The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_sig.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_sig.c  8.7 (Berkeley) 4/18/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/10.0/sys/kern/kern_sig.c 255219 2013-09-05 00:09:56Z pjd $");
   39 
   40 #include "opt_compat.h"
   41 #include "opt_kdtrace.h"
   42 #include "opt_ktrace.h"
   43 #include "opt_core.h"
   44 #include "opt_procdesc.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/signalvar.h>
   49 #include <sys/vnode.h>
   50 #include <sys/acct.h>
   51 #include <sys/capability.h>
   52 #include <sys/condvar.h>
   53 #include <sys/event.h>
   54 #include <sys/fcntl.h>
   55 #include <sys/imgact.h>
   56 #include <sys/kernel.h>
   57 #include <sys/ktr.h>
   58 #include <sys/ktrace.h>
   59 #include <sys/lock.h>
   60 #include <sys/malloc.h>
   61 #include <sys/mutex.h>
   62 #include <sys/namei.h>
   63 #include <sys/proc.h>
   64 #include <sys/procdesc.h>
   65 #include <sys/posix4.h>
   66 #include <sys/pioctl.h>
   67 #include <sys/racct.h>
   68 #include <sys/resourcevar.h>
   69 #include <sys/sdt.h>
   70 #include <sys/sbuf.h>
   71 #include <sys/sleepqueue.h>
   72 #include <sys/smp.h>
   73 #include <sys/stat.h>
   74 #include <sys/sx.h>
   75 #include <sys/syscallsubr.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/sysent.h>
   78 #include <sys/syslog.h>
   79 #include <sys/sysproto.h>
   80 #include <sys/timers.h>
   81 #include <sys/unistd.h>
   82 #include <sys/wait.h>
   83 #include <vm/vm.h>
   84 #include <vm/vm_extern.h>
   85 #include <vm/uma.h>
   86 
   87 #include <sys/jail.h>
   88 
   89 #include <machine/cpu.h>
   90 
   91 #include <security/audit/audit.h>
   92 
   93 #define ONSIG   32              /* NSIG for osig* syscalls.  XXX. */
   94 
   95 SDT_PROVIDER_DECLARE(proc);
   96 SDT_PROBE_DEFINE3(proc, kernel, , signal_send, signal-send, "struct thread *",
   97     "struct proc *", "int");
   98 SDT_PROBE_DEFINE2(proc, kernel, , signal_clear, signal-clear, "int",
   99     "ksiginfo_t *");
  100 SDT_PROBE_DEFINE3(proc, kernel, , signal_discard, signal-discard,
  101     "struct thread *", "struct proc *", "int");
  102 
  103 static int      coredump(struct thread *);
  104 static int      killpg1(struct thread *td, int sig, int pgid, int all,
  105                     ksiginfo_t *ksi);
  106 static int      issignal(struct thread *td);
  107 static int      sigprop(int sig);
  108 static void     tdsigwakeup(struct thread *, int, sig_t, int);
  109 static void     sig_suspend_threads(struct thread *, struct proc *, int);
  110 static int      filt_sigattach(struct knote *kn);
  111 static void     filt_sigdetach(struct knote *kn);
  112 static int      filt_signal(struct knote *kn, long hint);
  113 static struct thread *sigtd(struct proc *p, int sig, int prop);
  114 static void     sigqueue_start(void);
  115 
  116 static uma_zone_t       ksiginfo_zone = NULL;
  117 struct filterops sig_filtops = {
  118         .f_isfd = 0,
  119         .f_attach = filt_sigattach,
  120         .f_detach = filt_sigdetach,
  121         .f_event = filt_signal,
  122 };
  123 
  124 static int      kern_logsigexit = 1;
  125 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
  126     &kern_logsigexit, 0,
  127     "Log processes quitting on abnormal signals to syslog(3)");
  128 
  129 static int      kern_forcesigexit = 1;
  130 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
  131     &kern_forcesigexit, 0, "Force trap signal to be handled");
  132 
  133 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
  134     "POSIX real time signal");
  135 
  136 static int      max_pending_per_proc = 128;
  137 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
  138     &max_pending_per_proc, 0, "Max pending signals per proc");
  139 
  140 static int      preallocate_siginfo = 1024;
  141 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
  142 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
  143     &preallocate_siginfo, 0, "Preallocated signal memory size");
  144 
  145 static int      signal_overflow = 0;
  146 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
  147     &signal_overflow, 0, "Number of signals overflew");
  148 
  149 static int      signal_alloc_fail = 0;
  150 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
  151     &signal_alloc_fail, 0, "signals failed to be allocated");
  152 
  153 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
  154 
  155 /*
  156  * Policy -- Can ucred cr1 send SIGIO to process cr2?
  157  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
  158  * in the right situations.
  159  */
  160 #define CANSIGIO(cr1, cr2) \
  161         ((cr1)->cr_uid == 0 || \
  162             (cr1)->cr_ruid == (cr2)->cr_ruid || \
  163             (cr1)->cr_uid == (cr2)->cr_ruid || \
  164             (cr1)->cr_ruid == (cr2)->cr_uid || \
  165             (cr1)->cr_uid == (cr2)->cr_uid)
  166 
  167 static int      sugid_coredump;
  168 TUNABLE_INT("kern.sugid_coredump", &sugid_coredump);
  169 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
  170     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
  171 
  172 static int      capmode_coredump;
  173 TUNABLE_INT("kern.capmode_coredump", &capmode_coredump);
  174 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RW,
  175     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
  176 
  177 static int      do_coredump = 1;
  178 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
  179         &do_coredump, 0, "Enable/Disable coredumps");
  180 
  181 static int      set_core_nodump_flag = 0;
  182 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
  183         0, "Enable setting the NODUMP flag on coredump files");
  184 
  185 /*
  186  * Signal properties and actions.
  187  * The array below categorizes the signals and their default actions
  188  * according to the following properties:
  189  */
  190 #define SA_KILL         0x01            /* terminates process by default */
  191 #define SA_CORE         0x02            /* ditto and coredumps */
  192 #define SA_STOP         0x04            /* suspend process */
  193 #define SA_TTYSTOP      0x08            /* ditto, from tty */
  194 #define SA_IGNORE       0x10            /* ignore by default */
  195 #define SA_CONT         0x20            /* continue if suspended */
  196 #define SA_CANTMASK     0x40            /* non-maskable, catchable */
  197 
  198 static int sigproptbl[NSIG] = {
  199         SA_KILL,                        /* SIGHUP */
  200         SA_KILL,                        /* SIGINT */
  201         SA_KILL|SA_CORE,                /* SIGQUIT */
  202         SA_KILL|SA_CORE,                /* SIGILL */
  203         SA_KILL|SA_CORE,                /* SIGTRAP */
  204         SA_KILL|SA_CORE,                /* SIGABRT */
  205         SA_KILL|SA_CORE,                /* SIGEMT */
  206         SA_KILL|SA_CORE,                /* SIGFPE */
  207         SA_KILL,                        /* SIGKILL */
  208         SA_KILL|SA_CORE,                /* SIGBUS */
  209         SA_KILL|SA_CORE,                /* SIGSEGV */
  210         SA_KILL|SA_CORE,                /* SIGSYS */
  211         SA_KILL,                        /* SIGPIPE */
  212         SA_KILL,                        /* SIGALRM */
  213         SA_KILL,                        /* SIGTERM */
  214         SA_IGNORE,                      /* SIGURG */
  215         SA_STOP,                        /* SIGSTOP */
  216         SA_STOP|SA_TTYSTOP,             /* SIGTSTP */
  217         SA_IGNORE|SA_CONT,              /* SIGCONT */
  218         SA_IGNORE,                      /* SIGCHLD */
  219         SA_STOP|SA_TTYSTOP,             /* SIGTTIN */
  220         SA_STOP|SA_TTYSTOP,             /* SIGTTOU */
  221         SA_IGNORE,                      /* SIGIO */
  222         SA_KILL,                        /* SIGXCPU */
  223         SA_KILL,                        /* SIGXFSZ */
  224         SA_KILL,                        /* SIGVTALRM */
  225         SA_KILL,                        /* SIGPROF */
  226         SA_IGNORE,                      /* SIGWINCH  */
  227         SA_IGNORE,                      /* SIGINFO */
  228         SA_KILL,                        /* SIGUSR1 */
  229         SA_KILL,                        /* SIGUSR2 */
  230 };
  231 
  232 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
  233 
  234 static void
  235 sigqueue_start(void)
  236 {
  237         ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
  238                 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  239         uma_prealloc(ksiginfo_zone, preallocate_siginfo);
  240         p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
  241         p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
  242         p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
  243 }
  244 
  245 ksiginfo_t *
  246 ksiginfo_alloc(int wait)
  247 {
  248         int flags;
  249 
  250         flags = M_ZERO;
  251         if (! wait)
  252                 flags |= M_NOWAIT;
  253         if (ksiginfo_zone != NULL)
  254                 return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
  255         return (NULL);
  256 }
  257 
  258 void
  259 ksiginfo_free(ksiginfo_t *ksi)
  260 {
  261         uma_zfree(ksiginfo_zone, ksi);
  262 }
  263 
  264 static __inline int
  265 ksiginfo_tryfree(ksiginfo_t *ksi)
  266 {
  267         if (!(ksi->ksi_flags & KSI_EXT)) {
  268                 uma_zfree(ksiginfo_zone, ksi);
  269                 return (1);
  270         }
  271         return (0);
  272 }
  273 
  274 void
  275 sigqueue_init(sigqueue_t *list, struct proc *p)
  276 {
  277         SIGEMPTYSET(list->sq_signals);
  278         SIGEMPTYSET(list->sq_kill);
  279         TAILQ_INIT(&list->sq_list);
  280         list->sq_proc = p;
  281         list->sq_flags = SQ_INIT;
  282 }
  283 
  284 /*
  285  * Get a signal's ksiginfo.
  286  * Return:
  287  *      0       -       signal not found
  288  *      others  -       signal number
  289  */
  290 static int
  291 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
  292 {
  293         struct proc *p = sq->sq_proc;
  294         struct ksiginfo *ksi, *next;
  295         int count = 0;
  296 
  297         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  298 
  299         if (!SIGISMEMBER(sq->sq_signals, signo))
  300                 return (0);
  301 
  302         if (SIGISMEMBER(sq->sq_kill, signo)) {
  303                 count++;
  304                 SIGDELSET(sq->sq_kill, signo);
  305         }
  306 
  307         TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
  308                 if (ksi->ksi_signo == signo) {
  309                         if (count == 0) {
  310                                 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  311                                 ksi->ksi_sigq = NULL;
  312                                 ksiginfo_copy(ksi, si);
  313                                 if (ksiginfo_tryfree(ksi) && p != NULL)
  314                                         p->p_pendingcnt--;
  315                         }
  316                         if (++count > 1)
  317                                 break;
  318                 }
  319         }
  320 
  321         if (count <= 1)
  322                 SIGDELSET(sq->sq_signals, signo);
  323         si->ksi_signo = signo;
  324         return (signo);
  325 }
  326 
  327 void
  328 sigqueue_take(ksiginfo_t *ksi)
  329 {
  330         struct ksiginfo *kp;
  331         struct proc     *p;
  332         sigqueue_t      *sq;
  333 
  334         if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
  335                 return;
  336 
  337         p = sq->sq_proc;
  338         TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  339         ksi->ksi_sigq = NULL;
  340         if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
  341                 p->p_pendingcnt--;
  342 
  343         for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
  344              kp = TAILQ_NEXT(kp, ksi_link)) {
  345                 if (kp->ksi_signo == ksi->ksi_signo)
  346                         break;
  347         }
  348         if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
  349                 SIGDELSET(sq->sq_signals, ksi->ksi_signo);
  350 }
  351 
  352 static int
  353 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
  354 {
  355         struct proc *p = sq->sq_proc;
  356         struct ksiginfo *ksi;
  357         int ret = 0;
  358 
  359         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  360 
  361         if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
  362                 SIGADDSET(sq->sq_kill, signo);
  363                 goto out_set_bit;
  364         }
  365 
  366         /* directly insert the ksi, don't copy it */
  367         if (si->ksi_flags & KSI_INS) {
  368                 if (si->ksi_flags & KSI_HEAD)
  369                         TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
  370                 else
  371                         TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
  372                 si->ksi_sigq = sq;
  373                 goto out_set_bit;
  374         }
  375 
  376         if (__predict_false(ksiginfo_zone == NULL)) {
  377                 SIGADDSET(sq->sq_kill, signo);
  378                 goto out_set_bit;
  379         }
  380 
  381         if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
  382                 signal_overflow++;
  383                 ret = EAGAIN;
  384         } else if ((ksi = ksiginfo_alloc(0)) == NULL) {
  385                 signal_alloc_fail++;
  386                 ret = EAGAIN;
  387         } else {
  388                 if (p != NULL)
  389                         p->p_pendingcnt++;
  390                 ksiginfo_copy(si, ksi);
  391                 ksi->ksi_signo = signo;
  392                 if (si->ksi_flags & KSI_HEAD)
  393                         TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
  394                 else
  395                         TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
  396                 ksi->ksi_sigq = sq;
  397         }
  398 
  399         if ((si->ksi_flags & KSI_TRAP) != 0 ||
  400             (si->ksi_flags & KSI_SIGQ) == 0) {
  401                 if (ret != 0)
  402                         SIGADDSET(sq->sq_kill, signo);
  403                 ret = 0;
  404                 goto out_set_bit;
  405         }
  406 
  407         if (ret != 0)
  408                 return (ret);
  409 
  410 out_set_bit:
  411         SIGADDSET(sq->sq_signals, signo);
  412         return (ret);
  413 }
  414 
  415 void
  416 sigqueue_flush(sigqueue_t *sq)
  417 {
  418         struct proc *p = sq->sq_proc;
  419         ksiginfo_t *ksi;
  420 
  421         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  422 
  423         if (p != NULL)
  424                 PROC_LOCK_ASSERT(p, MA_OWNED);
  425 
  426         while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
  427                 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  428                 ksi->ksi_sigq = NULL;
  429                 if (ksiginfo_tryfree(ksi) && p != NULL)
  430                         p->p_pendingcnt--;
  431         }
  432 
  433         SIGEMPTYSET(sq->sq_signals);
  434         SIGEMPTYSET(sq->sq_kill);
  435 }
  436 
  437 static void
  438 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
  439 {
  440         sigset_t tmp;
  441         struct proc *p1, *p2;
  442         ksiginfo_t *ksi, *next;
  443 
  444         KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
  445         KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
  446         p1 = src->sq_proc;
  447         p2 = dst->sq_proc;
  448         /* Move siginfo to target list */
  449         TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
  450                 if (SIGISMEMBER(*set, ksi->ksi_signo)) {
  451                         TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
  452                         if (p1 != NULL)
  453                                 p1->p_pendingcnt--;
  454                         TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
  455                         ksi->ksi_sigq = dst;
  456                         if (p2 != NULL)
  457                                 p2->p_pendingcnt++;
  458                 }
  459         }
  460 
  461         /* Move pending bits to target list */
  462         tmp = src->sq_kill;
  463         SIGSETAND(tmp, *set);
  464         SIGSETOR(dst->sq_kill, tmp);
  465         SIGSETNAND(src->sq_kill, tmp);
  466 
  467         tmp = src->sq_signals;
  468         SIGSETAND(tmp, *set);
  469         SIGSETOR(dst->sq_signals, tmp);
  470         SIGSETNAND(src->sq_signals, tmp);
  471 }
  472 
  473 #if 0
  474 static void
  475 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
  476 {
  477         sigset_t set;
  478 
  479         SIGEMPTYSET(set);
  480         SIGADDSET(set, signo);
  481         sigqueue_move_set(src, dst, &set);
  482 }
  483 #endif
  484 
  485 static void
  486 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
  487 {
  488         struct proc *p = sq->sq_proc;
  489         ksiginfo_t *ksi, *next;
  490 
  491         KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
  492 
  493         /* Remove siginfo queue */
  494         TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
  495                 if (SIGISMEMBER(*set, ksi->ksi_signo)) {
  496                         TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  497                         ksi->ksi_sigq = NULL;
  498                         if (ksiginfo_tryfree(ksi) && p != NULL)
  499                                 p->p_pendingcnt--;
  500                 }
  501         }
  502         SIGSETNAND(sq->sq_kill, *set);
  503         SIGSETNAND(sq->sq_signals, *set);
  504 }
  505 
  506 void
  507 sigqueue_delete(sigqueue_t *sq, int signo)
  508 {
  509         sigset_t set;
  510 
  511         SIGEMPTYSET(set);
  512         SIGADDSET(set, signo);
  513         sigqueue_delete_set(sq, &set);
  514 }
  515 
  516 /* Remove a set of signals for a process */
  517 static void
  518 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
  519 {
  520         sigqueue_t worklist;
  521         struct thread *td0;
  522 
  523         PROC_LOCK_ASSERT(p, MA_OWNED);
  524 
  525         sigqueue_init(&worklist, NULL);
  526         sigqueue_move_set(&p->p_sigqueue, &worklist, set);
  527 
  528         FOREACH_THREAD_IN_PROC(p, td0)
  529                 sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
  530 
  531         sigqueue_flush(&worklist);
  532 }
  533 
  534 void
  535 sigqueue_delete_proc(struct proc *p, int signo)
  536 {
  537         sigset_t set;
  538 
  539         SIGEMPTYSET(set);
  540         SIGADDSET(set, signo);
  541         sigqueue_delete_set_proc(p, &set);
  542 }
  543 
  544 static void
  545 sigqueue_delete_stopmask_proc(struct proc *p)
  546 {
  547         sigset_t set;
  548 
  549         SIGEMPTYSET(set);
  550         SIGADDSET(set, SIGSTOP);
  551         SIGADDSET(set, SIGTSTP);
  552         SIGADDSET(set, SIGTTIN);
  553         SIGADDSET(set, SIGTTOU);
  554         sigqueue_delete_set_proc(p, &set);
  555 }
  556 
  557 /*
  558  * Determine signal that should be delivered to thread td, the current
  559  * thread, 0 if none.  If there is a pending stop signal with default
  560  * action, the process stops in issignal().
  561  */
  562 int
  563 cursig(struct thread *td)
  564 {
  565         PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
  566         mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
  567         THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
  568         return (SIGPENDING(td) ? issignal(td) : 0);
  569 }
  570 
  571 /*
  572  * Arrange for ast() to handle unmasked pending signals on return to user
  573  * mode.  This must be called whenever a signal is added to td_sigqueue or
  574  * unmasked in td_sigmask.
  575  */
  576 void
  577 signotify(struct thread *td)
  578 {
  579         struct proc *p;
  580 
  581         p = td->td_proc;
  582 
  583         PROC_LOCK_ASSERT(p, MA_OWNED);
  584 
  585         if (SIGPENDING(td)) {
  586                 thread_lock(td);
  587                 td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
  588                 thread_unlock(td);
  589         }
  590 }
  591 
  592 int
  593 sigonstack(size_t sp)
  594 {
  595         struct thread *td = curthread;
  596 
  597         return ((td->td_pflags & TDP_ALTSTACK) ?
  598 #if defined(COMPAT_43)
  599             ((td->td_sigstk.ss_size == 0) ?
  600                 (td->td_sigstk.ss_flags & SS_ONSTACK) :
  601                 ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
  602 #else
  603             ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
  604 #endif
  605             : 0);
  606 }
  607 
  608 static __inline int
  609 sigprop(int sig)
  610 {
  611 
  612         if (sig > 0 && sig < NSIG)
  613                 return (sigproptbl[_SIG_IDX(sig)]);
  614         return (0);
  615 }
  616 
  617 int
  618 sig_ffs(sigset_t *set)
  619 {
  620         int i;
  621 
  622         for (i = 0; i < _SIG_WORDS; i++)
  623                 if (set->__bits[i])
  624                         return (ffs(set->__bits[i]) + (i * 32));
  625         return (0);
  626 }
  627 
  628 /*
  629  * kern_sigaction
  630  * sigaction
  631  * freebsd4_sigaction
  632  * osigaction
  633  */
  634 int
  635 kern_sigaction(td, sig, act, oact, flags)
  636         struct thread *td;
  637         register int sig;
  638         struct sigaction *act, *oact;
  639         int flags;
  640 {
  641         struct sigacts *ps;
  642         struct proc *p = td->td_proc;
  643 
  644         if (!_SIG_VALID(sig))
  645                 return (EINVAL);
  646 
  647         PROC_LOCK(p);
  648         ps = p->p_sigacts;
  649         mtx_lock(&ps->ps_mtx);
  650         if (oact) {
  651                 oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
  652                 oact->sa_flags = 0;
  653                 if (SIGISMEMBER(ps->ps_sigonstack, sig))
  654                         oact->sa_flags |= SA_ONSTACK;
  655                 if (!SIGISMEMBER(ps->ps_sigintr, sig))
  656                         oact->sa_flags |= SA_RESTART;
  657                 if (SIGISMEMBER(ps->ps_sigreset, sig))
  658                         oact->sa_flags |= SA_RESETHAND;
  659                 if (SIGISMEMBER(ps->ps_signodefer, sig))
  660                         oact->sa_flags |= SA_NODEFER;
  661                 if (SIGISMEMBER(ps->ps_siginfo, sig)) {
  662                         oact->sa_flags |= SA_SIGINFO;
  663                         oact->sa_sigaction =
  664                             (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
  665                 } else
  666                         oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
  667                 if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
  668                         oact->sa_flags |= SA_NOCLDSTOP;
  669                 if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
  670                         oact->sa_flags |= SA_NOCLDWAIT;
  671         }
  672         if (act) {
  673                 if ((sig == SIGKILL || sig == SIGSTOP) &&
  674                     act->sa_handler != SIG_DFL) {
  675                         mtx_unlock(&ps->ps_mtx);
  676                         PROC_UNLOCK(p);
  677                         return (EINVAL);
  678                 }
  679 
  680                 /*
  681                  * Change setting atomically.
  682                  */
  683 
  684                 ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
  685                 SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
  686                 if (act->sa_flags & SA_SIGINFO) {
  687                         ps->ps_sigact[_SIG_IDX(sig)] =
  688                             (__sighandler_t *)act->sa_sigaction;
  689                         SIGADDSET(ps->ps_siginfo, sig);
  690                 } else {
  691                         ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
  692                         SIGDELSET(ps->ps_siginfo, sig);
  693                 }
  694                 if (!(act->sa_flags & SA_RESTART))
  695                         SIGADDSET(ps->ps_sigintr, sig);
  696                 else
  697                         SIGDELSET(ps->ps_sigintr, sig);
  698                 if (act->sa_flags & SA_ONSTACK)
  699                         SIGADDSET(ps->ps_sigonstack, sig);
  700                 else
  701                         SIGDELSET(ps->ps_sigonstack, sig);
  702                 if (act->sa_flags & SA_RESETHAND)
  703                         SIGADDSET(ps->ps_sigreset, sig);
  704                 else
  705                         SIGDELSET(ps->ps_sigreset, sig);
  706                 if (act->sa_flags & SA_NODEFER)
  707                         SIGADDSET(ps->ps_signodefer, sig);
  708                 else
  709                         SIGDELSET(ps->ps_signodefer, sig);
  710                 if (sig == SIGCHLD) {
  711                         if (act->sa_flags & SA_NOCLDSTOP)
  712                                 ps->ps_flag |= PS_NOCLDSTOP;
  713                         else
  714                                 ps->ps_flag &= ~PS_NOCLDSTOP;
  715                         if (act->sa_flags & SA_NOCLDWAIT) {
  716                                 /*
  717                                  * Paranoia: since SA_NOCLDWAIT is implemented
  718                                  * by reparenting the dying child to PID 1 (and
  719                                  * trust it to reap the zombie), PID 1 itself
  720                                  * is forbidden to set SA_NOCLDWAIT.
  721                                  */
  722                                 if (p->p_pid == 1)
  723                                         ps->ps_flag &= ~PS_NOCLDWAIT;
  724                                 else
  725                                         ps->ps_flag |= PS_NOCLDWAIT;
  726                         } else
  727                                 ps->ps_flag &= ~PS_NOCLDWAIT;
  728                         if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
  729                                 ps->ps_flag |= PS_CLDSIGIGN;
  730                         else
  731                                 ps->ps_flag &= ~PS_CLDSIGIGN;
  732                 }
  733                 /*
  734                  * Set bit in ps_sigignore for signals that are set to SIG_IGN,
  735                  * and for signals set to SIG_DFL where the default is to
  736                  * ignore. However, don't put SIGCONT in ps_sigignore, as we
  737                  * have to restart the process.
  738                  */
  739                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  740                     (sigprop(sig) & SA_IGNORE &&
  741                      ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
  742                         /* never to be seen again */
  743                         sigqueue_delete_proc(p, sig);
  744                         if (sig != SIGCONT)
  745                                 /* easier in psignal */
  746                                 SIGADDSET(ps->ps_sigignore, sig);
  747                         SIGDELSET(ps->ps_sigcatch, sig);
  748                 } else {
  749                         SIGDELSET(ps->ps_sigignore, sig);
  750                         if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
  751                                 SIGDELSET(ps->ps_sigcatch, sig);
  752                         else
  753                                 SIGADDSET(ps->ps_sigcatch, sig);
  754                 }
  755 #ifdef COMPAT_FREEBSD4
  756                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  757                     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
  758                     (flags & KSA_FREEBSD4) == 0)
  759                         SIGDELSET(ps->ps_freebsd4, sig);
  760                 else
  761                         SIGADDSET(ps->ps_freebsd4, sig);
  762 #endif
  763 #ifdef COMPAT_43
  764                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  765                     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
  766                     (flags & KSA_OSIGSET) == 0)
  767                         SIGDELSET(ps->ps_osigset, sig);
  768                 else
  769                         SIGADDSET(ps->ps_osigset, sig);
  770 #endif
  771         }
  772         mtx_unlock(&ps->ps_mtx);
  773         PROC_UNLOCK(p);
  774         return (0);
  775 }
  776 
  777 #ifndef _SYS_SYSPROTO_H_
  778 struct sigaction_args {
  779         int     sig;
  780         struct  sigaction *act;
  781         struct  sigaction *oact;
  782 };
  783 #endif
  784 int
  785 sys_sigaction(td, uap)
  786         struct thread *td;
  787         register struct sigaction_args *uap;
  788 {
  789         struct sigaction act, oact;
  790         register struct sigaction *actp, *oactp;
  791         int error;
  792 
  793         actp = (uap->act != NULL) ? &act : NULL;
  794         oactp = (uap->oact != NULL) ? &oact : NULL;
  795         if (actp) {
  796                 error = copyin(uap->act, actp, sizeof(act));
  797                 if (error)
  798                         return (error);
  799         }
  800         error = kern_sigaction(td, uap->sig, actp, oactp, 0);
  801         if (oactp && !error)
  802                 error = copyout(oactp, uap->oact, sizeof(oact));
  803         return (error);
  804 }
  805 
  806 #ifdef COMPAT_FREEBSD4
  807 #ifndef _SYS_SYSPROTO_H_
  808 struct freebsd4_sigaction_args {
  809         int     sig;
  810         struct  sigaction *act;
  811         struct  sigaction *oact;
  812 };
  813 #endif
  814 int
  815 freebsd4_sigaction(td, uap)
  816         struct thread *td;
  817         register struct freebsd4_sigaction_args *uap;
  818 {
  819         struct sigaction act, oact;
  820         register struct sigaction *actp, *oactp;
  821         int error;
  822 
  823 
  824         actp = (uap->act != NULL) ? &act : NULL;
  825         oactp = (uap->oact != NULL) ? &oact : NULL;
  826         if (actp) {
  827                 error = copyin(uap->act, actp, sizeof(act));
  828                 if (error)
  829                         return (error);
  830         }
  831         error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
  832         if (oactp && !error)
  833                 error = copyout(oactp, uap->oact, sizeof(oact));
  834         return (error);
  835 }
  836 #endif  /* COMAPT_FREEBSD4 */
  837 
  838 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
  839 #ifndef _SYS_SYSPROTO_H_
  840 struct osigaction_args {
  841         int     signum;
  842         struct  osigaction *nsa;
  843         struct  osigaction *osa;
  844 };
  845 #endif
  846 int
  847 osigaction(td, uap)
  848         struct thread *td;
  849         register struct osigaction_args *uap;
  850 {
  851         struct osigaction sa;
  852         struct sigaction nsa, osa;
  853         register struct sigaction *nsap, *osap;
  854         int error;
  855 
  856         if (uap->signum <= 0 || uap->signum >= ONSIG)
  857                 return (EINVAL);
  858 
  859         nsap = (uap->nsa != NULL) ? &nsa : NULL;
  860         osap = (uap->osa != NULL) ? &osa : NULL;
  861 
  862         if (nsap) {
  863                 error = copyin(uap->nsa, &sa, sizeof(sa));
  864                 if (error)
  865                         return (error);
  866                 nsap->sa_handler = sa.sa_handler;
  867                 nsap->sa_flags = sa.sa_flags;
  868                 OSIG2SIG(sa.sa_mask, nsap->sa_mask);
  869         }
  870         error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
  871         if (osap && !error) {
  872                 sa.sa_handler = osap->sa_handler;
  873                 sa.sa_flags = osap->sa_flags;
  874                 SIG2OSIG(osap->sa_mask, sa.sa_mask);
  875                 error = copyout(&sa, uap->osa, sizeof(sa));
  876         }
  877         return (error);
  878 }
  879 
  880 #if !defined(__i386__)
  881 /* Avoid replicating the same stub everywhere */
  882 int
  883 osigreturn(td, uap)
  884         struct thread *td;
  885         struct osigreturn_args *uap;
  886 {
  887 
  888         return (nosys(td, (struct nosys_args *)uap));
  889 }
  890 #endif
  891 #endif /* COMPAT_43 */
  892 
  893 /*
  894  * Initialize signal state for process 0;
  895  * set to ignore signals that are ignored by default.
  896  */
  897 void
  898 siginit(p)
  899         struct proc *p;
  900 {
  901         register int i;
  902         struct sigacts *ps;
  903 
  904         PROC_LOCK(p);
  905         ps = p->p_sigacts;
  906         mtx_lock(&ps->ps_mtx);
  907         for (i = 1; i <= NSIG; i++)
  908                 if (sigprop(i) & SA_IGNORE && i != SIGCONT)
  909                         SIGADDSET(ps->ps_sigignore, i);
  910         mtx_unlock(&ps->ps_mtx);
  911         PROC_UNLOCK(p);
  912 }
  913 
  914 /*
  915  * Reset signals for an exec of the specified process.
  916  */
  917 void
  918 execsigs(struct proc *p)
  919 {
  920         struct sigacts *ps;
  921         int sig;
  922         struct thread *td;
  923 
  924         /*
  925          * Reset caught signals.  Held signals remain held
  926          * through td_sigmask (unless they were caught,
  927          * and are now ignored by default).
  928          */
  929         PROC_LOCK_ASSERT(p, MA_OWNED);
  930         td = FIRST_THREAD_IN_PROC(p);
  931         ps = p->p_sigacts;
  932         mtx_lock(&ps->ps_mtx);
  933         while (SIGNOTEMPTY(ps->ps_sigcatch)) {
  934                 sig = sig_ffs(&ps->ps_sigcatch);
  935                 SIGDELSET(ps->ps_sigcatch, sig);
  936                 if (sigprop(sig) & SA_IGNORE) {
  937                         if (sig != SIGCONT)
  938                                 SIGADDSET(ps->ps_sigignore, sig);
  939                         sigqueue_delete_proc(p, sig);
  940                 }
  941                 ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
  942         }
  943         /*
  944          * Reset stack state to the user stack.
  945          * Clear set of signals caught on the signal stack.
  946          */
  947         td->td_sigstk.ss_flags = SS_DISABLE;
  948         td->td_sigstk.ss_size = 0;
  949         td->td_sigstk.ss_sp = 0;
  950         td->td_pflags &= ~TDP_ALTSTACK;
  951         /*
  952          * Reset no zombies if child dies flag as Solaris does.
  953          */
  954         ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
  955         if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
  956                 ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
  957         mtx_unlock(&ps->ps_mtx);
  958 }
  959 
  960 /*
  961  * kern_sigprocmask()
  962  *
  963  *      Manipulate signal mask.
  964  */
  965 int
  966 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
  967     int flags)
  968 {
  969         sigset_t new_block, oset1;
  970         struct proc *p;
  971         int error;
  972 
  973         p = td->td_proc;
  974         if (!(flags & SIGPROCMASK_PROC_LOCKED))
  975                 PROC_LOCK(p);
  976         if (oset != NULL)
  977                 *oset = td->td_sigmask;
  978 
  979         error = 0;
  980         if (set != NULL) {
  981                 switch (how) {
  982                 case SIG_BLOCK:
  983                         SIG_CANTMASK(*set);
  984                         oset1 = td->td_sigmask;
  985                         SIGSETOR(td->td_sigmask, *set);
  986                         new_block = td->td_sigmask;
  987                         SIGSETNAND(new_block, oset1);
  988                         break;
  989                 case SIG_UNBLOCK:
  990                         SIGSETNAND(td->td_sigmask, *set);
  991                         signotify(td);
  992                         goto out;
  993                 case SIG_SETMASK:
  994                         SIG_CANTMASK(*set);
  995                         oset1 = td->td_sigmask;
  996                         if (flags & SIGPROCMASK_OLD)
  997                                 SIGSETLO(td->td_sigmask, *set);
  998                         else
  999                                 td->td_sigmask = *set;
 1000                         new_block = td->td_sigmask;
 1001                         SIGSETNAND(new_block, oset1);
 1002                         signotify(td);
 1003                         break;
 1004                 default:
 1005                         error = EINVAL;
 1006                         goto out;
 1007                 }
 1008 
 1009                 /*
 1010                  * The new_block set contains signals that were not previously
 1011                  * blocked, but are blocked now.
 1012                  *
 1013                  * In case we block any signal that was not previously blocked
 1014                  * for td, and process has the signal pending, try to schedule
 1015                  * signal delivery to some thread that does not block the
 1016                  * signal, possibly waking it up.
 1017                  */
 1018                 if (p->p_numthreads != 1)
 1019                         reschedule_signals(p, new_block, flags);
 1020         }
 1021 
 1022 out:
 1023         if (!(flags & SIGPROCMASK_PROC_LOCKED))
 1024                 PROC_UNLOCK(p);
 1025         return (error);
 1026 }
 1027 
 1028 #ifndef _SYS_SYSPROTO_H_
 1029 struct sigprocmask_args {
 1030         int     how;
 1031         const sigset_t *set;
 1032         sigset_t *oset;
 1033 };
 1034 #endif
 1035 int
 1036 sys_sigprocmask(td, uap)
 1037         register struct thread *td;
 1038         struct sigprocmask_args *uap;
 1039 {
 1040         sigset_t set, oset;
 1041         sigset_t *setp, *osetp;
 1042         int error;
 1043 
 1044         setp = (uap->set != NULL) ? &set : NULL;
 1045         osetp = (uap->oset != NULL) ? &oset : NULL;
 1046         if (setp) {
 1047                 error = copyin(uap->set, setp, sizeof(set));
 1048                 if (error)
 1049                         return (error);
 1050         }
 1051         error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
 1052         if (osetp && !error) {
 1053                 error = copyout(osetp, uap->oset, sizeof(oset));
 1054         }
 1055         return (error);
 1056 }
 1057 
 1058 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1059 #ifndef _SYS_SYSPROTO_H_
 1060 struct osigprocmask_args {
 1061         int     how;
 1062         osigset_t mask;
 1063 };
 1064 #endif
 1065 int
 1066 osigprocmask(td, uap)
 1067         register struct thread *td;
 1068         struct osigprocmask_args *uap;
 1069 {
 1070         sigset_t set, oset;
 1071         int error;
 1072 
 1073         OSIG2SIG(uap->mask, set);
 1074         error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
 1075         SIG2OSIG(oset, td->td_retval[0]);
 1076         return (error);
 1077 }
 1078 #endif /* COMPAT_43 */
 1079 
 1080 int
 1081 sys_sigwait(struct thread *td, struct sigwait_args *uap)
 1082 {
 1083         ksiginfo_t ksi;
 1084         sigset_t set;
 1085         int error;
 1086 
 1087         error = copyin(uap->set, &set, sizeof(set));
 1088         if (error) {
 1089                 td->td_retval[0] = error;
 1090                 return (0);
 1091         }
 1092 
 1093         error = kern_sigtimedwait(td, set, &ksi, NULL);
 1094         if (error) {
 1095                 if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
 1096                         error = ERESTART;
 1097                 if (error == ERESTART)
 1098                         return (error);
 1099                 td->td_retval[0] = error;
 1100                 return (0);
 1101         }
 1102 
 1103         error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
 1104         td->td_retval[0] = error;
 1105         return (0);
 1106 }
 1107 
 1108 int
 1109 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
 1110 {
 1111         struct timespec ts;
 1112         struct timespec *timeout;
 1113         sigset_t set;
 1114         ksiginfo_t ksi;
 1115         int error;
 1116 
 1117         if (uap->timeout) {
 1118                 error = copyin(uap->timeout, &ts, sizeof(ts));
 1119                 if (error)
 1120                         return (error);
 1121 
 1122                 timeout = &ts;
 1123         } else
 1124                 timeout = NULL;
 1125 
 1126         error = copyin(uap->set, &set, sizeof(set));
 1127         if (error)
 1128                 return (error);
 1129 
 1130         error = kern_sigtimedwait(td, set, &ksi, timeout);
 1131         if (error)
 1132                 return (error);
 1133 
 1134         if (uap->info)
 1135                 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
 1136 
 1137         if (error == 0)
 1138                 td->td_retval[0] = ksi.ksi_signo;
 1139         return (error);
 1140 }
 1141 
 1142 int
 1143 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
 1144 {
 1145         ksiginfo_t ksi;
 1146         sigset_t set;
 1147         int error;
 1148 
 1149         error = copyin(uap->set, &set, sizeof(set));
 1150         if (error)
 1151                 return (error);
 1152 
 1153         error = kern_sigtimedwait(td, set, &ksi, NULL);
 1154         if (error)
 1155                 return (error);
 1156 
 1157         if (uap->info)
 1158                 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
 1159 
 1160         if (error == 0)
 1161                 td->td_retval[0] = ksi.ksi_signo;
 1162         return (error);
 1163 }
 1164 
 1165 int
 1166 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
 1167         struct timespec *timeout)
 1168 {
 1169         struct sigacts *ps;
 1170         sigset_t saved_mask, new_block;
 1171         struct proc *p;
 1172         int error, sig, timo, timevalid = 0;
 1173         struct timespec rts, ets, ts;
 1174         struct timeval tv;
 1175 
 1176         p = td->td_proc;
 1177         error = 0;
 1178         ets.tv_sec = 0;
 1179         ets.tv_nsec = 0;
 1180 
 1181         if (timeout != NULL) {
 1182                 if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
 1183                         timevalid = 1;
 1184                         getnanouptime(&rts);
 1185                         ets = rts;
 1186                         timespecadd(&ets, timeout);
 1187                 }
 1188         }
 1189         ksiginfo_init(ksi);
 1190         /* Some signals can not be waited for. */
 1191         SIG_CANTMASK(waitset);
 1192         ps = p->p_sigacts;
 1193         PROC_LOCK(p);
 1194         saved_mask = td->td_sigmask;
 1195         SIGSETNAND(td->td_sigmask, waitset);
 1196         for (;;) {
 1197                 mtx_lock(&ps->ps_mtx);
 1198                 sig = cursig(td);
 1199                 mtx_unlock(&ps->ps_mtx);
 1200                 if (sig != 0 && SIGISMEMBER(waitset, sig)) {
 1201                         if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
 1202                             sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
 1203                                 error = 0;
 1204                                 break;
 1205                         }
 1206                 }
 1207 
 1208                 if (error != 0)
 1209                         break;
 1210 
 1211                 /*
 1212                  * POSIX says this must be checked after looking for pending
 1213                  * signals.
 1214                  */
 1215                 if (timeout != NULL) {
 1216                         if (!timevalid) {
 1217                                 error = EINVAL;
 1218                                 break;
 1219                         }
 1220                         getnanouptime(&rts);
 1221                         if (timespeccmp(&rts, &ets, >=)) {
 1222                                 error = EAGAIN;
 1223                                 break;
 1224                         }
 1225                         ts = ets;
 1226                         timespecsub(&ts, &rts);
 1227                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1228                         timo = tvtohz(&tv);
 1229                 } else {
 1230                         timo = 0;
 1231                 }
 1232 
 1233                 error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
 1234 
 1235                 if (timeout != NULL) {
 1236                         if (error == ERESTART) {
 1237                                 /* Timeout can not be restarted. */
 1238                                 error = EINTR;
 1239                         } else if (error == EAGAIN) {
 1240                                 /* We will calculate timeout by ourself. */
 1241                                 error = 0;
 1242                         }
 1243                 }
 1244         }
 1245 
 1246         new_block = saved_mask;
 1247         SIGSETNAND(new_block, td->td_sigmask);
 1248         td->td_sigmask = saved_mask;
 1249         /*
 1250          * Fewer signals can be delivered to us, reschedule signal
 1251          * notification.
 1252          */
 1253         if (p->p_numthreads != 1)
 1254                 reschedule_signals(p, new_block, 0);
 1255 
 1256         if (error == 0) {
 1257                 SDT_PROBE(proc, kernel, , signal_clear, sig, ksi, 0, 0, 0);
 1258 
 1259                 if (ksi->ksi_code == SI_TIMER)
 1260                         itimer_accept(p, ksi->ksi_timerid, ksi);
 1261 
 1262 #ifdef KTRACE
 1263                 if (KTRPOINT(td, KTR_PSIG)) {
 1264                         sig_t action;
 1265 
 1266                         mtx_lock(&ps->ps_mtx);
 1267                         action = ps->ps_sigact[_SIG_IDX(sig)];
 1268                         mtx_unlock(&ps->ps_mtx);
 1269                         ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
 1270                 }
 1271 #endif
 1272                 if (sig == SIGKILL)
 1273                         sigexit(td, sig);
 1274         }
 1275         PROC_UNLOCK(p);
 1276         return (error);
 1277 }
 1278 
 1279 #ifndef _SYS_SYSPROTO_H_
 1280 struct sigpending_args {
 1281         sigset_t        *set;
 1282 };
 1283 #endif
 1284 int
 1285 sys_sigpending(td, uap)
 1286         struct thread *td;
 1287         struct sigpending_args *uap;
 1288 {
 1289         struct proc *p = td->td_proc;
 1290         sigset_t pending;
 1291 
 1292         PROC_LOCK(p);
 1293         pending = p->p_sigqueue.sq_signals;
 1294         SIGSETOR(pending, td->td_sigqueue.sq_signals);
 1295         PROC_UNLOCK(p);
 1296         return (copyout(&pending, uap->set, sizeof(sigset_t)));
 1297 }
 1298 
 1299 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1300 #ifndef _SYS_SYSPROTO_H_
 1301 struct osigpending_args {
 1302         int     dummy;
 1303 };
 1304 #endif
 1305 int
 1306 osigpending(td, uap)
 1307         struct thread *td;
 1308         struct osigpending_args *uap;
 1309 {
 1310         struct proc *p = td->td_proc;
 1311         sigset_t pending;
 1312 
 1313         PROC_LOCK(p);
 1314         pending = p->p_sigqueue.sq_signals;
 1315         SIGSETOR(pending, td->td_sigqueue.sq_signals);
 1316         PROC_UNLOCK(p);
 1317         SIG2OSIG(pending, td->td_retval[0]);
 1318         return (0);
 1319 }
 1320 #endif /* COMPAT_43 */
 1321 
 1322 #if defined(COMPAT_43)
 1323 /*
 1324  * Generalized interface signal handler, 4.3-compatible.
 1325  */
 1326 #ifndef _SYS_SYSPROTO_H_
 1327 struct osigvec_args {
 1328         int     signum;
 1329         struct  sigvec *nsv;
 1330         struct  sigvec *osv;
 1331 };
 1332 #endif
 1333 /* ARGSUSED */
 1334 int
 1335 osigvec(td, uap)
 1336         struct thread *td;
 1337         register struct osigvec_args *uap;
 1338 {
 1339         struct sigvec vec;
 1340         struct sigaction nsa, osa;
 1341         register struct sigaction *nsap, *osap;
 1342         int error;
 1343 
 1344         if (uap->signum <= 0 || uap->signum >= ONSIG)
 1345                 return (EINVAL);
 1346         nsap = (uap->nsv != NULL) ? &nsa : NULL;
 1347         osap = (uap->osv != NULL) ? &osa : NULL;
 1348         if (nsap) {
 1349                 error = copyin(uap->nsv, &vec, sizeof(vec));
 1350                 if (error)
 1351                         return (error);
 1352                 nsap->sa_handler = vec.sv_handler;
 1353                 OSIG2SIG(vec.sv_mask, nsap->sa_mask);
 1354                 nsap->sa_flags = vec.sv_flags;
 1355                 nsap->sa_flags ^= SA_RESTART;   /* opposite of SV_INTERRUPT */
 1356         }
 1357         error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
 1358         if (osap && !error) {
 1359                 vec.sv_handler = osap->sa_handler;
 1360                 SIG2OSIG(osap->sa_mask, vec.sv_mask);
 1361                 vec.sv_flags = osap->sa_flags;
 1362                 vec.sv_flags &= ~SA_NOCLDWAIT;
 1363                 vec.sv_flags ^= SA_RESTART;
 1364                 error = copyout(&vec, uap->osv, sizeof(vec));
 1365         }
 1366         return (error);
 1367 }
 1368 
 1369 #ifndef _SYS_SYSPROTO_H_
 1370 struct osigblock_args {
 1371         int     mask;
 1372 };
 1373 #endif
 1374 int
 1375 osigblock(td, uap)
 1376         register struct thread *td;
 1377         struct osigblock_args *uap;
 1378 {
 1379         sigset_t set, oset;
 1380 
 1381         OSIG2SIG(uap->mask, set);
 1382         kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
 1383         SIG2OSIG(oset, td->td_retval[0]);
 1384         return (0);
 1385 }
 1386 
 1387 #ifndef _SYS_SYSPROTO_H_
 1388 struct osigsetmask_args {
 1389         int     mask;
 1390 };
 1391 #endif
 1392 int
 1393 osigsetmask(td, uap)
 1394         struct thread *td;
 1395         struct osigsetmask_args *uap;
 1396 {
 1397         sigset_t set, oset;
 1398 
 1399         OSIG2SIG(uap->mask, set);
 1400         kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
 1401         SIG2OSIG(oset, td->td_retval[0]);
 1402         return (0);
 1403 }
 1404 #endif /* COMPAT_43 */
 1405 
 1406 /*
 1407  * Suspend calling thread until signal, providing mask to be set in the
 1408  * meantime.
 1409  */
 1410 #ifndef _SYS_SYSPROTO_H_
 1411 struct sigsuspend_args {
 1412         const sigset_t *sigmask;
 1413 };
 1414 #endif
 1415 /* ARGSUSED */
 1416 int
 1417 sys_sigsuspend(td, uap)
 1418         struct thread *td;
 1419         struct sigsuspend_args *uap;
 1420 {
 1421         sigset_t mask;
 1422         int error;
 1423 
 1424         error = copyin(uap->sigmask, &mask, sizeof(mask));
 1425         if (error)
 1426                 return (error);
 1427         return (kern_sigsuspend(td, mask));
 1428 }
 1429 
 1430 int
 1431 kern_sigsuspend(struct thread *td, sigset_t mask)
 1432 {
 1433         struct proc *p = td->td_proc;
 1434         int has_sig, sig;
 1435 
 1436         /*
 1437          * When returning from sigsuspend, we want
 1438          * the old mask to be restored after the
 1439          * signal handler has finished.  Thus, we
 1440          * save it here and mark the sigacts structure
 1441          * to indicate this.
 1442          */
 1443         PROC_LOCK(p);
 1444         kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
 1445             SIGPROCMASK_PROC_LOCKED);
 1446         td->td_pflags |= TDP_OLDMASK;
 1447 
 1448         /*
 1449          * Process signals now. Otherwise, we can get spurious wakeup
 1450          * due to signal entered process queue, but delivered to other
 1451          * thread. But sigsuspend should return only on signal
 1452          * delivery.
 1453          */
 1454         (p->p_sysent->sv_set_syscall_retval)(td, EINTR);
 1455         for (has_sig = 0; !has_sig;) {
 1456                 while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
 1457                         0) == 0)
 1458                         /* void */;
 1459                 thread_suspend_check(0);
 1460                 mtx_lock(&p->p_sigacts->ps_mtx);
 1461                 while ((sig = cursig(td)) != 0)
 1462                         has_sig += postsig(sig);
 1463                 mtx_unlock(&p->p_sigacts->ps_mtx);
 1464         }
 1465         PROC_UNLOCK(p);
 1466         td->td_errno = EINTR;
 1467         td->td_pflags |= TDP_NERRNO;
 1468         return (EJUSTRETURN);
 1469 }
 1470 
 1471 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1472 /*
 1473  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
 1474  * convention: libc stub passes mask, not pointer, to save a copyin.
 1475  */
 1476 #ifndef _SYS_SYSPROTO_H_
 1477 struct osigsuspend_args {
 1478         osigset_t mask;
 1479 };
 1480 #endif
 1481 /* ARGSUSED */
 1482 int
 1483 osigsuspend(td, uap)
 1484         struct thread *td;
 1485         struct osigsuspend_args *uap;
 1486 {
 1487         sigset_t mask;
 1488 
 1489         OSIG2SIG(uap->mask, mask);
 1490         return (kern_sigsuspend(td, mask));
 1491 }
 1492 #endif /* COMPAT_43 */
 1493 
 1494 #if defined(COMPAT_43)
 1495 #ifndef _SYS_SYSPROTO_H_
 1496 struct osigstack_args {
 1497         struct  sigstack *nss;
 1498         struct  sigstack *oss;
 1499 };
 1500 #endif
 1501 /* ARGSUSED */
 1502 int
 1503 osigstack(td, uap)
 1504         struct thread *td;
 1505         register struct osigstack_args *uap;
 1506 {
 1507         struct sigstack nss, oss;
 1508         int error = 0;
 1509 
 1510         if (uap->nss != NULL) {
 1511                 error = copyin(uap->nss, &nss, sizeof(nss));
 1512                 if (error)
 1513                         return (error);
 1514         }
 1515         oss.ss_sp = td->td_sigstk.ss_sp;
 1516         oss.ss_onstack = sigonstack(cpu_getstack(td));
 1517         if (uap->nss != NULL) {
 1518                 td->td_sigstk.ss_sp = nss.ss_sp;
 1519                 td->td_sigstk.ss_size = 0;
 1520                 td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
 1521                 td->td_pflags |= TDP_ALTSTACK;
 1522         }
 1523         if (uap->oss != NULL)
 1524                 error = copyout(&oss, uap->oss, sizeof(oss));
 1525 
 1526         return (error);
 1527 }
 1528 #endif /* COMPAT_43 */
 1529 
 1530 #ifndef _SYS_SYSPROTO_H_
 1531 struct sigaltstack_args {
 1532         stack_t *ss;
 1533         stack_t *oss;
 1534 };
 1535 #endif
 1536 /* ARGSUSED */
 1537 int
 1538 sys_sigaltstack(td, uap)
 1539         struct thread *td;
 1540         register struct sigaltstack_args *uap;
 1541 {
 1542         stack_t ss, oss;
 1543         int error;
 1544 
 1545         if (uap->ss != NULL) {
 1546                 error = copyin(uap->ss, &ss, sizeof(ss));
 1547                 if (error)
 1548                         return (error);
 1549         }
 1550         error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
 1551             (uap->oss != NULL) ? &oss : NULL);
 1552         if (error)
 1553                 return (error);
 1554         if (uap->oss != NULL)
 1555                 error = copyout(&oss, uap->oss, sizeof(stack_t));
 1556         return (error);
 1557 }
 1558 
 1559 int
 1560 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
 1561 {
 1562         struct proc *p = td->td_proc;
 1563         int oonstack;
 1564 
 1565         oonstack = sigonstack(cpu_getstack(td));
 1566 
 1567         if (oss != NULL) {
 1568                 *oss = td->td_sigstk;
 1569                 oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
 1570                     ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
 1571         }
 1572 
 1573         if (ss != NULL) {
 1574                 if (oonstack)
 1575                         return (EPERM);
 1576                 if ((ss->ss_flags & ~SS_DISABLE) != 0)
 1577                         return (EINVAL);
 1578                 if (!(ss->ss_flags & SS_DISABLE)) {
 1579                         if (ss->ss_size < p->p_sysent->sv_minsigstksz)
 1580                                 return (ENOMEM);
 1581 
 1582                         td->td_sigstk = *ss;
 1583                         td->td_pflags |= TDP_ALTSTACK;
 1584                 } else {
 1585                         td->td_pflags &= ~TDP_ALTSTACK;
 1586                 }
 1587         }
 1588         return (0);
 1589 }
 1590 
 1591 /*
 1592  * Common code for kill process group/broadcast kill.
 1593  * cp is calling process.
 1594  */
 1595 static int
 1596 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
 1597 {
 1598         struct proc *p;
 1599         struct pgrp *pgrp;
 1600         int err;
 1601         int ret;
 1602 
 1603         ret = ESRCH;
 1604         if (all) {
 1605                 /*
 1606                  * broadcast
 1607                  */
 1608                 sx_slock(&allproc_lock);
 1609                 FOREACH_PROC_IN_SYSTEM(p) {
 1610                         PROC_LOCK(p);
 1611                         if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
 1612                             p == td->td_proc || p->p_state == PRS_NEW) {
 1613                                 PROC_UNLOCK(p);
 1614                                 continue;
 1615                         }
 1616                         err = p_cansignal(td, p, sig);
 1617                         if (err == 0) {
 1618                                 if (sig)
 1619                                         pksignal(p, sig, ksi);
 1620                                 ret = err;
 1621                         }
 1622                         else if (ret == ESRCH)
 1623                                 ret = err;
 1624                         PROC_UNLOCK(p);
 1625                 }
 1626                 sx_sunlock(&allproc_lock);
 1627         } else {
 1628                 sx_slock(&proctree_lock);
 1629                 if (pgid == 0) {
 1630                         /*
 1631                          * zero pgid means send to my process group.
 1632                          */
 1633                         pgrp = td->td_proc->p_pgrp;
 1634                         PGRP_LOCK(pgrp);
 1635                 } else {
 1636                         pgrp = pgfind(pgid);
 1637                         if (pgrp == NULL) {
 1638                                 sx_sunlock(&proctree_lock);
 1639                                 return (ESRCH);
 1640                         }
 1641                 }
 1642                 sx_sunlock(&proctree_lock);
 1643                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
 1644                         PROC_LOCK(p);
 1645                         if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
 1646                             p->p_state == PRS_NEW) {
 1647                                 PROC_UNLOCK(p);
 1648                                 continue;
 1649                         }
 1650                         err = p_cansignal(td, p, sig);
 1651                         if (err == 0) {
 1652                                 if (sig)
 1653                                         pksignal(p, sig, ksi);
 1654                                 ret = err;
 1655                         }
 1656                         else if (ret == ESRCH)
 1657                                 ret = err;
 1658                         PROC_UNLOCK(p);
 1659                 }
 1660                 PGRP_UNLOCK(pgrp);
 1661         }
 1662         return (ret);
 1663 }
 1664 
 1665 #ifndef _SYS_SYSPROTO_H_
 1666 struct kill_args {
 1667         int     pid;
 1668         int     signum;
 1669 };
 1670 #endif
 1671 /* ARGSUSED */
 1672 int
 1673 sys_kill(struct thread *td, struct kill_args *uap)
 1674 {
 1675         ksiginfo_t ksi;
 1676         struct proc *p;
 1677         int error;
 1678 
 1679         /*
 1680          * A process in capability mode can send signals only to himself.
 1681          * The main rationale behind this is that abort(3) is implemented as
 1682          * kill(getpid(), SIGABRT).
 1683          */
 1684         if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
 1685                 return (ECAPMODE);
 1686 
 1687         AUDIT_ARG_SIGNUM(uap->signum);
 1688         AUDIT_ARG_PID(uap->pid);
 1689         if ((u_int)uap->signum > _SIG_MAXSIG)
 1690                 return (EINVAL);
 1691 
 1692         ksiginfo_init(&ksi);
 1693         ksi.ksi_signo = uap->signum;
 1694         ksi.ksi_code = SI_USER;
 1695         ksi.ksi_pid = td->td_proc->p_pid;
 1696         ksi.ksi_uid = td->td_ucred->cr_ruid;
 1697 
 1698         if (uap->pid > 0) {
 1699                 /* kill single process */
 1700                 if ((p = pfind(uap->pid)) == NULL) {
 1701                         if ((p = zpfind(uap->pid)) == NULL)
 1702                                 return (ESRCH);
 1703                 }
 1704                 AUDIT_ARG_PROCESS(p);
 1705                 error = p_cansignal(td, p, uap->signum);
 1706                 if (error == 0 && uap->signum)
 1707                         pksignal(p, uap->signum, &ksi);
 1708                 PROC_UNLOCK(p);
 1709                 return (error);
 1710         }
 1711         switch (uap->pid) {
 1712         case -1:                /* broadcast signal */
 1713                 return (killpg1(td, uap->signum, 0, 1, &ksi));
 1714         case 0:                 /* signal own process group */
 1715                 return (killpg1(td, uap->signum, 0, 0, &ksi));
 1716         default:                /* negative explicit process group */
 1717                 return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
 1718         }
 1719         /* NOTREACHED */
 1720 }
 1721 
 1722 int
 1723 sys_pdkill(td, uap)
 1724         struct thread *td;
 1725         struct pdkill_args *uap;
 1726 {
 1727 #ifdef PROCDESC
 1728         struct proc *p;
 1729         cap_rights_t rights;
 1730         int error;
 1731 
 1732         AUDIT_ARG_SIGNUM(uap->signum);
 1733         AUDIT_ARG_FD(uap->fd);
 1734         if ((u_int)uap->signum > _SIG_MAXSIG)
 1735                 return (EINVAL);
 1736 
 1737         error = procdesc_find(td, uap->fd,
 1738             cap_rights_init(&rights, CAP_PDKILL), &p);
 1739         if (error)
 1740                 return (error);
 1741         AUDIT_ARG_PROCESS(p);
 1742         error = p_cansignal(td, p, uap->signum);
 1743         if (error == 0 && uap->signum)
 1744                 kern_psignal(p, uap->signum);
 1745         PROC_UNLOCK(p);
 1746         return (error);
 1747 #else
 1748         return (ENOSYS);
 1749 #endif
 1750 }
 1751 
 1752 #if defined(COMPAT_43)
 1753 #ifndef _SYS_SYSPROTO_H_
 1754 struct okillpg_args {
 1755         int     pgid;
 1756         int     signum;
 1757 };
 1758 #endif
 1759 /* ARGSUSED */
 1760 int
 1761 okillpg(struct thread *td, struct okillpg_args *uap)
 1762 {
 1763         ksiginfo_t ksi;
 1764 
 1765         AUDIT_ARG_SIGNUM(uap->signum);
 1766         AUDIT_ARG_PID(uap->pgid);
 1767         if ((u_int)uap->signum > _SIG_MAXSIG)
 1768                 return (EINVAL);
 1769 
 1770         ksiginfo_init(&ksi);
 1771         ksi.ksi_signo = uap->signum;
 1772         ksi.ksi_code = SI_USER;
 1773         ksi.ksi_pid = td->td_proc->p_pid;
 1774         ksi.ksi_uid = td->td_ucred->cr_ruid;
 1775         return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
 1776 }
 1777 #endif /* COMPAT_43 */
 1778 
 1779 #ifndef _SYS_SYSPROTO_H_
 1780 struct sigqueue_args {
 1781         pid_t pid;
 1782         int signum;
 1783         /* union sigval */ void *value;
 1784 };
 1785 #endif
 1786 int
 1787 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
 1788 {
 1789         ksiginfo_t ksi;
 1790         struct proc *p;
 1791         int error;
 1792 
 1793         if ((u_int)uap->signum > _SIG_MAXSIG)
 1794                 return (EINVAL);
 1795 
 1796         /*
 1797          * Specification says sigqueue can only send signal to
 1798          * single process.
 1799          */
 1800         if (uap->pid <= 0)
 1801                 return (EINVAL);
 1802 
 1803         if ((p = pfind(uap->pid)) == NULL) {
 1804                 if ((p = zpfind(uap->pid)) == NULL)
 1805                         return (ESRCH);
 1806         }
 1807         error = p_cansignal(td, p, uap->signum);
 1808         if (error == 0 && uap->signum != 0) {
 1809                 ksiginfo_init(&ksi);
 1810                 ksi.ksi_flags = KSI_SIGQ;
 1811                 ksi.ksi_signo = uap->signum;
 1812                 ksi.ksi_code = SI_QUEUE;
 1813                 ksi.ksi_pid = td->td_proc->p_pid;
 1814                 ksi.ksi_uid = td->td_ucred->cr_ruid;
 1815                 ksi.ksi_value.sival_ptr = uap->value;
 1816                 error = pksignal(p, ksi.ksi_signo, &ksi);
 1817         }
 1818         PROC_UNLOCK(p);
 1819         return (error);
 1820 }
 1821 
 1822 /*
 1823  * Send a signal to a process group.
 1824  */
 1825 void
 1826 gsignal(int pgid, int sig, ksiginfo_t *ksi)
 1827 {
 1828         struct pgrp *pgrp;
 1829 
 1830         if (pgid != 0) {
 1831                 sx_slock(&proctree_lock);
 1832                 pgrp = pgfind(pgid);
 1833                 sx_sunlock(&proctree_lock);
 1834                 if (pgrp != NULL) {
 1835                         pgsignal(pgrp, sig, 0, ksi);
 1836                         PGRP_UNLOCK(pgrp);
 1837                 }
 1838         }
 1839 }
 1840 
 1841 /*
 1842  * Send a signal to a process group.  If checktty is 1,
 1843  * limit to members which have a controlling terminal.
 1844  */
 1845 void
 1846 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
 1847 {
 1848         struct proc *p;
 1849 
 1850         if (pgrp) {
 1851                 PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
 1852                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
 1853                         PROC_LOCK(p);
 1854                         if (p->p_state == PRS_NORMAL &&
 1855                             (checkctty == 0 || p->p_flag & P_CONTROLT))
 1856                                 pksignal(p, sig, ksi);
 1857                         PROC_UNLOCK(p);
 1858                 }
 1859         }
 1860 }
 1861 
 1862 /*
 1863  * Send a signal caused by a trap to the current thread.  If it will be
 1864  * caught immediately, deliver it with correct code.  Otherwise, post it
 1865  * normally.
 1866  */
 1867 void
 1868 trapsignal(struct thread *td, ksiginfo_t *ksi)
 1869 {
 1870         struct sigacts *ps;
 1871         sigset_t mask;
 1872         struct proc *p;
 1873         int sig;
 1874         int code;
 1875 
 1876         p = td->td_proc;
 1877         sig = ksi->ksi_signo;
 1878         code = ksi->ksi_code;
 1879         KASSERT(_SIG_VALID(sig), ("invalid signal"));
 1880 
 1881         PROC_LOCK(p);
 1882         ps = p->p_sigacts;
 1883         mtx_lock(&ps->ps_mtx);
 1884         if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
 1885             !SIGISMEMBER(td->td_sigmask, sig)) {
 1886                 td->td_ru.ru_nsignals++;
 1887 #ifdef KTRACE
 1888                 if (KTRPOINT(curthread, KTR_PSIG))
 1889                         ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
 1890                             &td->td_sigmask, code);
 1891 #endif
 1892                 (*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
 1893                                 ksi, &td->td_sigmask);
 1894                 mask = ps->ps_catchmask[_SIG_IDX(sig)];
 1895                 if (!SIGISMEMBER(ps->ps_signodefer, sig))
 1896                         SIGADDSET(mask, sig);
 1897                 kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
 1898                     SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
 1899                 if (SIGISMEMBER(ps->ps_sigreset, sig)) {
 1900                         /*
 1901                          * See kern_sigaction() for origin of this code.
 1902                          */
 1903                         SIGDELSET(ps->ps_sigcatch, sig);
 1904                         if (sig != SIGCONT &&
 1905                             sigprop(sig) & SA_IGNORE)
 1906                                 SIGADDSET(ps->ps_sigignore, sig);
 1907                         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
 1908                 }
 1909                 mtx_unlock(&ps->ps_mtx);
 1910         } else {
 1911                 /*
 1912                  * Avoid a possible infinite loop if the thread
 1913                  * masking the signal or process is ignoring the
 1914                  * signal.
 1915                  */
 1916                 if (kern_forcesigexit &&
 1917                     (SIGISMEMBER(td->td_sigmask, sig) ||
 1918                      ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
 1919                         SIGDELSET(td->td_sigmask, sig);
 1920                         SIGDELSET(ps->ps_sigcatch, sig);
 1921                         SIGDELSET(ps->ps_sigignore, sig);
 1922                         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
 1923                 }
 1924                 mtx_unlock(&ps->ps_mtx);
 1925                 p->p_code = code;       /* XXX for core dump/debugger */
 1926                 p->p_sig = sig;         /* XXX to verify code */
 1927                 tdsendsignal(p, td, sig, ksi);
 1928         }
 1929         PROC_UNLOCK(p);
 1930 }
 1931 
 1932 static struct thread *
 1933 sigtd(struct proc *p, int sig, int prop)
 1934 {
 1935         struct thread *td, *signal_td;
 1936 
 1937         PROC_LOCK_ASSERT(p, MA_OWNED);
 1938 
 1939         /*
 1940          * Check if current thread can handle the signal without
 1941          * switching context to another thread.
 1942          */
 1943         if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
 1944                 return (curthread);
 1945         signal_td = NULL;
 1946         FOREACH_THREAD_IN_PROC(p, td) {
 1947                 if (!SIGISMEMBER(td->td_sigmask, sig)) {
 1948                         signal_td = td;
 1949                         break;
 1950                 }
 1951         }
 1952         if (signal_td == NULL)
 1953                 signal_td = FIRST_THREAD_IN_PROC(p);
 1954         return (signal_td);
 1955 }
 1956 
 1957 /*
 1958  * Send the signal to the process.  If the signal has an action, the action
 1959  * is usually performed by the target process rather than the caller; we add
 1960  * the signal to the set of pending signals for the process.
 1961  *
 1962  * Exceptions:
 1963  *   o When a stop signal is sent to a sleeping process that takes the
 1964  *     default action, the process is stopped without awakening it.
 1965  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
 1966  *     regardless of the signal action (eg, blocked or ignored).
 1967  *
 1968  * Other ignored signals are discarded immediately.
 1969  *
 1970  * NB: This function may be entered from the debugger via the "kill" DDB
 1971  * command.  There is little that can be done to mitigate the possibly messy
 1972  * side effects of this unwise possibility.
 1973  */
 1974 void
 1975 kern_psignal(struct proc *p, int sig)
 1976 {
 1977         ksiginfo_t ksi;
 1978 
 1979         ksiginfo_init(&ksi);
 1980         ksi.ksi_signo = sig;
 1981         ksi.ksi_code = SI_KERNEL;
 1982         (void) tdsendsignal(p, NULL, sig, &ksi);
 1983 }
 1984 
 1985 int
 1986 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
 1987 {
 1988 
 1989         return (tdsendsignal(p, NULL, sig, ksi));
 1990 }
 1991 
 1992 /* Utility function for finding a thread to send signal event to. */
 1993 int
 1994 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
 1995 {
 1996         struct thread *td;
 1997 
 1998         if (sigev->sigev_notify == SIGEV_THREAD_ID) {
 1999                 td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
 2000                 if (td == NULL)
 2001                         return (ESRCH);
 2002                 *ttd = td;
 2003         } else {
 2004                 *ttd = NULL;
 2005                 PROC_LOCK(p);
 2006         }
 2007         return (0);
 2008 }
 2009 
 2010 void
 2011 tdsignal(struct thread *td, int sig)
 2012 {
 2013         ksiginfo_t ksi;
 2014 
 2015         ksiginfo_init(&ksi);
 2016         ksi.ksi_signo = sig;
 2017         ksi.ksi_code = SI_KERNEL;
 2018         (void) tdsendsignal(td->td_proc, td, sig, &ksi);
 2019 }
 2020 
 2021 void
 2022 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
 2023 {
 2024 
 2025         (void) tdsendsignal(td->td_proc, td, sig, ksi);
 2026 }
 2027 
 2028 int
 2029 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
 2030 {
 2031         sig_t action;
 2032         sigqueue_t *sigqueue;
 2033         int prop;
 2034         struct sigacts *ps;
 2035         int intrval;
 2036         int ret = 0;
 2037         int wakeup_swapper;
 2038 
 2039         MPASS(td == NULL || p == td->td_proc);
 2040         PROC_LOCK_ASSERT(p, MA_OWNED);
 2041 
 2042         if (!_SIG_VALID(sig))
 2043                 panic("%s(): invalid signal %d", __func__, sig);
 2044 
 2045         KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
 2046 
 2047         /*
 2048          * IEEE Std 1003.1-2001: return success when killing a zombie.
 2049          */
 2050         if (p->p_state == PRS_ZOMBIE) {
 2051                 if (ksi && (ksi->ksi_flags & KSI_INS))
 2052                         ksiginfo_tryfree(ksi);
 2053                 return (ret);
 2054         }
 2055 
 2056         ps = p->p_sigacts;
 2057         KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
 2058         prop = sigprop(sig);
 2059 
 2060         if (td == NULL) {
 2061                 td = sigtd(p, sig, prop);
 2062                 sigqueue = &p->p_sigqueue;
 2063         } else
 2064                 sigqueue = &td->td_sigqueue;
 2065 
 2066         SDT_PROBE(proc, kernel, , signal_send, td, p, sig, 0, 0 );
 2067 
 2068         /*
 2069          * If the signal is being ignored,
 2070          * then we forget about it immediately.
 2071          * (Note: we don't set SIGCONT in ps_sigignore,
 2072          * and if it is set to SIG_IGN,
 2073          * action will be SIG_DFL here.)
 2074          */
 2075         mtx_lock(&ps->ps_mtx);
 2076         if (SIGISMEMBER(ps->ps_sigignore, sig)) {
 2077                 SDT_PROBE(proc, kernel, , signal_discard, td, p, sig, 0, 0 );
 2078 
 2079                 mtx_unlock(&ps->ps_mtx);
 2080                 if (ksi && (ksi->ksi_flags & KSI_INS))
 2081                         ksiginfo_tryfree(ksi);
 2082                 return (ret);
 2083         }
 2084         if (SIGISMEMBER(td->td_sigmask, sig))
 2085                 action = SIG_HOLD;
 2086         else if (SIGISMEMBER(ps->ps_sigcatch, sig))
 2087                 action = SIG_CATCH;
 2088         else
 2089                 action = SIG_DFL;
 2090         if (SIGISMEMBER(ps->ps_sigintr, sig))
 2091                 intrval = EINTR;
 2092         else
 2093                 intrval = ERESTART;
 2094         mtx_unlock(&ps->ps_mtx);
 2095 
 2096         if (prop & SA_CONT)
 2097                 sigqueue_delete_stopmask_proc(p);
 2098         else if (prop & SA_STOP) {
 2099                 /*
 2100                  * If sending a tty stop signal to a member of an orphaned
 2101                  * process group, discard the signal here if the action
 2102                  * is default; don't stop the process below if sleeping,
 2103                  * and don't clear any pending SIGCONT.
 2104                  */
 2105                 if ((prop & SA_TTYSTOP) &&
 2106                     (p->p_pgrp->pg_jobc == 0) &&
 2107                     (action == SIG_DFL)) {
 2108                         if (ksi && (ksi->ksi_flags & KSI_INS))
 2109                                 ksiginfo_tryfree(ksi);
 2110                         return (ret);
 2111                 }
 2112                 sigqueue_delete_proc(p, SIGCONT);
 2113                 if (p->p_flag & P_CONTINUED) {
 2114                         p->p_flag &= ~P_CONTINUED;
 2115                         PROC_LOCK(p->p_pptr);
 2116                         sigqueue_take(p->p_ksi);
 2117                         PROC_UNLOCK(p->p_pptr);
 2118                 }
 2119         }
 2120 
 2121         ret = sigqueue_add(sigqueue, sig, ksi);
 2122         if (ret != 0)
 2123                 return (ret);
 2124         signotify(td);
 2125         /*
 2126          * Defer further processing for signals which are held,
 2127          * except that stopped processes must be continued by SIGCONT.
 2128          */
 2129         if (action == SIG_HOLD &&
 2130             !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
 2131                 return (ret);
 2132         /*
 2133          * SIGKILL: Remove procfs STOPEVENTs.
 2134          */
 2135         if (sig == SIGKILL) {
 2136                 /* from procfs_ioctl.c: PIOCBIC */
 2137                 p->p_stops = 0;
 2138                 /* from procfs_ioctl.c: PIOCCONT */
 2139                 p->p_step = 0;
 2140                 wakeup(&p->p_step);
 2141         }
 2142         /*
 2143          * Some signals have a process-wide effect and a per-thread
 2144          * component.  Most processing occurs when the process next
 2145          * tries to cross the user boundary, however there are some
 2146          * times when processing needs to be done immediately, such as
 2147          * waking up threads so that they can cross the user boundary.
 2148          * We try to do the per-process part here.
 2149          */
 2150         if (P_SHOULDSTOP(p)) {
 2151                 KASSERT(!(p->p_flag & P_WEXIT),
 2152                     ("signal to stopped but exiting process"));
 2153                 if (sig == SIGKILL) {
 2154                         /*
 2155                          * If traced process is already stopped,
 2156                          * then no further action is necessary.
 2157                          */
 2158                         if (p->p_flag & P_TRACED)
 2159                                 goto out;
 2160                         /*
 2161                          * SIGKILL sets process running.
 2162                          * It will die elsewhere.
 2163                          * All threads must be restarted.
 2164                          */
 2165                         p->p_flag &= ~P_STOPPED_SIG;
 2166                         goto runfast;
 2167                 }
 2168 
 2169                 if (prop & SA_CONT) {
 2170                         /*
 2171                          * If traced process is already stopped,
 2172                          * then no further action is necessary.
 2173                          */
 2174                         if (p->p_flag & P_TRACED)
 2175                                 goto out;
 2176                         /*
 2177                          * If SIGCONT is default (or ignored), we continue the
 2178                          * process but don't leave the signal in sigqueue as
 2179                          * it has no further action.  If SIGCONT is held, we
 2180                          * continue the process and leave the signal in
 2181                          * sigqueue.  If the process catches SIGCONT, let it
 2182                          * handle the signal itself.  If it isn't waiting on
 2183                          * an event, it goes back to run state.
 2184                          * Otherwise, process goes back to sleep state.
 2185                          */
 2186                         p->p_flag &= ~P_STOPPED_SIG;
 2187                         PROC_SLOCK(p);
 2188                         if (p->p_numthreads == p->p_suspcount) {
 2189                                 PROC_SUNLOCK(p);
 2190                                 p->p_flag |= P_CONTINUED;
 2191                                 p->p_xstat = SIGCONT;
 2192                                 PROC_LOCK(p->p_pptr);
 2193                                 childproc_continued(p);
 2194                                 PROC_UNLOCK(p->p_pptr);
 2195                                 PROC_SLOCK(p);
 2196                         }
 2197                         if (action == SIG_DFL) {
 2198                                 thread_unsuspend(p);
 2199                                 PROC_SUNLOCK(p);
 2200                                 sigqueue_delete(sigqueue, sig);
 2201                                 goto out;
 2202                         }
 2203                         if (action == SIG_CATCH) {
 2204                                 /*
 2205                                  * The process wants to catch it so it needs
 2206                                  * to run at least one thread, but which one?
 2207                                  */
 2208                                 PROC_SUNLOCK(p);
 2209                                 goto runfast;
 2210                         }
 2211                         /*
 2212                          * The signal is not ignored or caught.
 2213                          */
 2214                         thread_unsuspend(p);
 2215                         PROC_SUNLOCK(p);
 2216                         goto out;
 2217                 }
 2218 
 2219                 if (prop & SA_STOP) {
 2220                         /*
 2221                          * If traced process is already stopped,
 2222                          * then no further action is necessary.
 2223                          */
 2224                         if (p->p_flag & P_TRACED)
 2225                                 goto out;
 2226                         /*
 2227                          * Already stopped, don't need to stop again
 2228                          * (If we did the shell could get confused).
 2229                          * Just make sure the signal STOP bit set.
 2230                          */
 2231                         p->p_flag |= P_STOPPED_SIG;
 2232                         sigqueue_delete(sigqueue, sig);
 2233                         goto out;
 2234                 }
 2235 
 2236                 /*
 2237                  * All other kinds of signals:
 2238                  * If a thread is sleeping interruptibly, simulate a
 2239                  * wakeup so that when it is continued it will be made
 2240                  * runnable and can look at the signal.  However, don't make
 2241                  * the PROCESS runnable, leave it stopped.
 2242                  * It may run a bit until it hits a thread_suspend_check().
 2243                  */
 2244                 wakeup_swapper = 0;
 2245                 PROC_SLOCK(p);
 2246                 thread_lock(td);
 2247                 if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
 2248                         wakeup_swapper = sleepq_abort(td, intrval);
 2249                 thread_unlock(td);
 2250                 PROC_SUNLOCK(p);
 2251                 if (wakeup_swapper)
 2252                         kick_proc0();
 2253                 goto out;
 2254                 /*
 2255                  * Mutexes are short lived. Threads waiting on them will
 2256                  * hit thread_suspend_check() soon.
 2257                  */
 2258         } else if (p->p_state == PRS_NORMAL) {
 2259                 if (p->p_flag & P_TRACED || action == SIG_CATCH) {
 2260                         tdsigwakeup(td, sig, action, intrval);
 2261                         goto out;
 2262                 }
 2263 
 2264                 MPASS(action == SIG_DFL);
 2265 
 2266                 if (prop & SA_STOP) {
 2267                         if (p->p_flag & (P_PPWAIT|P_WEXIT))
 2268                                 goto out;
 2269                         p->p_flag |= P_STOPPED_SIG;
 2270                         p->p_xstat = sig;
 2271                         PROC_SLOCK(p);
 2272                         sig_suspend_threads(td, p, 1);
 2273                         if (p->p_numthreads == p->p_suspcount) {
 2274                                 /*
 2275                                  * only thread sending signal to another
 2276                                  * process can reach here, if thread is sending
 2277                                  * signal to its process, because thread does
 2278                                  * not suspend itself here, p_numthreads
 2279                                  * should never be equal to p_suspcount.
 2280                                  */
 2281                                 thread_stopped(p);
 2282                                 PROC_SUNLOCK(p);
 2283                                 sigqueue_delete_proc(p, p->p_xstat);
 2284                         } else
 2285                                 PROC_SUNLOCK(p);
 2286                         goto out;
 2287                 }
 2288         } else {
 2289                 /* Not in "NORMAL" state. discard the signal. */
 2290                 sigqueue_delete(sigqueue, sig);
 2291                 goto out;
 2292         }
 2293 
 2294         /*
 2295          * The process is not stopped so we need to apply the signal to all the
 2296          * running threads.
 2297          */
 2298 runfast:
 2299         tdsigwakeup(td, sig, action, intrval);
 2300         PROC_SLOCK(p);
 2301         thread_unsuspend(p);
 2302         PROC_SUNLOCK(p);
 2303 out:
 2304         /* If we jump here, proc slock should not be owned. */
 2305         PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
 2306         return (ret);
 2307 }
 2308 
 2309 /*
 2310  * The force of a signal has been directed against a single
 2311  * thread.  We need to see what we can do about knocking it
 2312  * out of any sleep it may be in etc.
 2313  */
 2314 static void
 2315 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
 2316 {
 2317         struct proc *p = td->td_proc;
 2318         register int prop;
 2319         int wakeup_swapper;
 2320 
 2321         wakeup_swapper = 0;
 2322         PROC_LOCK_ASSERT(p, MA_OWNED);
 2323         prop = sigprop(sig);
 2324 
 2325         PROC_SLOCK(p);
 2326         thread_lock(td);
 2327         /*
 2328          * Bring the priority of a thread up if we want it to get
 2329          * killed in this lifetime.
 2330          */
 2331         if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
 2332                 sched_prio(td, PUSER);
 2333         if (TD_ON_SLEEPQ(td)) {
 2334                 /*
 2335                  * If thread is sleeping uninterruptibly
 2336                  * we can't interrupt the sleep... the signal will
 2337                  * be noticed when the process returns through
 2338                  * trap() or syscall().
 2339                  */
 2340                 if ((td->td_flags & TDF_SINTR) == 0)
 2341                         goto out;
 2342                 /*
 2343                  * If SIGCONT is default (or ignored) and process is
 2344                  * asleep, we are finished; the process should not
 2345                  * be awakened.
 2346                  */
 2347                 if ((prop & SA_CONT) && action == SIG_DFL) {
 2348                         thread_unlock(td);
 2349                         PROC_SUNLOCK(p);
 2350                         sigqueue_delete(&p->p_sigqueue, sig);
 2351                         /*
 2352                          * It may be on either list in this state.
 2353                          * Remove from both for now.
 2354                          */
 2355                         sigqueue_delete(&td->td_sigqueue, sig);
 2356                         return;
 2357                 }
 2358 
 2359                 /*
 2360                  * Don't awaken a sleeping thread for SIGSTOP if the
 2361                  * STOP signal is deferred.
 2362                  */
 2363                 if ((prop & SA_STOP) && (td->td_flags & TDF_SBDRY))
 2364                         goto out;
 2365 
 2366                 /*
 2367                  * Give low priority threads a better chance to run.
 2368                  */
 2369                 if (td->td_priority > PUSER)
 2370                         sched_prio(td, PUSER);
 2371 
 2372                 wakeup_swapper = sleepq_abort(td, intrval);
 2373         } else {
 2374                 /*
 2375                  * Other states do nothing with the signal immediately,
 2376                  * other than kicking ourselves if we are running.
 2377                  * It will either never be noticed, or noticed very soon.
 2378                  */
 2379 #ifdef SMP
 2380                 if (TD_IS_RUNNING(td) && td != curthread)
 2381                         forward_signal(td);
 2382 #endif
 2383         }
 2384 out:
 2385         PROC_SUNLOCK(p);
 2386         thread_unlock(td);
 2387         if (wakeup_swapper)
 2388                 kick_proc0();
 2389 }
 2390 
 2391 static void
 2392 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
 2393 {
 2394         struct thread *td2;
 2395 
 2396         PROC_LOCK_ASSERT(p, MA_OWNED);
 2397         PROC_SLOCK_ASSERT(p, MA_OWNED);
 2398 
 2399         FOREACH_THREAD_IN_PROC(p, td2) {
 2400                 thread_lock(td2);
 2401                 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
 2402                 if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
 2403                     (td2->td_flags & TDF_SINTR)) {
 2404                         if (td2->td_flags & TDF_SBDRY) {
 2405                                 /*
 2406                                  * Once a thread is asleep with
 2407                                  * TDF_SBDRY set, it should never
 2408                                  * become suspended due to this check.
 2409                                  */
 2410                                 KASSERT(!TD_IS_SUSPENDED(td2),
 2411                                     ("thread with deferred stops suspended"));
 2412                         } else if (!TD_IS_SUSPENDED(td2)) {
 2413                                 thread_suspend_one(td2);
 2414                         }
 2415                 } else if (!TD_IS_SUSPENDED(td2)) {
 2416                         if (sending || td != td2)
 2417                                 td2->td_flags |= TDF_ASTPENDING;
 2418 #ifdef SMP
 2419                         if (TD_IS_RUNNING(td2) && td2 != td)
 2420                                 forward_signal(td2);
 2421 #endif
 2422                 }
 2423                 thread_unlock(td2);
 2424         }
 2425 }
 2426 
 2427 int
 2428 ptracestop(struct thread *td, int sig)
 2429 {
 2430         struct proc *p = td->td_proc;
 2431 
 2432         PROC_LOCK_ASSERT(p, MA_OWNED);
 2433         KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
 2434         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
 2435             &p->p_mtx.lock_object, "Stopping for traced signal");
 2436 
 2437         td->td_dbgflags |= TDB_XSIG;
 2438         td->td_xsig = sig;
 2439         PROC_SLOCK(p);
 2440         while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
 2441                 if (p->p_flag & P_SINGLE_EXIT) {
 2442                         td->td_dbgflags &= ~TDB_XSIG;
 2443                         PROC_SUNLOCK(p);
 2444                         return (sig);
 2445                 }
 2446                 /*
 2447                  * Just make wait() to work, the last stopped thread
 2448                  * will win.
 2449                  */
 2450                 p->p_xstat = sig;
 2451                 p->p_xthread = td;
 2452                 p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
 2453                 sig_suspend_threads(td, p, 0);
 2454                 if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
 2455                         td->td_dbgflags &= ~TDB_STOPATFORK;
 2456                         cv_broadcast(&p->p_dbgwait);
 2457                 }
 2458 stopme:
 2459                 thread_suspend_switch(td);
 2460                 if (p->p_xthread == td)
 2461                         p->p_xthread = NULL;
 2462                 if (!(p->p_flag & P_TRACED))
 2463                         break;
 2464                 if (td->td_dbgflags & TDB_SUSPEND) {
 2465                         if (p->p_flag & P_SINGLE_EXIT)
 2466                                 break;
 2467                         goto stopme;
 2468                 }
 2469         }
 2470         PROC_SUNLOCK(p);
 2471         return (td->td_xsig);
 2472 }
 2473 
 2474 static void
 2475 reschedule_signals(struct proc *p, sigset_t block, int flags)
 2476 {
 2477         struct sigacts *ps;
 2478         struct thread *td;
 2479         int sig;
 2480 
 2481         PROC_LOCK_ASSERT(p, MA_OWNED);
 2482         if (SIGISEMPTY(p->p_siglist))
 2483                 return;
 2484         ps = p->p_sigacts;
 2485         SIGSETAND(block, p->p_siglist);
 2486         while ((sig = sig_ffs(&block)) != 0) {
 2487                 SIGDELSET(block, sig);
 2488                 td = sigtd(p, sig, 0);
 2489                 signotify(td);
 2490                 if (!(flags & SIGPROCMASK_PS_LOCKED))
 2491                         mtx_lock(&ps->ps_mtx);
 2492                 if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
 2493                         tdsigwakeup(td, sig, SIG_CATCH,
 2494                             (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
 2495                              ERESTART));
 2496                 if (!(flags & SIGPROCMASK_PS_LOCKED))
 2497                         mtx_unlock(&ps->ps_mtx);
 2498         }
 2499 }
 2500 
 2501 void
 2502 tdsigcleanup(struct thread *td)
 2503 {
 2504         struct proc *p;
 2505         sigset_t unblocked;
 2506 
 2507         p = td->td_proc;
 2508         PROC_LOCK_ASSERT(p, MA_OWNED);
 2509 
 2510         sigqueue_flush(&td->td_sigqueue);
 2511         if (p->p_numthreads == 1)
 2512                 return;
 2513 
 2514         /*
 2515          * Since we cannot handle signals, notify signal post code
 2516          * about this by filling the sigmask.
 2517          *
 2518          * Also, if needed, wake up thread(s) that do not block the
 2519          * same signals as the exiting thread, since the thread might
 2520          * have been selected for delivery and woken up.
 2521          */
 2522         SIGFILLSET(unblocked);
 2523         SIGSETNAND(unblocked, td->td_sigmask);
 2524         SIGFILLSET(td->td_sigmask);
 2525         reschedule_signals(p, unblocked, 0);
 2526 
 2527 }
 2528 
 2529 /*
 2530  * Defer the delivery of SIGSTOP for the current thread.  Returns true
 2531  * if stops were deferred and false if they were already deferred.
 2532  */
 2533 int
 2534 sigdeferstop(void)
 2535 {
 2536         struct thread *td;
 2537 
 2538         td = curthread;
 2539         if (td->td_flags & TDF_SBDRY)
 2540                 return (0);
 2541         thread_lock(td);
 2542         td->td_flags |= TDF_SBDRY;
 2543         thread_unlock(td);
 2544         return (1);
 2545 }
 2546 
 2547 /*
 2548  * Permit the delivery of SIGSTOP for the current thread.  This does
 2549  * not immediately suspend if a stop was posted.  Instead, the thread
 2550  * will suspend either via ast() or a subsequent interruptible sleep.
 2551  */
 2552 void
 2553 sigallowstop()
 2554 {
 2555         struct thread *td;
 2556 
 2557         td = curthread;
 2558         thread_lock(td);
 2559         td->td_flags &= ~TDF_SBDRY;
 2560         thread_unlock(td);
 2561 }
 2562 
 2563 /*
 2564  * If the current process has received a signal (should be caught or cause
 2565  * termination, should interrupt current syscall), return the signal number.
 2566  * Stop signals with default action are processed immediately, then cleared;
 2567  * they aren't returned.  This is checked after each entry to the system for
 2568  * a syscall or trap (though this can usually be done without calling issignal
 2569  * by checking the pending signal masks in cursig.) The normal call
 2570  * sequence is
 2571  *
 2572  *      while (sig = cursig(curthread))
 2573  *              postsig(sig);
 2574  */
 2575 static int
 2576 issignal(struct thread *td)
 2577 {
 2578         struct proc *p;
 2579         struct sigacts *ps;
 2580         struct sigqueue *queue;
 2581         sigset_t sigpending;
 2582         int sig, prop, newsig;
 2583 
 2584         p = td->td_proc;
 2585         ps = p->p_sigacts;
 2586         mtx_assert(&ps->ps_mtx, MA_OWNED);
 2587         PROC_LOCK_ASSERT(p, MA_OWNED);
 2588         for (;;) {
 2589                 int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
 2590 
 2591                 sigpending = td->td_sigqueue.sq_signals;
 2592                 SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
 2593                 SIGSETNAND(sigpending, td->td_sigmask);
 2594 
 2595                 if (p->p_flag & P_PPWAIT || td->td_flags & TDF_SBDRY)
 2596                         SIG_STOPSIGMASK(sigpending);
 2597                 if (SIGISEMPTY(sigpending))     /* no signal to send */
 2598                         return (0);
 2599                 sig = sig_ffs(&sigpending);
 2600 
 2601                 if (p->p_stops & S_SIG) {
 2602                         mtx_unlock(&ps->ps_mtx);
 2603                         stopevent(p, S_SIG, sig);
 2604                         mtx_lock(&ps->ps_mtx);
 2605                 }
 2606 
 2607                 /*
 2608                  * We should see pending but ignored signals
 2609                  * only if P_TRACED was on when they were posted.
 2610                  */
 2611                 if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
 2612                         sigqueue_delete(&td->td_sigqueue, sig);
 2613                         sigqueue_delete(&p->p_sigqueue, sig);
 2614                         continue;
 2615                 }
 2616                 if (p->p_flag & P_TRACED && (p->p_flag & P_PPTRACE) == 0) {
 2617                         /*
 2618                          * If traced, always stop.
 2619                          * Remove old signal from queue before the stop.
 2620                          * XXX shrug off debugger, it causes siginfo to
 2621                          * be thrown away.
 2622                          */
 2623                         queue = &td->td_sigqueue;
 2624                         td->td_dbgksi.ksi_signo = 0;
 2625                         if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
 2626                                 queue = &p->p_sigqueue;
 2627                                 sigqueue_get(queue, sig, &td->td_dbgksi);
 2628                         }
 2629 
 2630                         mtx_unlock(&ps->ps_mtx);
 2631                         newsig = ptracestop(td, sig);
 2632                         mtx_lock(&ps->ps_mtx);
 2633 
 2634                         if (sig != newsig) {
 2635 
 2636                                 /*
 2637                                  * If parent wants us to take the signal,
 2638                                  * then it will leave it in p->p_xstat;
 2639                                  * otherwise we just look for signals again.
 2640                                 */
 2641                                 if (newsig == 0)
 2642                                         continue;
 2643                                 sig = newsig;
 2644 
 2645                                 /*
 2646                                  * Put the new signal into td_sigqueue. If the
 2647                                  * signal is being masked, look for other
 2648                                  * signals.
 2649                                  */
 2650                                 sigqueue_add(queue, sig, NULL);
 2651                                 if (SIGISMEMBER(td->td_sigmask, sig))
 2652                                         continue;
 2653                                 signotify(td);
 2654                         } else {
 2655                                 if (td->td_dbgksi.ksi_signo != 0) {
 2656                                         td->td_dbgksi.ksi_flags |= KSI_HEAD;
 2657                                         if (sigqueue_add(&td->td_sigqueue, sig,
 2658                                             &td->td_dbgksi) != 0)
 2659                                                 td->td_dbgksi.ksi_signo = 0;
 2660                                 }
 2661                                 if (td->td_dbgksi.ksi_signo == 0)
 2662                                         sigqueue_add(&td->td_sigqueue, sig,
 2663                                             NULL);
 2664                         }
 2665 
 2666                         /*
 2667                          * If the traced bit got turned off, go back up
 2668                          * to the top to rescan signals.  This ensures
 2669                          * that p_sig* and p_sigact are consistent.
 2670                          */
 2671                         if ((p->p_flag & P_TRACED) == 0)
 2672                                 continue;
 2673                 }
 2674 
 2675                 prop = sigprop(sig);
 2676 
 2677                 /*
 2678                  * Decide whether the signal should be returned.
 2679                  * Return the signal's number, or fall through
 2680                  * to clear it from the pending mask.
 2681                  */
 2682                 switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
 2683 
 2684                 case (intptr_t)SIG_DFL:
 2685                         /*
 2686                          * Don't take default actions on system processes.
 2687                          */
 2688                         if (p->p_pid <= 1) {
 2689 #ifdef DIAGNOSTIC
 2690                                 /*
 2691                                  * Are you sure you want to ignore SIGSEGV
 2692                                  * in init? XXX
 2693                                  */
 2694                                 printf("Process (pid %lu) got signal %d\n",
 2695                                         (u_long)p->p_pid, sig);
 2696 #endif
 2697                                 break;          /* == ignore */
 2698                         }
 2699                         /*
 2700                          * If there is a pending stop signal to process
 2701                          * with default action, stop here,
 2702                          * then clear the signal.  However,
 2703                          * if process is member of an orphaned
 2704                          * process group, ignore tty stop signals.
 2705                          */
 2706                         if (prop & SA_STOP) {
 2707                                 if (p->p_flag & (P_TRACED|P_WEXIT) ||
 2708                                     (p->p_pgrp->pg_jobc == 0 &&
 2709                                      prop & SA_TTYSTOP))
 2710                                         break;  /* == ignore */
 2711                                 mtx_unlock(&ps->ps_mtx);
 2712                                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
 2713                                     &p->p_mtx.lock_object, "Catching SIGSTOP");
 2714                                 p->p_flag |= P_STOPPED_SIG;
 2715                                 p->p_xstat = sig;
 2716                                 PROC_SLOCK(p);
 2717                                 sig_suspend_threads(td, p, 0);
 2718                                 thread_suspend_switch(td);
 2719                                 PROC_SUNLOCK(p);
 2720                                 mtx_lock(&ps->ps_mtx);
 2721                                 break;
 2722                         } else if (prop & SA_IGNORE) {
 2723                                 /*
 2724                                  * Except for SIGCONT, shouldn't get here.
 2725                                  * Default action is to ignore; drop it.
 2726                                  */
 2727                                 break;          /* == ignore */
 2728                         } else
 2729                                 return (sig);
 2730                         /*NOTREACHED*/
 2731 
 2732                 case (intptr_t)SIG_IGN:
 2733                         /*
 2734                          * Masking above should prevent us ever trying
 2735                          * to take action on an ignored signal other
 2736                          * than SIGCONT, unless process is traced.
 2737                          */
 2738                         if ((prop & SA_CONT) == 0 &&
 2739                             (p->p_flag & P_TRACED) == 0)
 2740                                 printf("issignal\n");
 2741                         break;          /* == ignore */
 2742 
 2743                 default:
 2744                         /*
 2745                          * This signal has an action, let
 2746                          * postsig() process it.
 2747                          */
 2748                         return (sig);
 2749                 }
 2750                 sigqueue_delete(&td->td_sigqueue, sig); /* take the signal! */
 2751                 sigqueue_delete(&p->p_sigqueue, sig);
 2752         }
 2753         /* NOTREACHED */
 2754 }
 2755 
 2756 void
 2757 thread_stopped(struct proc *p)
 2758 {
 2759         int n;
 2760 
 2761         PROC_LOCK_ASSERT(p, MA_OWNED);
 2762         PROC_SLOCK_ASSERT(p, MA_OWNED);
 2763         n = p->p_suspcount;
 2764         if (p == curproc)
 2765                 n++;
 2766         if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
 2767                 PROC_SUNLOCK(p);
 2768                 p->p_flag &= ~P_WAITED;
 2769                 PROC_LOCK(p->p_pptr);
 2770                 childproc_stopped(p, (p->p_flag & P_TRACED) ?
 2771                         CLD_TRAPPED : CLD_STOPPED);
 2772                 PROC_UNLOCK(p->p_pptr);
 2773                 PROC_SLOCK(p);
 2774         }
 2775 }
 2776 
 2777 /*
 2778  * Take the action for the specified signal
 2779  * from the current set of pending signals.
 2780  */
 2781 int
 2782 postsig(sig)
 2783         register int sig;
 2784 {
 2785         struct thread *td = curthread;
 2786         register struct proc *p = td->td_proc;
 2787         struct sigacts *ps;
 2788         sig_t action;
 2789         ksiginfo_t ksi;
 2790         sigset_t returnmask, mask;
 2791 
 2792         KASSERT(sig != 0, ("postsig"));
 2793 
 2794         PROC_LOCK_ASSERT(p, MA_OWNED);
 2795         ps = p->p_sigacts;
 2796         mtx_assert(&ps->ps_mtx, MA_OWNED);
 2797         ksiginfo_init(&ksi);
 2798         if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
 2799             sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
 2800                 return (0);
 2801         ksi.ksi_signo = sig;
 2802         if (ksi.ksi_code == SI_TIMER)
 2803                 itimer_accept(p, ksi.ksi_timerid, &ksi);
 2804         action = ps->ps_sigact[_SIG_IDX(sig)];
 2805 #ifdef KTRACE
 2806         if (KTRPOINT(td, KTR_PSIG))
 2807                 ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
 2808                     &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
 2809 #endif
 2810         if (p->p_stops & S_SIG) {
 2811                 mtx_unlock(&ps->ps_mtx);
 2812                 stopevent(p, S_SIG, sig);
 2813                 mtx_lock(&ps->ps_mtx);
 2814         }
 2815 
 2816         if (action == SIG_DFL) {
 2817                 /*
 2818                  * Default action, where the default is to kill
 2819                  * the process.  (Other cases were ignored above.)
 2820                  */
 2821                 mtx_unlock(&ps->ps_mtx);
 2822                 sigexit(td, sig);
 2823                 /* NOTREACHED */
 2824         } else {
 2825                 /*
 2826                  * If we get here, the signal must be caught.
 2827                  */
 2828                 KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
 2829                     ("postsig action"));
 2830                 /*
 2831                  * Set the new mask value and also defer further
 2832                  * occurrences of this signal.
 2833                  *
 2834                  * Special case: user has done a sigsuspend.  Here the
 2835                  * current mask is not of interest, but rather the
 2836                  * mask from before the sigsuspend is what we want
 2837                  * restored after the signal processing is completed.
 2838                  */
 2839                 if (td->td_pflags & TDP_OLDMASK) {
 2840                         returnmask = td->td_oldsigmask;
 2841                         td->td_pflags &= ~TDP_OLDMASK;
 2842                 } else
 2843                         returnmask = td->td_sigmask;
 2844 
 2845                 mask = ps->ps_catchmask[_SIG_IDX(sig)];
 2846                 if (!SIGISMEMBER(ps->ps_signodefer, sig))
 2847                         SIGADDSET(mask, sig);
 2848                 kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
 2849                     SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
 2850 
 2851                 if (SIGISMEMBER(ps->ps_sigreset, sig)) {
 2852                         /*
 2853                          * See kern_sigaction() for origin of this code.
 2854                          */
 2855                         SIGDELSET(ps->ps_sigcatch, sig);
 2856                         if (sig != SIGCONT &&
 2857                             sigprop(sig) & SA_IGNORE)
 2858                                 SIGADDSET(ps->ps_sigignore, sig);
 2859                         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
 2860                 }
 2861                 td->td_ru.ru_nsignals++;
 2862                 if (p->p_sig == sig) {
 2863                         p->p_code = 0;
 2864                         p->p_sig = 0;
 2865                 }
 2866                 (*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
 2867         }
 2868         return (1);
 2869 }
 2870 
 2871 /*
 2872  * Kill the current process for stated reason.
 2873  */
 2874 void
 2875 killproc(p, why)
 2876         struct proc *p;
 2877         char *why;
 2878 {
 2879 
 2880         PROC_LOCK_ASSERT(p, MA_OWNED);
 2881         CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
 2882             p->p_comm);
 2883         log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
 2884             p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
 2885         p->p_flag |= P_WKILLED;
 2886         kern_psignal(p, SIGKILL);
 2887 }
 2888 
 2889 /*
 2890  * Force the current process to exit with the specified signal, dumping core
 2891  * if appropriate.  We bypass the normal tests for masked and caught signals,
 2892  * allowing unrecoverable failures to terminate the process without changing
 2893  * signal state.  Mark the accounting record with the signal termination.
 2894  * If dumping core, save the signal number for the debugger.  Calls exit and
 2895  * does not return.
 2896  */
 2897 void
 2898 sigexit(td, sig)
 2899         struct thread *td;
 2900         int sig;
 2901 {
 2902         struct proc *p = td->td_proc;
 2903 
 2904         PROC_LOCK_ASSERT(p, MA_OWNED);
 2905         p->p_acflag |= AXSIG;
 2906         /*
 2907          * We must be single-threading to generate a core dump.  This
 2908          * ensures that the registers in the core file are up-to-date.
 2909          * Also, the ELF dump handler assumes that the thread list doesn't
 2910          * change out from under it.
 2911          *
 2912          * XXX If another thread attempts to single-thread before us
 2913          *     (e.g. via fork()), we won't get a dump at all.
 2914          */
 2915         if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
 2916                 p->p_sig = sig;
 2917                 /*
 2918                  * Log signals which would cause core dumps
 2919                  * (Log as LOG_INFO to appease those who don't want
 2920                  * these messages.)
 2921                  * XXX : Todo, as well as euid, write out ruid too
 2922                  * Note that coredump() drops proc lock.
 2923                  */
 2924                 if (coredump(td) == 0)
 2925                         sig |= WCOREFLAG;
 2926                 if (kern_logsigexit)
 2927                         log(LOG_INFO,
 2928                             "pid %d (%s), uid %d: exited on signal %d%s\n",
 2929                             p->p_pid, p->p_comm,
 2930                             td->td_ucred ? td->td_ucred->cr_uid : -1,
 2931                             sig &~ WCOREFLAG,
 2932                             sig & WCOREFLAG ? " (core dumped)" : "");
 2933         } else
 2934                 PROC_UNLOCK(p);
 2935         exit1(td, W_EXITCODE(0, sig));
 2936         /* NOTREACHED */
 2937 }
 2938 
 2939 /*
 2940  * Send queued SIGCHLD to parent when child process's state
 2941  * is changed.
 2942  */
 2943 static void
 2944 sigparent(struct proc *p, int reason, int status)
 2945 {
 2946         PROC_LOCK_ASSERT(p, MA_OWNED);
 2947         PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
 2948 
 2949         if (p->p_ksi != NULL) {
 2950                 p->p_ksi->ksi_signo  = SIGCHLD;
 2951                 p->p_ksi->ksi_code   = reason;
 2952                 p->p_ksi->ksi_status = status;
 2953                 p->p_ksi->ksi_pid    = p->p_pid;
 2954                 p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
 2955                 if (KSI_ONQ(p->p_ksi))
 2956                         return;
 2957         }
 2958         pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
 2959 }
 2960 
 2961 static void
 2962 childproc_jobstate(struct proc *p, int reason, int status)
 2963 {
 2964         struct sigacts *ps;
 2965 
 2966         PROC_LOCK_ASSERT(p, MA_OWNED);
 2967         PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
 2968 
 2969         /*
 2970          * Wake up parent sleeping in kern_wait(), also send
 2971          * SIGCHLD to parent, but SIGCHLD does not guarantee
 2972          * that parent will awake, because parent may masked
 2973          * the signal.
 2974          */
 2975         p->p_pptr->p_flag |= P_STATCHILD;
 2976         wakeup(p->p_pptr);
 2977 
 2978         ps = p->p_pptr->p_sigacts;
 2979         mtx_lock(&ps->ps_mtx);
 2980         if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
 2981                 mtx_unlock(&ps->ps_mtx);
 2982                 sigparent(p, reason, status);
 2983         } else
 2984                 mtx_unlock(&ps->ps_mtx);
 2985 }
 2986 
 2987 void
 2988 childproc_stopped(struct proc *p, int reason)
 2989 {
 2990         childproc_jobstate(p, reason, p->p_xstat);
 2991 }
 2992 
 2993 void
 2994 childproc_continued(struct proc *p)
 2995 {
 2996         childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
 2997 }
 2998 
 2999 void
 3000 childproc_exited(struct proc *p)
 3001 {
 3002         int reason;
 3003         int status = p->p_xstat; /* convert to int */
 3004 
 3005         reason = CLD_EXITED;
 3006         if (WCOREDUMP(status))
 3007                 reason = CLD_DUMPED;
 3008         else if (WIFSIGNALED(status))
 3009                 reason = CLD_KILLED;
 3010         /*
 3011          * XXX avoid calling wakeup(p->p_pptr), the work is
 3012          * done in exit1().
 3013          */
 3014         sigparent(p, reason, status);
 3015 }
 3016 
 3017 /*
 3018  * We only have 1 character for the core count in the format
 3019  * string, so the range will be 0-9
 3020  */
 3021 #define MAX_NUM_CORES 10
 3022 static int num_cores = 5;
 3023 
 3024 static int
 3025 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
 3026 {
 3027         int error;
 3028         int new_val;
 3029 
 3030         new_val = num_cores;
 3031         error = sysctl_handle_int(oidp, &new_val, 0, req);
 3032         if (error != 0 || req->newptr == NULL)
 3033                 return (error);
 3034         if (new_val > MAX_NUM_CORES)
 3035                 new_val = MAX_NUM_CORES;
 3036         if (new_val < 0)
 3037                 new_val = 0;
 3038         num_cores = new_val;
 3039         return (0);
 3040 }
 3041 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
 3042             0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
 3043 
 3044 #if defined(COMPRESS_USER_CORES)
 3045 int compress_user_cores = 1;
 3046 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
 3047     &compress_user_cores, 0, "Compression of user corefiles");
 3048 
 3049 int compress_user_cores_gzlevel = -1; /* default level */
 3050 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
 3051     &compress_user_cores_gzlevel, -1, "Corefile gzip compression level");
 3052 
 3053 #define GZ_SUFFIX       ".gz"
 3054 #define GZ_SUFFIX_LEN   3
 3055 #endif
 3056 
 3057 static char corefilename[MAXPATHLEN] = {"%N.core"};
 3058 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
 3059 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
 3060     sizeof(corefilename), "Process corefile name format string");
 3061 
 3062 /*
 3063  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
 3064  * Expand the name described in corefilename, using name, uid, and pid
 3065  * and open/create core file.
 3066  * corefilename is a printf-like string, with three format specifiers:
 3067  *      %N      name of process ("name")
 3068  *      %P      process id (pid)
 3069  *      %U      user id (uid)
 3070  * For example, "%N.core" is the default; they can be disabled completely
 3071  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
 3072  * This is controlled by the sysctl variable kern.corefile (see above).
 3073  */
 3074 static int
 3075 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
 3076     int compress, struct vnode **vpp, char **namep)
 3077 {
 3078         struct nameidata nd;
 3079         struct sbuf sb;
 3080         const char *format;
 3081         char *hostname, *name;
 3082         int indexpos, i, error, cmode, flags, oflags;
 3083 
 3084         hostname = NULL;
 3085         format = corefilename;
 3086         name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
 3087         indexpos = -1;
 3088         (void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
 3089         for (i = 0; format[i] != '\0'; i++) {
 3090                 switch (format[i]) {
 3091                 case '%':       /* Format character */
 3092                         i++;
 3093                         switch (format[i]) {
 3094                         case '%':
 3095                                 sbuf_putc(&sb, '%');
 3096                                 break;
 3097                         case 'H':       /* hostname */
 3098                                 if (hostname == NULL) {
 3099                                         hostname = malloc(MAXHOSTNAMELEN,
 3100                                             M_TEMP, M_WAITOK);
 3101                                 }
 3102                                 getcredhostname(td->td_ucred, hostname,
 3103                                     MAXHOSTNAMELEN);
 3104                                 sbuf_printf(&sb, "%s", hostname);
 3105                                 break;
 3106                         case 'I':       /* autoincrementing index */
 3107                                 sbuf_printf(&sb, "");
 3108                                 indexpos = sbuf_len(&sb) - 1;
 3109                                 break;
 3110                         case 'N':       /* process name */
 3111                                 sbuf_printf(&sb, "%s", comm);
 3112                                 break;
 3113                         case 'P':       /* process id */
 3114                                 sbuf_printf(&sb, "%u", pid);
 3115                                 break;
 3116                         case 'U':       /* user id */
 3117                                 sbuf_printf(&sb, "%u", uid);
 3118                                 break;
 3119                         default:
 3120                                 log(LOG_ERR,
 3121                                     "Unknown format character %c in "
 3122                                     "corename `%s'\n", format[i], format);
 3123                                 break;
 3124                         }
 3125                         break;
 3126                 default:
 3127                         sbuf_putc(&sb, format[i]);
 3128                         break;
 3129                 }
 3130         }
 3131         free(hostname, M_TEMP);
 3132 #ifdef COMPRESS_USER_CORES
 3133         if (compress)
 3134                 sbuf_printf(&sb, GZ_SUFFIX);
 3135 #endif
 3136         if (sbuf_error(&sb) != 0) {
 3137                 log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
 3138                     "long\n", (long)pid, comm, (u_long)uid);
 3139                 sbuf_delete(&sb);
 3140                 free(name, M_TEMP);
 3141                 return (ENOMEM);
 3142         }
 3143         sbuf_finish(&sb);
 3144         sbuf_delete(&sb);
 3145 
 3146         cmode = S_IRUSR | S_IWUSR;
 3147         oflags = VN_OPEN_NOAUDIT | (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
 3148 
 3149         /*
 3150          * If the core format has a %I in it, then we need to check
 3151          * for existing corefiles before returning a name.
 3152          * To do this we iterate over 0..num_cores to find a
 3153          * non-existing core file name to use.
 3154          */
 3155         if (indexpos != -1) {
 3156                 for (i = 0; i < num_cores; i++) {
 3157                         flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
 3158                         name[indexpos] = '' + i;
 3159                         NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
 3160                         error = vn_open_cred(&nd, &flags, cmode, oflags,
 3161                             td->td_ucred, NULL);
 3162                         if (error) {
 3163                                 if (error == EEXIST)
 3164                                         continue;
 3165                                 log(LOG_ERR,
 3166                                     "pid %d (%s), uid (%u):  Path `%s' failed "
 3167                                     "on initial open test, error = %d\n",
 3168                                     pid, comm, uid, name, error);
 3169                         }
 3170                         goto out;
 3171                 }
 3172         }
 3173 
 3174         flags = O_CREAT | FWRITE | O_NOFOLLOW;
 3175         NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
 3176         error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
 3177 out:
 3178         if (error) {
 3179 #ifdef AUDIT
 3180                 audit_proc_coredump(td, name, error);
 3181 #endif
 3182                 free(name, M_TEMP);
 3183                 return (error);
 3184         }
 3185         NDFREE(&nd, NDF_ONLY_PNBUF);
 3186         *vpp = nd.ni_vp;
 3187         *namep = name;
 3188         return (0);
 3189 }
 3190 
 3191 /*
 3192  * Dump a process' core.  The main routine does some
 3193  * policy checking, and creates the name of the coredump;
 3194  * then it passes on a vnode and a size limit to the process-specific
 3195  * coredump routine if there is one; if there _is not_ one, it returns
 3196  * ENOSYS; otherwise it returns the error from the process-specific routine.
 3197  */
 3198 
 3199 static int
 3200 coredump(struct thread *td)
 3201 {
 3202         struct proc *p = td->td_proc;
 3203         struct ucred *cred = td->td_ucred;
 3204         struct vnode *vp;
 3205         struct flock lf;
 3206         struct vattr vattr;
 3207         int error, error1, locked;
 3208         struct mount *mp;
 3209         char *name;                     /* name of corefile */
 3210         off_t limit;
 3211         int compress;
 3212 
 3213 #ifdef COMPRESS_USER_CORES
 3214         compress = compress_user_cores;
 3215 #else
 3216         compress = 0;
 3217 #endif
 3218         PROC_LOCK_ASSERT(p, MA_OWNED);
 3219         MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
 3220         _STOPEVENT(p, S_CORE, 0);
 3221 
 3222         if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0)) {
 3223                 PROC_UNLOCK(p);
 3224                 return (EFAULT);
 3225         }
 3226 
 3227         /*
 3228          * Note that the bulk of limit checking is done after
 3229          * the corefile is created.  The exception is if the limit
 3230          * for corefiles is 0, in which case we don't bother
 3231          * creating the corefile at all.  This layout means that
 3232          * a corefile is truncated instead of not being created,
 3233          * if it is larger than the limit.
 3234          */
 3235         limit = (off_t)lim_cur(p, RLIMIT_CORE);
 3236         if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
 3237                 PROC_UNLOCK(p);
 3238                 return (EFBIG);
 3239         }
 3240         PROC_UNLOCK(p);
 3241 
 3242 restart:
 3243         error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, compress,
 3244             &vp, &name);
 3245         if (error != 0)
 3246                 return (error);
 3247 
 3248         /* Don't dump to non-regular files or files with links. */
 3249         if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
 3250             vattr.va_nlink != 1) {
 3251                 VOP_UNLOCK(vp, 0);
 3252                 error = EFAULT;
 3253                 goto close;
 3254         }
 3255 
 3256         VOP_UNLOCK(vp, 0);
 3257         lf.l_whence = SEEK_SET;
 3258         lf.l_start = 0;
 3259         lf.l_len = 0;
 3260         lf.l_type = F_WRLCK;
 3261         locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
 3262 
 3263         if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 3264                 lf.l_type = F_UNLCK;
 3265                 if (locked)
 3266                         VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
 3267                 if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
 3268                         goto out;
 3269                 if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
 3270                         goto out;
 3271                 free(name, M_TEMP);
 3272                 goto restart;
 3273         }
 3274 
 3275         VATTR_NULL(&vattr);
 3276         vattr.va_size = 0;
 3277         if (set_core_nodump_flag)
 3278                 vattr.va_flags = UF_NODUMP;
 3279         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 3280         VOP_SETATTR(vp, &vattr, cred);
 3281         VOP_UNLOCK(vp, 0);
 3282         vn_finished_write(mp);
 3283         PROC_LOCK(p);
 3284         p->p_acflag |= ACORE;
 3285         PROC_UNLOCK(p);
 3286 
 3287         if (p->p_sysent->sv_coredump != NULL) {
 3288                 error = p->p_sysent->sv_coredump(td, vp, limit,
 3289                     compress ? IMGACT_CORE_COMPRESS : 0);
 3290         } else {
 3291                 error = ENOSYS;
 3292         }
 3293 
 3294         if (locked) {
 3295                 lf.l_type = F_UNLCK;
 3296                 VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
 3297         }
 3298 close:
 3299         error1 = vn_close(vp, FWRITE, cred, td);
 3300         if (error == 0)
 3301                 error = error1;
 3302 out:
 3303 #ifdef AUDIT
 3304         audit_proc_coredump(td, name, error);
 3305 #endif
 3306         free(name, M_TEMP);
 3307         return (error);
 3308 }
 3309 
 3310 /*
 3311  * Nonexistent system call-- signal process (may want to handle it).  Flag
 3312  * error in case process won't see signal immediately (blocked or ignored).
 3313  */
 3314 #ifndef _SYS_SYSPROTO_H_
 3315 struct nosys_args {
 3316         int     dummy;
 3317 };
 3318 #endif
 3319 /* ARGSUSED */
 3320 int
 3321 nosys(td, args)
 3322         struct thread *td;
 3323         struct nosys_args *args;
 3324 {
 3325         struct proc *p = td->td_proc;
 3326 
 3327         PROC_LOCK(p);
 3328         tdsignal(td, SIGSYS);
 3329         PROC_UNLOCK(p);
 3330         return (ENOSYS);
 3331 }
 3332 
 3333 /*
 3334  * Send a SIGIO or SIGURG signal to a process or process group using stored
 3335  * credentials rather than those of the current process.
 3336  */
 3337 void
 3338 pgsigio(sigiop, sig, checkctty)
 3339         struct sigio **sigiop;
 3340         int sig, checkctty;
 3341 {
 3342         ksiginfo_t ksi;
 3343         struct sigio *sigio;
 3344 
 3345         ksiginfo_init(&ksi);
 3346         ksi.ksi_signo = sig;
 3347         ksi.ksi_code = SI_KERNEL;
 3348 
 3349         SIGIO_LOCK();
 3350         sigio = *sigiop;
 3351         if (sigio == NULL) {
 3352                 SIGIO_UNLOCK();
 3353                 return;
 3354         }
 3355         if (sigio->sio_pgid > 0) {
 3356                 PROC_LOCK(sigio->sio_proc);
 3357                 if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
 3358                         kern_psignal(sigio->sio_proc, sig);
 3359                 PROC_UNLOCK(sigio->sio_proc);
 3360         } else if (sigio->sio_pgid < 0) {
 3361                 struct proc *p;
 3362 
 3363                 PGRP_LOCK(sigio->sio_pgrp);
 3364                 LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
 3365                         PROC_LOCK(p);
 3366                         if (p->p_state == PRS_NORMAL &&
 3367                             CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
 3368                             (checkctty == 0 || (p->p_flag & P_CONTROLT)))
 3369                                 kern_psignal(p, sig);
 3370                         PROC_UNLOCK(p);
 3371                 }
 3372                 PGRP_UNLOCK(sigio->sio_pgrp);
 3373         }
 3374         SIGIO_UNLOCK();
 3375 }
 3376 
 3377 static int
 3378 filt_sigattach(struct knote *kn)
 3379 {
 3380         struct proc *p = curproc;
 3381 
 3382         kn->kn_ptr.p_proc = p;
 3383         kn->kn_flags |= EV_CLEAR;               /* automatically set */
 3384 
 3385         knlist_add(&p->p_klist, kn, 0);
 3386 
 3387         return (0);
 3388 }
 3389 
 3390 static void
 3391 filt_sigdetach(struct knote *kn)
 3392 {
 3393         struct proc *p = kn->kn_ptr.p_proc;
 3394 
 3395         knlist_remove(&p->p_klist, kn, 0);
 3396 }
 3397 
 3398 /*
 3399  * signal knotes are shared with proc knotes, so we apply a mask to
 3400  * the hint in order to differentiate them from process hints.  This
 3401  * could be avoided by using a signal-specific knote list, but probably
 3402  * isn't worth the trouble.
 3403  */
 3404 static int
 3405 filt_signal(struct knote *kn, long hint)
 3406 {
 3407 
 3408         if (hint & NOTE_SIGNAL) {
 3409                 hint &= ~NOTE_SIGNAL;
 3410 
 3411                 if (kn->kn_id == hint)
 3412                         kn->kn_data++;
 3413         }
 3414         return (kn->kn_data != 0);
 3415 }
 3416 
 3417 struct sigacts *
 3418 sigacts_alloc(void)
 3419 {
 3420         struct sigacts *ps;
 3421 
 3422         ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
 3423         ps->ps_refcnt = 1;
 3424         mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
 3425         return (ps);
 3426 }
 3427 
 3428 void
 3429 sigacts_free(struct sigacts *ps)
 3430 {
 3431 
 3432         mtx_lock(&ps->ps_mtx);
 3433         ps->ps_refcnt--;
 3434         if (ps->ps_refcnt == 0) {
 3435                 mtx_destroy(&ps->ps_mtx);
 3436                 free(ps, M_SUBPROC);
 3437         } else
 3438                 mtx_unlock(&ps->ps_mtx);
 3439 }
 3440 
 3441 struct sigacts *
 3442 sigacts_hold(struct sigacts *ps)
 3443 {
 3444         mtx_lock(&ps->ps_mtx);
 3445         ps->ps_refcnt++;
 3446         mtx_unlock(&ps->ps_mtx);
 3447         return (ps);
 3448 }
 3449 
 3450 void
 3451 sigacts_copy(struct sigacts *dest, struct sigacts *src)
 3452 {
 3453 
 3454         KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
 3455         mtx_lock(&src->ps_mtx);
 3456         bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
 3457         mtx_unlock(&src->ps_mtx);
 3458 }
 3459 
 3460 int
 3461 sigacts_shared(struct sigacts *ps)
 3462 {
 3463         int shared;
 3464 
 3465         mtx_lock(&ps->ps_mtx);
 3466         shared = ps->ps_refcnt > 1;
 3467         mtx_unlock(&ps->ps_mtx);
 3468         return (shared);
 3469 }

Cache object: 7216d3dfaf995e583018524c2d0d61d5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.