocksize);
 1499                 if (rlength != 0) {
 1500                         error = _dump_append(di, base, rlength);
 1501                         if (error != 0)
 1502                                 return (error);
 1503                 }
 1504                 resid = length - rlength;
 1505                 memmove(di->blockbuf, (uint8_t *)base + rlength, resid);
 1506                 bzero((uint8_t *)di->blockbuf + resid, di->blocksize - resid);
 1507                 di->kdcomp->kdc_resid = resid;
 1508                 return (EAGAIN);
 1509         }
 1510         return (_dump_append(di, base, length));
 1511 }
 1512 
 1513 /*
 1514  * Write kernel dump headers at the beginning and end of the dump extent.
 1515  * Write the kernel dump encryption key after the leading header if we were
 1516  * configured to do so.
 1517  */
 1518 static int
 1519 dump_write_headers(struct dumperinfo *di, struct kerneldumpheader *kdh)
 1520 {
 1521 #ifdef EKCD
 1522         struct kerneldumpcrypto *kdc;
 1523 #endif
 1524         void *buf;
 1525         size_t hdrsz;
 1526         uint64_t extent;
 1527         uint32_t keysize;
 1528         int error;
 1529 
 1530         hdrsz = sizeof(*kdh);
 1531         if (hdrsz > di->blocksize)
 1532                 return (ENOMEM);
 1533 
 1534 #ifdef EKCD
 1535         kdc = di->kdcrypto;
 1536         keysize = kerneldumpcrypto_dumpkeysize(kdc);
 1537 #else
 1538         keysize = 0;
 1539 #endif
 1540 
 1541         /*
 1542          * If the dump device has special handling for headers, let it take care
 1543          * of writing them out.
 1544          */
 1545         if (di->dumper_hdr != NULL)
 1546                 return (di->dumper_hdr(di, kdh));
 1547 
 1548         if (hdrsz == di->blocksize)
 1549                 buf = kdh;
 1550         else {
 1551                 buf = di->blockbuf;
 1552                 memset(buf, 0, di->blocksize);
 1553                 memcpy(buf, kdh, hdrsz);
 1554         }
 1555 
 1556         extent = dtoh64(kdh->dumpextent);
 1557 #ifdef EKCD
 1558         if (kdc != NULL) {
 1559                 error = dump_write(di, kdc->kdc_dumpkey,
 1560                     di->mediaoffset + di->mediasize - di->blocksize - extent -
 1561                     keysize, keysize);
 1562                 if (error != 0)
 1563                         return (error);
 1564         }
 1565 #endif
 1566 
 1567         error = dump_write(di, buf,
 1568             di->mediaoffset + di->mediasize - 2 * di->blocksize - extent -
 1569             keysize, di->blocksize);
 1570         if (error == 0)
 1571                 error = dump_write(di, buf, di->mediaoffset + di->mediasize -
 1572                     di->blocksize, di->blocksize);
 1573         return (error);
 1574 }
 1575 
 1576 /*
 1577  * Don't touch the first SIZEOF_METADATA bytes on the dump device.  This is to
 1578  * protect us from metadata and metadata from us.
 1579  */
 1580 #define SIZEOF_METADATA         (64 * 1024)
 1581 
 1582 /*
 1583  * Do some preliminary setup for a kernel dump: initialize state for encryption,
 1584  * if requested, and make sure that we have enough space on the dump device.
 1585  *
 1586  * We set things up so that the dump ends before the last sector of the dump
 1587  * device, at which the trailing header is written.
 1588  *
 1589  *     +-----------+------+-----+----------------------------+------+
 1590  *     |           | lhdr | key |    ... kernel dump ...     | thdr |
 1591  *     +-----------+------+-----+----------------------------+------+
 1592  *                   1 blk  opt <------- dump extent --------> 1 blk
 1593  *
 1594  * Dumps written using dump_append() start at the beginning of the extent.
 1595  * Uncompressed dumps will use the entire extent, but compressed dumps typically
 1596  * will not. The true length of the dump is recorded in the leading and trailing
 1597  * headers once the dump has been completed.
 1598  *
 1599  * The dump device may provide a callback, in which case it will initialize
 1600  * dumpoff and take care of laying out the headers.
 1601  */
 1602 int
 1603 dump_start(struct dumperinfo *di, struct kerneldumpheader *kdh)
 1604 {
 1605 #ifdef EKCD
 1606         struct kerneldumpcrypto *kdc;
 1607 #endif
 1608         void *key;
 1609         uint64_t dumpextent, span;
 1610         uint32_t keysize;
 1611         int error;
 1612 
 1613 #ifdef EKCD
 1614         /* Send the key before the dump so a partial dump is still usable. */
 1615         kdc = di->kdcrypto;
 1616         error = kerneldumpcrypto_init(kdc);
 1617         if (error != 0)
 1618                 return (error);
 1619         keysize = kerneldumpcrypto_dumpkeysize(kdc);
 1620         key = keysize > 0 ? kdc->kdc_dumpkey : NULL;
 1621 #else
 1622         error = 0;
 1623         keysize = 0;
 1624         key = NULL;
 1625 #endif
 1626 
 1627         if (di->dumper_start != NULL) {
 1628                 error = di->dumper_start(di, key, keysize);
 1629         } else {
 1630                 dumpextent = dtoh64(kdh->dumpextent);
 1631                 span = SIZEOF_METADATA + dumpextent + 2 * di->blocksize +
 1632                     keysize;
 1633                 if (di->mediasize < span) {
 1634                         if (di->kdcomp == NULL)
 1635                                 return (E2BIG);
 1636 
 1637                         /*
 1638                          * We don't yet know how much space the compressed dump
 1639                          * will occupy, so try to use the whole swap partition
 1640                          * (minus the first 64KB) in the hope that the
 1641                          * compressed dump will fit. If that doesn't turn out to
 1642                          * be enough, the bounds checking in dump_write()
 1643                          * will catch us and cause the dump to fail.
 1644                          */
 1645                         dumpextent = di->mediasize - span + dumpextent;
 1646                         kdh->dumpextent = htod64(dumpextent);
 1647                 }
 1648 
 1649                 /*
 1650                  * The offset at which to begin writing the dump.
 1651                  */
 1652                 di->dumpoff = di->mediaoffset + di->mediasize - di->blocksize -
 1653                     dumpextent;
 1654         }
 1655         di->origdumpoff = di->dumpoff;
 1656         return (error);
 1657 }
 1658 
 1659 static int
 1660 _dump_append(struct dumperinfo *di, void *virtual, size_t length)
 1661 {
 1662         int error;
 1663 
 1664 #ifdef EKCD
 1665         if (di->kdcrypto != NULL)
 1666                 error = dump_encrypted_write(di, virtual, di->dumpoff, length);
 1667         else
 1668 #endif
 1669                 error = dump_write(di, virtual, di->dumpoff, length);
 1670         if (error == 0)
 1671                 di->dumpoff += length;
 1672         return (error);
 1673 }
 1674 
 1675 /*
 1676  * Write to the dump device starting at dumpoff. When compression is enabled,
 1677  * writes to the device will be performed using a callback that gets invoked
 1678  * when the compression stream's output buffer is full.
 1679  */
 1680 int
 1681 dump_append(struct dumperinfo *di, void *virtual, size_t length)
 1682 {
 1683         void *buf;
 1684 
 1685         if (di->kdcomp != NULL) {
 1686                 /* Bounce through a buffer to avoid CRC errors. */
 1687                 if (length > di->maxiosize)
 1688                         return (EINVAL);
 1689                 buf = di->kdcomp->kdc_buf;
 1690                 memmove(buf, virtual, length);
 1691                 return (compressor_write(di->kdcomp->kdc_stream, buf, length));
 1692         }
 1693         return (_dump_append(di, virtual, length));
 1694 }
 1695 
 1696 /*
 1697  * Write to the dump device at the specified offset.
 1698  */
 1699 int
 1700 dump_write(struct dumperinfo *di, void *virtual, off_t offset, size_t length)
 1701 {
 1702         int error;
 1703 
 1704         error = dump_check_bounds(di, offset, length);
 1705         if (error != 0)
 1706                 return (error);
 1707         return (di->dumper(di->priv, virtual, offset, length));
 1708 }
 1709 
 1710 /*
 1711  * Perform kernel dump finalization: flush the compression stream, if necessary,
 1712  * write the leading and trailing kernel dump headers now that we know the true
 1713  * length of the dump, and optionally write the encryption key following the
 1714  * leading header.
 1715  */
 1716 int
 1717 dump_finish(struct dumperinfo *di, struct kerneldumpheader *kdh)
 1718 {
 1719         int error;
 1720 
 1721         if (di->kdcomp != NULL) {
 1722                 error = compressor_flush(di->kdcomp->kdc_stream);
 1723                 if (error == EAGAIN) {
 1724                         /* We have residual data in di->blockbuf. */
 1725                         error = _dump_append(di, di->blockbuf, di->blocksize);
 1726                         if (error == 0)
 1727                                 /* Compensate for _dump_append()'s adjustment. */
 1728                                 di->dumpoff -= di->blocksize - di->kdcomp->kdc_resid;
 1729                         di->kdcomp->kdc_resid = 0;
 1730                 }
 1731                 if (error != 0)
 1732                         return (error);
 1733 
 1734                 /*
 1735                  * We now know the size of the compressed dump, so update the
 1736                  * header accordingly and recompute parity.
 1737                  */
 1738                 kdh->dumplength = htod64(di->dumpoff - di->origdumpoff);
 1739                 kdh->parity = 0;
 1740                 kdh->parity = kerneldump_parity(kdh);
 1741 
 1742                 compressor_reset(di->kdcomp->kdc_stream);
 1743         }
 1744 
 1745         error = dump_write_headers(di, kdh);
 1746         if (error != 0)
 1747                 return (error);
 1748 
 1749         (void)dump_write(di, NULL, 0, 0);
 1750         return (0);
 1751 }
 1752 
 1753 void
 1754 dump_init_header(const struct dumperinfo *di, struct kerneldumpheader *kdh,
 1755     const char *magic, uint32_t archver, uint64_t dumplen)
 1756 {
 1757         size_t dstsize;
 1758 
 1759         bzero(kdh, sizeof(*kdh));
 1760         strlcpy(kdh->magic, magic, sizeof(kdh->magic));
 1761         strlcpy(kdh->architecture, MACHINE_ARCH, sizeof(kdh->architecture));
 1762         kdh->version = htod32(KERNELDUMPVERSION);
 1763         kdh->architectureversion = htod32(archver);
 1764         kdh->dumplength = htod64(dumplen);
 1765         kdh->dumpextent = kdh->dumplength;
 1766         kdh->dumptime = htod64(time_second);
 1767 #ifdef EKCD
 1768         kdh->dumpkeysize = htod32(kerneldumpcrypto_dumpkeysize(di->kdcrypto));
 1769 #else
 1770         kdh->dumpkeysize = 0;
 1771 #endif
 1772         kdh->blocksize = htod32(di->blocksize);
 1773         strlcpy(kdh->hostname, prison0.pr_hostname, sizeof(kdh->hostname));
 1774         dstsize = sizeof(kdh->versionstring);
 1775         if (strlcpy(kdh->versionstring, version, dstsize) >= dstsize)
 1776                 kdh->versionstring[dstsize - 2] = '\n';
 1777         if (panicstr != NULL)
 1778                 strlcpy(kdh->panicstring, panicstr, sizeof(kdh->panicstring));
 1779         if (di->kdcomp != NULL)
 1780                 kdh->compression = di->kdcomp->kdc_format;
 1781         kdh->parity = kerneldump_parity(kdh);
 1782 }
 1783 
 1784 #ifdef DDB
 1785 DB_SHOW_COMMAND(panic, db_show_panic)
 1786 {
 1787 
 1788         if (panicstr == NULL)
 1789                 db_printf("panicstr not set\n");
 1790         else
 1791                 db_printf("panic: %s\n", panicstr);
 1792 }
 1793 #endif

Cache object: 214966ca20a15c7b3236d0befd58b269


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.