The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_sig.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_sig.c  8.7 (Berkeley) 4/18/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/10.1/sys/kern/kern_sig.c 270788 2014-08-29 08:38:34Z kib $");
   39 
   40 #include "opt_compat.h"
   41 #include "opt_kdtrace.h"
   42 #include "opt_ktrace.h"
   43 #include "opt_core.h"
   44 #include "opt_procdesc.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/signalvar.h>
   49 #include <sys/vnode.h>
   50 #include <sys/acct.h>
   51 #include <sys/capability.h>
   52 #include <sys/condvar.h>
   53 #include <sys/event.h>
   54 #include <sys/fcntl.h>
   55 #include <sys/imgact.h>
   56 #include <sys/kernel.h>
   57 #include <sys/ktr.h>
   58 #include <sys/ktrace.h>
   59 #include <sys/lock.h>
   60 #include <sys/malloc.h>
   61 #include <sys/mutex.h>
   62 #include <sys/refcount.h>
   63 #include <sys/namei.h>
   64 #include <sys/proc.h>
   65 #include <sys/procdesc.h>
   66 #include <sys/posix4.h>
   67 #include <sys/pioctl.h>
   68 #include <sys/racct.h>
   69 #include <sys/resourcevar.h>
   70 #include <sys/sdt.h>
   71 #include <sys/sbuf.h>
   72 #include <sys/sleepqueue.h>
   73 #include <sys/smp.h>
   74 #include <sys/stat.h>
   75 #include <sys/sx.h>
   76 #include <sys/syscallsubr.h>
   77 #include <sys/sysctl.h>
   78 #include <sys/sysent.h>
   79 #include <sys/syslog.h>
   80 #include <sys/sysproto.h>
   81 #include <sys/timers.h>
   82 #include <sys/unistd.h>
   83 #include <sys/wait.h>
   84 #include <vm/vm.h>
   85 #include <vm/vm_extern.h>
   86 #include <vm/uma.h>
   87 
   88 #include <sys/jail.h>
   89 
   90 #include <machine/cpu.h>
   91 
   92 #include <security/audit/audit.h>
   93 
   94 #define ONSIG   32              /* NSIG for osig* syscalls.  XXX. */
   95 
   96 SDT_PROVIDER_DECLARE(proc);
   97 SDT_PROBE_DEFINE3(proc, kernel, , signal__send, "struct thread *",
   98     "struct proc *", "int");
   99 SDT_PROBE_DEFINE2(proc, kernel, , signal__clear, "int",
  100     "ksiginfo_t *");
  101 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
  102     "struct thread *", "struct proc *", "int");
  103 
  104 static int      coredump(struct thread *);
  105 static int      killpg1(struct thread *td, int sig, int pgid, int all,
  106                     ksiginfo_t *ksi);
  107 static int      issignal(struct thread *td);
  108 static int      sigprop(int sig);
  109 static void     tdsigwakeup(struct thread *, int, sig_t, int);
  110 static void     sig_suspend_threads(struct thread *, struct proc *, int);
  111 static int      filt_sigattach(struct knote *kn);
  112 static void     filt_sigdetach(struct knote *kn);
  113 static int      filt_signal(struct knote *kn, long hint);
  114 static struct thread *sigtd(struct proc *p, int sig, int prop);
  115 static void     sigqueue_start(void);
  116 
  117 static uma_zone_t       ksiginfo_zone = NULL;
  118 struct filterops sig_filtops = {
  119         .f_isfd = 0,
  120         .f_attach = filt_sigattach,
  121         .f_detach = filt_sigdetach,
  122         .f_event = filt_signal,
  123 };
  124 
  125 static int      kern_logsigexit = 1;
  126 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
  127     &kern_logsigexit, 0,
  128     "Log processes quitting on abnormal signals to syslog(3)");
  129 
  130 static int      kern_forcesigexit = 1;
  131 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
  132     &kern_forcesigexit, 0, "Force trap signal to be handled");
  133 
  134 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
  135     "POSIX real time signal");
  136 
  137 static int      max_pending_per_proc = 128;
  138 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
  139     &max_pending_per_proc, 0, "Max pending signals per proc");
  140 
  141 static int      preallocate_siginfo = 1024;
  142 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
  143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
  144     &preallocate_siginfo, 0, "Preallocated signal memory size");
  145 
  146 static int      signal_overflow = 0;
  147 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
  148     &signal_overflow, 0, "Number of signals overflew");
  149 
  150 static int      signal_alloc_fail = 0;
  151 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
  152     &signal_alloc_fail, 0, "signals failed to be allocated");
  153 
  154 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
  155 
  156 /*
  157  * Policy -- Can ucred cr1 send SIGIO to process cr2?
  158  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
  159  * in the right situations.
  160  */
  161 #define CANSIGIO(cr1, cr2) \
  162         ((cr1)->cr_uid == 0 || \
  163             (cr1)->cr_ruid == (cr2)->cr_ruid || \
  164             (cr1)->cr_uid == (cr2)->cr_ruid || \
  165             (cr1)->cr_ruid == (cr2)->cr_uid || \
  166             (cr1)->cr_uid == (cr2)->cr_uid)
  167 
  168 static int      sugid_coredump;
  169 TUNABLE_INT("kern.sugid_coredump", &sugid_coredump);
  170 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
  171     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
  172 
  173 static int      capmode_coredump;
  174 TUNABLE_INT("kern.capmode_coredump", &capmode_coredump);
  175 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RW,
  176     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
  177 
  178 static int      do_coredump = 1;
  179 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
  180         &do_coredump, 0, "Enable/Disable coredumps");
  181 
  182 static int      set_core_nodump_flag = 0;
  183 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
  184         0, "Enable setting the NODUMP flag on coredump files");
  185 
  186 /*
  187  * Signal properties and actions.
  188  * The array below categorizes the signals and their default actions
  189  * according to the following properties:
  190  */
  191 #define SA_KILL         0x01            /* terminates process by default */
  192 #define SA_CORE         0x02            /* ditto and coredumps */
  193 #define SA_STOP         0x04            /* suspend process */
  194 #define SA_TTYSTOP      0x08            /* ditto, from tty */
  195 #define SA_IGNORE       0x10            /* ignore by default */
  196 #define SA_CONT         0x20            /* continue if suspended */
  197 #define SA_CANTMASK     0x40            /* non-maskable, catchable */
  198 
  199 static int sigproptbl[NSIG] = {
  200         SA_KILL,                        /* SIGHUP */
  201         SA_KILL,                        /* SIGINT */
  202         SA_KILL|SA_CORE,                /* SIGQUIT */
  203         SA_KILL|SA_CORE,                /* SIGILL */
  204         SA_KILL|SA_CORE,                /* SIGTRAP */
  205         SA_KILL|SA_CORE,                /* SIGABRT */
  206         SA_KILL|SA_CORE,                /* SIGEMT */
  207         SA_KILL|SA_CORE,                /* SIGFPE */
  208         SA_KILL,                        /* SIGKILL */
  209         SA_KILL|SA_CORE,                /* SIGBUS */
  210         SA_KILL|SA_CORE,                /* SIGSEGV */
  211         SA_KILL|SA_CORE,                /* SIGSYS */
  212         SA_KILL,                        /* SIGPIPE */
  213         SA_KILL,                        /* SIGALRM */
  214         SA_KILL,                        /* SIGTERM */
  215         SA_IGNORE,                      /* SIGURG */
  216         SA_STOP,                        /* SIGSTOP */
  217         SA_STOP|SA_TTYSTOP,             /* SIGTSTP */
  218         SA_IGNORE|SA_CONT,              /* SIGCONT */
  219         SA_IGNORE,                      /* SIGCHLD */
  220         SA_STOP|SA_TTYSTOP,             /* SIGTTIN */
  221         SA_STOP|SA_TTYSTOP,             /* SIGTTOU */
  222         SA_IGNORE,                      /* SIGIO */
  223         SA_KILL,                        /* SIGXCPU */
  224         SA_KILL,                        /* SIGXFSZ */
  225         SA_KILL,                        /* SIGVTALRM */
  226         SA_KILL,                        /* SIGPROF */
  227         SA_IGNORE,                      /* SIGWINCH  */
  228         SA_IGNORE,                      /* SIGINFO */
  229         SA_KILL,                        /* SIGUSR1 */
  230         SA_KILL,                        /* SIGUSR2 */
  231 };
  232 
  233 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
  234 
  235 static void
  236 sigqueue_start(void)
  237 {
  238         ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
  239                 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  240         uma_prealloc(ksiginfo_zone, preallocate_siginfo);
  241         p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
  242         p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
  243         p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
  244 }
  245 
  246 ksiginfo_t *
  247 ksiginfo_alloc(int wait)
  248 {
  249         int flags;
  250 
  251         flags = M_ZERO;
  252         if (! wait)
  253                 flags |= M_NOWAIT;
  254         if (ksiginfo_zone != NULL)
  255                 return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
  256         return (NULL);
  257 }
  258 
  259 void
  260 ksiginfo_free(ksiginfo_t *ksi)
  261 {
  262         uma_zfree(ksiginfo_zone, ksi);
  263 }
  264 
  265 static __inline int
  266 ksiginfo_tryfree(ksiginfo_t *ksi)
  267 {
  268         if (!(ksi->ksi_flags & KSI_EXT)) {
  269                 uma_zfree(ksiginfo_zone, ksi);
  270                 return (1);
  271         }
  272         return (0);
  273 }
  274 
  275 void
  276 sigqueue_init(sigqueue_t *list, struct proc *p)
  277 {
  278         SIGEMPTYSET(list->sq_signals);
  279         SIGEMPTYSET(list->sq_kill);
  280         TAILQ_INIT(&list->sq_list);
  281         list->sq_proc = p;
  282         list->sq_flags = SQ_INIT;
  283 }
  284 
  285 /*
  286  * Get a signal's ksiginfo.
  287  * Return:
  288  *      0       -       signal not found
  289  *      others  -       signal number
  290  */
  291 static int
  292 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
  293 {
  294         struct proc *p = sq->sq_proc;
  295         struct ksiginfo *ksi, *next;
  296         int count = 0;
  297 
  298         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  299 
  300         if (!SIGISMEMBER(sq->sq_signals, signo))
  301                 return (0);
  302 
  303         if (SIGISMEMBER(sq->sq_kill, signo)) {
  304                 count++;
  305                 SIGDELSET(sq->sq_kill, signo);
  306         }
  307 
  308         TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
  309                 if (ksi->ksi_signo == signo) {
  310                         if (count == 0) {
  311                                 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  312                                 ksi->ksi_sigq = NULL;
  313                                 ksiginfo_copy(ksi, si);
  314                                 if (ksiginfo_tryfree(ksi) && p != NULL)
  315                                         p->p_pendingcnt--;
  316                         }
  317                         if (++count > 1)
  318                                 break;
  319                 }
  320         }
  321 
  322         if (count <= 1)
  323                 SIGDELSET(sq->sq_signals, signo);
  324         si->ksi_signo = signo;
  325         return (signo);
  326 }
  327 
  328 void
  329 sigqueue_take(ksiginfo_t *ksi)
  330 {
  331         struct ksiginfo *kp;
  332         struct proc     *p;
  333         sigqueue_t      *sq;
  334 
  335         if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
  336                 return;
  337 
  338         p = sq->sq_proc;
  339         TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  340         ksi->ksi_sigq = NULL;
  341         if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
  342                 p->p_pendingcnt--;
  343 
  344         for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
  345              kp = TAILQ_NEXT(kp, ksi_link)) {
  346                 if (kp->ksi_signo == ksi->ksi_signo)
  347                         break;
  348         }
  349         if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
  350                 SIGDELSET(sq->sq_signals, ksi->ksi_signo);
  351 }
  352 
  353 static int
  354 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
  355 {
  356         struct proc *p = sq->sq_proc;
  357         struct ksiginfo *ksi;
  358         int ret = 0;
  359 
  360         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  361 
  362         if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
  363                 SIGADDSET(sq->sq_kill, signo);
  364                 goto out_set_bit;
  365         }
  366 
  367         /* directly insert the ksi, don't copy it */
  368         if (si->ksi_flags & KSI_INS) {
  369                 if (si->ksi_flags & KSI_HEAD)
  370                         TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
  371                 else
  372                         TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
  373                 si->ksi_sigq = sq;
  374                 goto out_set_bit;
  375         }
  376 
  377         if (__predict_false(ksiginfo_zone == NULL)) {
  378                 SIGADDSET(sq->sq_kill, signo);
  379                 goto out_set_bit;
  380         }
  381 
  382         if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
  383                 signal_overflow++;
  384                 ret = EAGAIN;
  385         } else if ((ksi = ksiginfo_alloc(0)) == NULL) {
  386                 signal_alloc_fail++;
  387                 ret = EAGAIN;
  388         } else {
  389                 if (p != NULL)
  390                         p->p_pendingcnt++;
  391                 ksiginfo_copy(si, ksi);
  392                 ksi->ksi_signo = signo;
  393                 if (si->ksi_flags & KSI_HEAD)
  394                         TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
  395                 else
  396                         TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
  397                 ksi->ksi_sigq = sq;
  398         }
  399 
  400         if ((si->ksi_flags & KSI_TRAP) != 0 ||
  401             (si->ksi_flags & KSI_SIGQ) == 0) {
  402                 if (ret != 0)
  403                         SIGADDSET(sq->sq_kill, signo);
  404                 ret = 0;
  405                 goto out_set_bit;
  406         }
  407 
  408         if (ret != 0)
  409                 return (ret);
  410 
  411 out_set_bit:
  412         SIGADDSET(sq->sq_signals, signo);
  413         return (ret);
  414 }
  415 
  416 void
  417 sigqueue_flush(sigqueue_t *sq)
  418 {
  419         struct proc *p = sq->sq_proc;
  420         ksiginfo_t *ksi;
  421 
  422         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  423 
  424         if (p != NULL)
  425                 PROC_LOCK_ASSERT(p, MA_OWNED);
  426 
  427         while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
  428                 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  429                 ksi->ksi_sigq = NULL;
  430                 if (ksiginfo_tryfree(ksi) && p != NULL)
  431                         p->p_pendingcnt--;
  432         }
  433 
  434         SIGEMPTYSET(sq->sq_signals);
  435         SIGEMPTYSET(sq->sq_kill);
  436 }
  437 
  438 static void
  439 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
  440 {
  441         sigset_t tmp;
  442         struct proc *p1, *p2;
  443         ksiginfo_t *ksi, *next;
  444 
  445         KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
  446         KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
  447         p1 = src->sq_proc;
  448         p2 = dst->sq_proc;
  449         /* Move siginfo to target list */
  450         TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
  451                 if (SIGISMEMBER(*set, ksi->ksi_signo)) {
  452                         TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
  453                         if (p1 != NULL)
  454                                 p1->p_pendingcnt--;
  455                         TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
  456                         ksi->ksi_sigq = dst;
  457                         if (p2 != NULL)
  458                                 p2->p_pendingcnt++;
  459                 }
  460         }
  461 
  462         /* Move pending bits to target list */
  463         tmp = src->sq_kill;
  464         SIGSETAND(tmp, *set);
  465         SIGSETOR(dst->sq_kill, tmp);
  466         SIGSETNAND(src->sq_kill, tmp);
  467 
  468         tmp = src->sq_signals;
  469         SIGSETAND(tmp, *set);
  470         SIGSETOR(dst->sq_signals, tmp);
  471         SIGSETNAND(src->sq_signals, tmp);
  472 }
  473 
  474 #if 0
  475 static void
  476 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
  477 {
  478         sigset_t set;
  479 
  480         SIGEMPTYSET(set);
  481         SIGADDSET(set, signo);
  482         sigqueue_move_set(src, dst, &set);
  483 }
  484 #endif
  485 
  486 static void
  487 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
  488 {
  489         struct proc *p = sq->sq_proc;
  490         ksiginfo_t *ksi, *next;
  491 
  492         KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
  493 
  494         /* Remove siginfo queue */
  495         TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
  496                 if (SIGISMEMBER(*set, ksi->ksi_signo)) {
  497                         TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  498                         ksi->ksi_sigq = NULL;
  499                         if (ksiginfo_tryfree(ksi) && p != NULL)
  500                                 p->p_pendingcnt--;
  501                 }
  502         }
  503         SIGSETNAND(sq->sq_kill, *set);
  504         SIGSETNAND(sq->sq_signals, *set);
  505 }
  506 
  507 void
  508 sigqueue_delete(sigqueue_t *sq, int signo)
  509 {
  510         sigset_t set;
  511 
  512         SIGEMPTYSET(set);
  513         SIGADDSET(set, signo);
  514         sigqueue_delete_set(sq, &set);
  515 }
  516 
  517 /* Remove a set of signals for a process */
  518 static void
  519 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
  520 {
  521         sigqueue_t worklist;
  522         struct thread *td0;
  523 
  524         PROC_LOCK_ASSERT(p, MA_OWNED);
  525 
  526         sigqueue_init(&worklist, NULL);
  527         sigqueue_move_set(&p->p_sigqueue, &worklist, set);
  528 
  529         FOREACH_THREAD_IN_PROC(p, td0)
  530                 sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
  531 
  532         sigqueue_flush(&worklist);
  533 }
  534 
  535 void
  536 sigqueue_delete_proc(struct proc *p, int signo)
  537 {
  538         sigset_t set;
  539 
  540         SIGEMPTYSET(set);
  541         SIGADDSET(set, signo);
  542         sigqueue_delete_set_proc(p, &set);
  543 }
  544 
  545 static void
  546 sigqueue_delete_stopmask_proc(struct proc *p)
  547 {
  548         sigset_t set;
  549 
  550         SIGEMPTYSET(set);
  551         SIGADDSET(set, SIGSTOP);
  552         SIGADDSET(set, SIGTSTP);
  553         SIGADDSET(set, SIGTTIN);
  554         SIGADDSET(set, SIGTTOU);
  555         sigqueue_delete_set_proc(p, &set);
  556 }
  557 
  558 /*
  559  * Determine signal that should be delivered to thread td, the current
  560  * thread, 0 if none.  If there is a pending stop signal with default
  561  * action, the process stops in issignal().
  562  */
  563 int
  564 cursig(struct thread *td)
  565 {
  566         PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
  567         mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
  568         THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
  569         return (SIGPENDING(td) ? issignal(td) : 0);
  570 }
  571 
  572 /*
  573  * Arrange for ast() to handle unmasked pending signals on return to user
  574  * mode.  This must be called whenever a signal is added to td_sigqueue or
  575  * unmasked in td_sigmask.
  576  */
  577 void
  578 signotify(struct thread *td)
  579 {
  580         struct proc *p;
  581 
  582         p = td->td_proc;
  583 
  584         PROC_LOCK_ASSERT(p, MA_OWNED);
  585 
  586         if (SIGPENDING(td)) {
  587                 thread_lock(td);
  588                 td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
  589                 thread_unlock(td);
  590         }
  591 }
  592 
  593 int
  594 sigonstack(size_t sp)
  595 {
  596         struct thread *td = curthread;
  597 
  598         return ((td->td_pflags & TDP_ALTSTACK) ?
  599 #if defined(COMPAT_43)
  600             ((td->td_sigstk.ss_size == 0) ?
  601                 (td->td_sigstk.ss_flags & SS_ONSTACK) :
  602                 ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
  603 #else
  604             ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
  605 #endif
  606             : 0);
  607 }
  608 
  609 static __inline int
  610 sigprop(int sig)
  611 {
  612 
  613         if (sig > 0 && sig < NSIG)
  614                 return (sigproptbl[_SIG_IDX(sig)]);
  615         return (0);
  616 }
  617 
  618 int
  619 sig_ffs(sigset_t *set)
  620 {
  621         int i;
  622 
  623         for (i = 0; i < _SIG_WORDS; i++)
  624                 if (set->__bits[i])
  625                         return (ffs(set->__bits[i]) + (i * 32));
  626         return (0);
  627 }
  628 
  629 static bool
  630 sigact_flag_test(struct sigaction *act, int flag)
  631 {
  632 
  633         /*
  634          * SA_SIGINFO is reset when signal disposition is set to
  635          * ignore or default.  Other flags are kept according to user
  636          * settings.
  637          */
  638         return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
  639             ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
  640             (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
  641 }
  642 
  643 /*
  644  * kern_sigaction
  645  * sigaction
  646  * freebsd4_sigaction
  647  * osigaction
  648  */
  649 int
  650 kern_sigaction(td, sig, act, oact, flags)
  651         struct thread *td;
  652         register int sig;
  653         struct sigaction *act, *oact;
  654         int flags;
  655 {
  656         struct sigacts *ps;
  657         struct proc *p = td->td_proc;
  658 
  659         if (!_SIG_VALID(sig))
  660                 return (EINVAL);
  661         if (act != NULL && (act->sa_flags & ~(SA_ONSTACK | SA_RESTART |
  662             SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER | SA_NOCLDWAIT |
  663             SA_SIGINFO)) != 0)
  664                 return (EINVAL);
  665 
  666         PROC_LOCK(p);
  667         ps = p->p_sigacts;
  668         mtx_lock(&ps->ps_mtx);
  669         if (oact) {
  670                 oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
  671                 oact->sa_flags = 0;
  672                 if (SIGISMEMBER(ps->ps_sigonstack, sig))
  673                         oact->sa_flags |= SA_ONSTACK;
  674                 if (!SIGISMEMBER(ps->ps_sigintr, sig))
  675                         oact->sa_flags |= SA_RESTART;
  676                 if (SIGISMEMBER(ps->ps_sigreset, sig))
  677                         oact->sa_flags |= SA_RESETHAND;
  678                 if (SIGISMEMBER(ps->ps_signodefer, sig))
  679                         oact->sa_flags |= SA_NODEFER;
  680                 if (SIGISMEMBER(ps->ps_siginfo, sig)) {
  681                         oact->sa_flags |= SA_SIGINFO;
  682                         oact->sa_sigaction =
  683                             (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
  684                 } else
  685                         oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
  686                 if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
  687                         oact->sa_flags |= SA_NOCLDSTOP;
  688                 if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
  689                         oact->sa_flags |= SA_NOCLDWAIT;
  690         }
  691         if (act) {
  692                 if ((sig == SIGKILL || sig == SIGSTOP) &&
  693                     act->sa_handler != SIG_DFL) {
  694                         mtx_unlock(&ps->ps_mtx);
  695                         PROC_UNLOCK(p);
  696                         return (EINVAL);
  697                 }
  698 
  699                 /*
  700                  * Change setting atomically.
  701                  */
  702 
  703                 ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
  704                 SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
  705                 if (sigact_flag_test(act, SA_SIGINFO)) {
  706                         ps->ps_sigact[_SIG_IDX(sig)] =
  707                             (__sighandler_t *)act->sa_sigaction;
  708                         SIGADDSET(ps->ps_siginfo, sig);
  709                 } else {
  710                         ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
  711                         SIGDELSET(ps->ps_siginfo, sig);
  712                 }
  713                 if (!sigact_flag_test(act, SA_RESTART))
  714                         SIGADDSET(ps->ps_sigintr, sig);
  715                 else
  716                         SIGDELSET(ps->ps_sigintr, sig);
  717                 if (sigact_flag_test(act, SA_ONSTACK))
  718                         SIGADDSET(ps->ps_sigonstack, sig);
  719                 else
  720                         SIGDELSET(ps->ps_sigonstack, sig);
  721                 if (sigact_flag_test(act, SA_RESETHAND))
  722                         SIGADDSET(ps->ps_sigreset, sig);
  723                 else
  724                         SIGDELSET(ps->ps_sigreset, sig);
  725                 if (sigact_flag_test(act, SA_NODEFER))
  726                         SIGADDSET(ps->ps_signodefer, sig);
  727                 else
  728                         SIGDELSET(ps->ps_signodefer, sig);
  729                 if (sig == SIGCHLD) {
  730                         if (act->sa_flags & SA_NOCLDSTOP)
  731                                 ps->ps_flag |= PS_NOCLDSTOP;
  732                         else
  733                                 ps->ps_flag &= ~PS_NOCLDSTOP;
  734                         if (act->sa_flags & SA_NOCLDWAIT) {
  735                                 /*
  736                                  * Paranoia: since SA_NOCLDWAIT is implemented
  737                                  * by reparenting the dying child to PID 1 (and
  738                                  * trust it to reap the zombie), PID 1 itself
  739                                  * is forbidden to set SA_NOCLDWAIT.
  740                                  */
  741                                 if (p->p_pid == 1)
  742                                         ps->ps_flag &= ~PS_NOCLDWAIT;
  743                                 else
  744                                         ps->ps_flag |= PS_NOCLDWAIT;
  745                         } else
  746                                 ps->ps_flag &= ~PS_NOCLDWAIT;
  747                         if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
  748                                 ps->ps_flag |= PS_CLDSIGIGN;
  749                         else
  750                                 ps->ps_flag &= ~PS_CLDSIGIGN;
  751                 }
  752                 /*
  753                  * Set bit in ps_sigignore for signals that are set to SIG_IGN,
  754                  * and for signals set to SIG_DFL where the default is to
  755                  * ignore. However, don't put SIGCONT in ps_sigignore, as we
  756                  * have to restart the process.
  757                  */
  758                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  759                     (sigprop(sig) & SA_IGNORE &&
  760                      ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
  761                         /* never to be seen again */
  762                         sigqueue_delete_proc(p, sig);
  763                         if (sig != SIGCONT)
  764                                 /* easier in psignal */
  765                                 SIGADDSET(ps->ps_sigignore, sig);
  766                         SIGDELSET(ps->ps_sigcatch, sig);
  767                 } else {
  768                         SIGDELSET(ps->ps_sigignore, sig);
  769                         if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
  770                                 SIGDELSET(ps->ps_sigcatch, sig);
  771                         else
  772                                 SIGADDSET(ps->ps_sigcatch, sig);
  773                 }
  774 #ifdef COMPAT_FREEBSD4
  775                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  776                     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
  777                     (flags & KSA_FREEBSD4) == 0)
  778                         SIGDELSET(ps->ps_freebsd4, sig);
  779                 else
  780                         SIGADDSET(ps->ps_freebsd4, sig);
  781 #endif
  782 #ifdef COMPAT_43
  783                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  784                     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
  785                     (flags & KSA_OSIGSET) == 0)
  786                         SIGDELSET(ps->ps_osigset, sig);
  787                 else
  788                         SIGADDSET(ps->ps_osigset, sig);
  789 #endif
  790         }
  791         mtx_unlock(&ps->ps_mtx);
  792         PROC_UNLOCK(p);
  793         return (0);
  794 }
  795 
  796 #ifndef _SYS_SYSPROTO_H_
  797 struct sigaction_args {
  798         int     sig;
  799         struct  sigaction *act;
  800         struct  sigaction *oact;
  801 };
  802 #endif
  803 int
  804 sys_sigaction(td, uap)
  805         struct thread *td;
  806         register struct sigaction_args *uap;
  807 {
  808         struct sigaction act, oact;
  809         register struct sigaction *actp, *oactp;
  810         int error;
  811 
  812         actp = (uap->act != NULL) ? &act : NULL;
  813         oactp = (uap->oact != NULL) ? &oact : NULL;
  814         if (actp) {
  815                 error = copyin(uap->act, actp, sizeof(act));
  816                 if (error)
  817                         return (error);
  818         }
  819         error = kern_sigaction(td, uap->sig, actp, oactp, 0);
  820         if (oactp && !error)
  821                 error = copyout(oactp, uap->oact, sizeof(oact));
  822         return (error);
  823 }
  824 
  825 #ifdef COMPAT_FREEBSD4
  826 #ifndef _SYS_SYSPROTO_H_
  827 struct freebsd4_sigaction_args {
  828         int     sig;
  829         struct  sigaction *act;
  830         struct  sigaction *oact;
  831 };
  832 #endif
  833 int
  834 freebsd4_sigaction(td, uap)
  835         struct thread *td;
  836         register struct freebsd4_sigaction_args *uap;
  837 {
  838         struct sigaction act, oact;
  839         register struct sigaction *actp, *oactp;
  840         int error;
  841 
  842 
  843         actp = (uap->act != NULL) ? &act : NULL;
  844         oactp = (uap->oact != NULL) ? &oact : NULL;
  845         if (actp) {
  846                 error = copyin(uap->act, actp, sizeof(act));
  847                 if (error)
  848                         return (error);
  849         }
  850         error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
  851         if (oactp && !error)
  852                 error = copyout(oactp, uap->oact, sizeof(oact));
  853         return (error);
  854 }
  855 #endif  /* COMAPT_FREEBSD4 */
  856 
  857 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
  858 #ifndef _SYS_SYSPROTO_H_
  859 struct osigaction_args {
  860         int     signum;
  861         struct  osigaction *nsa;
  862         struct  osigaction *osa;
  863 };
  864 #endif
  865 int
  866 osigaction(td, uap)
  867         struct thread *td;
  868         register struct osigaction_args *uap;
  869 {
  870         struct osigaction sa;
  871         struct sigaction nsa, osa;
  872         register struct sigaction *nsap, *osap;
  873         int error;
  874 
  875         if (uap->signum <= 0 || uap->signum >= ONSIG)
  876                 return (EINVAL);
  877 
  878         nsap = (uap->nsa != NULL) ? &nsa : NULL;
  879         osap = (uap->osa != NULL) ? &osa : NULL;
  880 
  881         if (nsap) {
  882                 error = copyin(uap->nsa, &sa, sizeof(sa));
  883                 if (error)
  884                         return (error);
  885                 nsap->sa_handler = sa.sa_handler;
  886                 nsap->sa_flags = sa.sa_flags;
  887                 OSIG2SIG(sa.sa_mask, nsap->sa_mask);
  888         }
  889         error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
  890         if (osap && !error) {
  891                 sa.sa_handler = osap->sa_handler;
  892                 sa.sa_flags = osap->sa_flags;
  893                 SIG2OSIG(osap->sa_mask, sa.sa_mask);
  894                 error = copyout(&sa, uap->osa, sizeof(sa));
  895         }
  896         return (error);
  897 }
  898 
  899 #if !defined(__i386__)
  900 /* Avoid replicating the same stub everywhere */
  901 int
  902 osigreturn(td, uap)
  903         struct thread *td;
  904         struct osigreturn_args *uap;
  905 {
  906 
  907         return (nosys(td, (struct nosys_args *)uap));
  908 }
  909 #endif
  910 #endif /* COMPAT_43 */
  911 
  912 /*
  913  * Initialize signal state for process 0;
  914  * set to ignore signals that are ignored by default.
  915  */
  916 void
  917 siginit(p)
  918         struct proc *p;
  919 {
  920         register int i;
  921         struct sigacts *ps;
  922 
  923         PROC_LOCK(p);
  924         ps = p->p_sigacts;
  925         mtx_lock(&ps->ps_mtx);
  926         for (i = 1; i <= NSIG; i++) {
  927                 if (sigprop(i) & SA_IGNORE && i != SIGCONT) {
  928                         SIGADDSET(ps->ps_sigignore, i);
  929                 }
  930         }
  931         mtx_unlock(&ps->ps_mtx);
  932         PROC_UNLOCK(p);
  933 }
  934 
  935 /*
  936  * Reset specified signal to the default disposition.
  937  */
  938 static void
  939 sigdflt(struct sigacts *ps, int sig)
  940 {
  941 
  942         mtx_assert(&ps->ps_mtx, MA_OWNED);
  943         SIGDELSET(ps->ps_sigcatch, sig);
  944         if ((sigprop(sig) & SA_IGNORE) != 0 && sig != SIGCONT)
  945                 SIGADDSET(ps->ps_sigignore, sig);
  946         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
  947         SIGDELSET(ps->ps_siginfo, sig);
  948 }
  949 
  950 /*
  951  * Reset signals for an exec of the specified process.
  952  */
  953 void
  954 execsigs(struct proc *p)
  955 {
  956         struct sigacts *ps;
  957         int sig;
  958         struct thread *td;
  959 
  960         /*
  961          * Reset caught signals.  Held signals remain held
  962          * through td_sigmask (unless they were caught,
  963          * and are now ignored by default).
  964          */
  965         PROC_LOCK_ASSERT(p, MA_OWNED);
  966         td = FIRST_THREAD_IN_PROC(p);
  967         ps = p->p_sigacts;
  968         mtx_lock(&ps->ps_mtx);
  969         while (SIGNOTEMPTY(ps->ps_sigcatch)) {
  970                 sig = sig_ffs(&ps->ps_sigcatch);
  971                 sigdflt(ps, sig);
  972                 if ((sigprop(sig) & SA_IGNORE) != 0)
  973                         sigqueue_delete_proc(p, sig);
  974         }
  975         /*
  976          * Reset stack state to the user stack.
  977          * Clear set of signals caught on the signal stack.
  978          */
  979         td->td_sigstk.ss_flags = SS_DISABLE;
  980         td->td_sigstk.ss_size = 0;
  981         td->td_sigstk.ss_sp = 0;
  982         td->td_pflags &= ~TDP_ALTSTACK;
  983         /*
  984          * Reset no zombies if child dies flag as Solaris does.
  985          */
  986         ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
  987         if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
  988                 ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
  989         mtx_unlock(&ps->ps_mtx);
  990 }
  991 
  992 /*
  993  * kern_sigprocmask()
  994  *
  995  *      Manipulate signal mask.
  996  */
  997 int
  998 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
  999     int flags)
 1000 {
 1001         sigset_t new_block, oset1;
 1002         struct proc *p;
 1003         int error;
 1004 
 1005         p = td->td_proc;
 1006         if (!(flags & SIGPROCMASK_PROC_LOCKED))
 1007                 PROC_LOCK(p);
 1008         if (oset != NULL)
 1009                 *oset = td->td_sigmask;
 1010 
 1011         error = 0;
 1012         if (set != NULL) {
 1013                 switch (how) {
 1014                 case SIG_BLOCK:
 1015                         SIG_CANTMASK(*set);
 1016                         oset1 = td->td_sigmask;
 1017                         SIGSETOR(td->td_sigmask, *set);
 1018                         new_block = td->td_sigmask;
 1019                         SIGSETNAND(new_block, oset1);
 1020                         break;
 1021                 case SIG_UNBLOCK:
 1022                         SIGSETNAND(td->td_sigmask, *set);
 1023                         signotify(td);
 1024                         goto out;
 1025                 case SIG_SETMASK:
 1026                         SIG_CANTMASK(*set);
 1027                         oset1 = td->td_sigmask;
 1028                         if (flags & SIGPROCMASK_OLD)
 1029                                 SIGSETLO(td->td_sigmask, *set);
 1030                         else
 1031                                 td->td_sigmask = *set;
 1032                         new_block = td->td_sigmask;
 1033                         SIGSETNAND(new_block, oset1);
 1034                         signotify(td);
 1035                         break;
 1036                 default:
 1037                         error = EINVAL;
 1038                         goto out;
 1039                 }
 1040 
 1041                 /*
 1042                  * The new_block set contains signals that were not previously
 1043                  * blocked, but are blocked now.
 1044                  *
 1045                  * In case we block any signal that was not previously blocked
 1046                  * for td, and process has the signal pending, try to schedule
 1047                  * signal delivery to some thread that does not block the
 1048                  * signal, possibly waking it up.
 1049                  */
 1050                 if (p->p_numthreads != 1)
 1051                         reschedule_signals(p, new_block, flags);
 1052         }
 1053 
 1054 out:
 1055         if (!(flags & SIGPROCMASK_PROC_LOCKED))
 1056                 PROC_UNLOCK(p);
 1057         return (error);
 1058 }
 1059 
 1060 #ifndef _SYS_SYSPROTO_H_
 1061 struct sigprocmask_args {
 1062         int     how;
 1063         const sigset_t *set;
 1064         sigset_t *oset;
 1065 };
 1066 #endif
 1067 int
 1068 sys_sigprocmask(td, uap)
 1069         register struct thread *td;
 1070         struct sigprocmask_args *uap;
 1071 {
 1072         sigset_t set, oset;
 1073         sigset_t *setp, *osetp;
 1074         int error;
 1075 
 1076         setp = (uap->set != NULL) ? &set : NULL;
 1077         osetp = (uap->oset != NULL) ? &oset : NULL;
 1078         if (setp) {
 1079                 error = copyin(uap->set, setp, sizeof(set));
 1080                 if (error)
 1081                         return (error);
 1082         }
 1083         error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
 1084         if (osetp && !error) {
 1085                 error = copyout(osetp, uap->oset, sizeof(oset));
 1086         }
 1087         return (error);
 1088 }
 1089 
 1090 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1091 #ifndef _SYS_SYSPROTO_H_
 1092 struct osigprocmask_args {
 1093         int     how;
 1094         osigset_t mask;
 1095 };
 1096 #endif
 1097 int
 1098 osigprocmask(td, uap)
 1099         register struct thread *td;
 1100         struct osigprocmask_args *uap;
 1101 {
 1102         sigset_t set, oset;
 1103         int error;
 1104 
 1105         OSIG2SIG(uap->mask, set);
 1106         error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
 1107         SIG2OSIG(oset, td->td_retval[0]);
 1108         return (error);
 1109 }
 1110 #endif /* COMPAT_43 */
 1111 
 1112 int
 1113 sys_sigwait(struct thread *td, struct sigwait_args *uap)
 1114 {
 1115         ksiginfo_t ksi;
 1116         sigset_t set;
 1117         int error;
 1118 
 1119         error = copyin(uap->set, &set, sizeof(set));
 1120         if (error) {
 1121                 td->td_retval[0] = error;
 1122                 return (0);
 1123         }
 1124 
 1125         error = kern_sigtimedwait(td, set, &ksi, NULL);
 1126         if (error) {
 1127                 if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
 1128                         error = ERESTART;
 1129                 if (error == ERESTART)
 1130                         return (error);
 1131                 td->td_retval[0] = error;
 1132                 return (0);
 1133         }
 1134 
 1135         error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
 1136         td->td_retval[0] = error;
 1137         return (0);
 1138 }
 1139 
 1140 int
 1141 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
 1142 {
 1143         struct timespec ts;
 1144         struct timespec *timeout;
 1145         sigset_t set;
 1146         ksiginfo_t ksi;
 1147         int error;
 1148 
 1149         if (uap->timeout) {
 1150                 error = copyin(uap->timeout, &ts, sizeof(ts));
 1151                 if (error)
 1152                         return (error);
 1153 
 1154                 timeout = &ts;
 1155         } else
 1156                 timeout = NULL;
 1157 
 1158         error = copyin(uap->set, &set, sizeof(set));
 1159         if (error)
 1160                 return (error);
 1161 
 1162         error = kern_sigtimedwait(td, set, &ksi, timeout);
 1163         if (error)
 1164                 return (error);
 1165 
 1166         if (uap->info)
 1167                 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
 1168 
 1169         if (error == 0)
 1170                 td->td_retval[0] = ksi.ksi_signo;
 1171         return (error);
 1172 }
 1173 
 1174 int
 1175 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
 1176 {
 1177         ksiginfo_t ksi;
 1178         sigset_t set;
 1179         int error;
 1180 
 1181         error = copyin(uap->set, &set, sizeof(set));
 1182         if (error)
 1183                 return (error);
 1184 
 1185         error = kern_sigtimedwait(td, set, &ksi, NULL);
 1186         if (error)
 1187                 return (error);
 1188 
 1189         if (uap->info)
 1190                 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
 1191 
 1192         if (error == 0)
 1193                 td->td_retval[0] = ksi.ksi_signo;
 1194         return (error);
 1195 }
 1196 
 1197 int
 1198 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
 1199         struct timespec *timeout)
 1200 {
 1201         struct sigacts *ps;
 1202         sigset_t saved_mask, new_block;
 1203         struct proc *p;
 1204         int error, sig, timo, timevalid = 0;
 1205         struct timespec rts, ets, ts;
 1206         struct timeval tv;
 1207 
 1208         p = td->td_proc;
 1209         error = 0;
 1210         ets.tv_sec = 0;
 1211         ets.tv_nsec = 0;
 1212 
 1213         if (timeout != NULL) {
 1214                 if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
 1215                         timevalid = 1;
 1216                         getnanouptime(&rts);
 1217                         ets = rts;
 1218                         timespecadd(&ets, timeout);
 1219                 }
 1220         }
 1221         ksiginfo_init(ksi);
 1222         /* Some signals can not be waited for. */
 1223         SIG_CANTMASK(waitset);
 1224         ps = p->p_sigacts;
 1225         PROC_LOCK(p);
 1226         saved_mask = td->td_sigmask;
 1227         SIGSETNAND(td->td_sigmask, waitset);
 1228         for (;;) {
 1229                 mtx_lock(&ps->ps_mtx);
 1230                 sig = cursig(td);
 1231                 mtx_unlock(&ps->ps_mtx);
 1232                 if (sig != 0 && SIGISMEMBER(waitset, sig)) {
 1233                         if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
 1234                             sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
 1235                                 error = 0;
 1236                                 break;
 1237                         }
 1238                 }
 1239 
 1240                 if (error != 0)
 1241                         break;
 1242 
 1243                 /*
 1244                  * POSIX says this must be checked after looking for pending
 1245                  * signals.
 1246                  */
 1247                 if (timeout != NULL) {
 1248                         if (!timevalid) {
 1249                                 error = EINVAL;
 1250                                 break;
 1251                         }
 1252                         getnanouptime(&rts);
 1253                         if (timespeccmp(&rts, &ets, >=)) {
 1254                                 error = EAGAIN;
 1255                                 break;
 1256                         }
 1257                         ts = ets;
 1258                         timespecsub(&ts, &rts);
 1259                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1260                         timo = tvtohz(&tv);
 1261                 } else {
 1262                         timo = 0;
 1263                 }
 1264 
 1265                 error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
 1266 
 1267                 if (timeout != NULL) {
 1268                         if (error == ERESTART) {
 1269                                 /* Timeout can not be restarted. */
 1270                                 error = EINTR;
 1271                         } else if (error == EAGAIN) {
 1272                                 /* We will calculate timeout by ourself. */
 1273                                 error = 0;
 1274                         }
 1275                 }
 1276         }
 1277 
 1278         new_block = saved_mask;
 1279         SIGSETNAND(new_block, td->td_sigmask);
 1280         td->td_sigmask = saved_mask;
 1281         /*
 1282          * Fewer signals can be delivered to us, reschedule signal
 1283          * notification.
 1284          */
 1285         if (p->p_numthreads != 1)
 1286                 reschedule_signals(p, new_block, 0);
 1287 
 1288         if (error == 0) {
 1289                 SDT_PROBE(proc, kernel, , signal__clear, sig, ksi, 0, 0, 0);
 1290 
 1291                 if (ksi->ksi_code == SI_TIMER)
 1292                         itimer_accept(p, ksi->ksi_timerid, ksi);
 1293 
 1294 #ifdef KTRACE
 1295                 if (KTRPOINT(td, KTR_PSIG)) {
 1296                         sig_t action;
 1297 
 1298                         mtx_lock(&ps->ps_mtx);
 1299                         action = ps->ps_sigact[_SIG_IDX(sig)];
 1300                         mtx_unlock(&ps->ps_mtx);
 1301                         ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
 1302                 }
 1303 #endif
 1304                 if (sig == SIGKILL)
 1305                         sigexit(td, sig);
 1306         }
 1307         PROC_UNLOCK(p);
 1308         return (error);
 1309 }
 1310 
 1311 #ifndef _SYS_SYSPROTO_H_
 1312 struct sigpending_args {
 1313         sigset_t        *set;
 1314 };
 1315 #endif
 1316 int
 1317 sys_sigpending(td, uap)
 1318         struct thread *td;
 1319         struct sigpending_args *uap;
 1320 {
 1321         struct proc *p = td->td_proc;
 1322         sigset_t pending;
 1323 
 1324         PROC_LOCK(p);
 1325         pending = p->p_sigqueue.sq_signals;
 1326         SIGSETOR(pending, td->td_sigqueue.sq_signals);
 1327         PROC_UNLOCK(p);
 1328         return (copyout(&pending, uap->set, sizeof(sigset_t)));
 1329 }
 1330 
 1331 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1332 #ifndef _SYS_SYSPROTO_H_
 1333 struct osigpending_args {
 1334         int     dummy;
 1335 };
 1336 #endif
 1337 int
 1338 osigpending(td, uap)
 1339         struct thread *td;
 1340         struct osigpending_args *uap;
 1341 {
 1342         struct proc *p = td->td_proc;
 1343         sigset_t pending;
 1344 
 1345         PROC_LOCK(p);
 1346         pending = p->p_sigqueue.sq_signals;
 1347         SIGSETOR(pending, td->td_sigqueue.sq_signals);
 1348         PROC_UNLOCK(p);
 1349         SIG2OSIG(pending, td->td_retval[0]);
 1350         return (0);
 1351 }
 1352 #endif /* COMPAT_43 */
 1353 
 1354 #if defined(COMPAT_43)
 1355 /*
 1356  * Generalized interface signal handler, 4.3-compatible.
 1357  */
 1358 #ifndef _SYS_SYSPROTO_H_
 1359 struct osigvec_args {
 1360         int     signum;
 1361         struct  sigvec *nsv;
 1362         struct  sigvec *osv;
 1363 };
 1364 #endif
 1365 /* ARGSUSED */
 1366 int
 1367 osigvec(td, uap)
 1368         struct thread *td;
 1369         register struct osigvec_args *uap;
 1370 {
 1371         struct sigvec vec;
 1372         struct sigaction nsa, osa;
 1373         register struct sigaction *nsap, *osap;
 1374         int error;
 1375 
 1376         if (uap->signum <= 0 || uap->signum >= ONSIG)
 1377                 return (EINVAL);
 1378         nsap = (uap->nsv != NULL) ? &nsa : NULL;
 1379         osap = (uap->osv != NULL) ? &osa : NULL;
 1380         if (nsap) {
 1381                 error = copyin(uap->nsv, &vec, sizeof(vec));
 1382                 if (error)
 1383                         return (error);
 1384                 nsap->sa_handler = vec.sv_handler;
 1385                 OSIG2SIG(vec.sv_mask, nsap->sa_mask);
 1386                 nsap->sa_flags = vec.sv_flags;
 1387                 nsap->sa_flags ^= SA_RESTART;   /* opposite of SV_INTERRUPT */
 1388         }
 1389         error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
 1390         if (osap && !error) {
 1391                 vec.sv_handler = osap->sa_handler;
 1392                 SIG2OSIG(osap->sa_mask, vec.sv_mask);
 1393                 vec.sv_flags = osap->sa_flags;
 1394                 vec.sv_flags &= ~SA_NOCLDWAIT;
 1395                 vec.sv_flags ^= SA_RESTART;
 1396                 error = copyout(&vec, uap->osv, sizeof(vec));
 1397         }
 1398         return (error);
 1399 }
 1400 
 1401 #ifndef _SYS_SYSPROTO_H_
 1402 struct osigblock_args {
 1403         int     mask;
 1404 };
 1405 #endif
 1406 int
 1407 osigblock(td, uap)
 1408         register struct thread *td;
 1409         struct osigblock_args *uap;
 1410 {
 1411         sigset_t set, oset;
 1412 
 1413         OSIG2SIG(uap->mask, set);
 1414         kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
 1415         SIG2OSIG(oset, td->td_retval[0]);
 1416         return (0);
 1417 }
 1418 
 1419 #ifndef _SYS_SYSPROTO_H_
 1420 struct osigsetmask_args {
 1421         int     mask;
 1422 };
 1423 #endif
 1424 int
 1425 osigsetmask(td, uap)
 1426         struct thread *td;
 1427         struct osigsetmask_args *uap;
 1428 {
 1429         sigset_t set, oset;
 1430 
 1431         OSIG2SIG(uap->mask, set);
 1432         kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
 1433         SIG2OSIG(oset, td->td_retval[0]);
 1434         return (0);
 1435 }
 1436 #endif /* COMPAT_43 */
 1437 
 1438 /*
 1439  * Suspend calling thread until signal, providing mask to be set in the
 1440  * meantime.
 1441  */
 1442 #ifndef _SYS_SYSPROTO_H_
 1443 struct sigsuspend_args {
 1444         const sigset_t *sigmask;
 1445 };
 1446 #endif
 1447 /* ARGSUSED */
 1448 int
 1449 sys_sigsuspend(td, uap)
 1450         struct thread *td;
 1451         struct sigsuspend_args *uap;
 1452 {
 1453         sigset_t mask;
 1454         int error;
 1455 
 1456         error = copyin(uap->sigmask, &mask, sizeof(mask));
 1457         if (error)
 1458                 return (error);
 1459         return (kern_sigsuspend(td, mask));
 1460 }
 1461 
 1462 int
 1463 kern_sigsuspend(struct thread *td, sigset_t mask)
 1464 {
 1465         struct proc *p = td->td_proc;
 1466         int has_sig, sig;
 1467 
 1468         /*
 1469          * When returning from sigsuspend, we want
 1470          * the old mask to be restored after the
 1471          * signal handler has finished.  Thus, we
 1472          * save it here and mark the sigacts structure
 1473          * to indicate this.
 1474          */
 1475         PROC_LOCK(p);
 1476         kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
 1477             SIGPROCMASK_PROC_LOCKED);
 1478         td->td_pflags |= TDP_OLDMASK;
 1479 
 1480         /*
 1481          * Process signals now. Otherwise, we can get spurious wakeup
 1482          * due to signal entered process queue, but delivered to other
 1483          * thread. But sigsuspend should return only on signal
 1484          * delivery.
 1485          */
 1486         (p->p_sysent->sv_set_syscall_retval)(td, EINTR);
 1487         for (has_sig = 0; !has_sig;) {
 1488                 while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
 1489                         0) == 0)
 1490                         /* void */;
 1491                 thread_suspend_check(0);
 1492                 mtx_lock(&p->p_sigacts->ps_mtx);
 1493                 while ((sig = cursig(td)) != 0)
 1494                         has_sig += postsig(sig);
 1495                 mtx_unlock(&p->p_sigacts->ps_mtx);
 1496         }
 1497         PROC_UNLOCK(p);
 1498         td->td_errno = EINTR;
 1499         td->td_pflags |= TDP_NERRNO;
 1500         return (EJUSTRETURN);
 1501 }
 1502 
 1503 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1504 /*
 1505  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
 1506  * convention: libc stub passes mask, not pointer, to save a copyin.
 1507  */
 1508 #ifndef _SYS_SYSPROTO_H_
 1509 struct osigsuspend_args {
 1510         osigset_t mask;
 1511 };
 1512 #endif
 1513 /* ARGSUSED */
 1514 int
 1515 osigsuspend(td, uap)
 1516         struct thread *td;
 1517         struct osigsuspend_args *uap;
 1518 {
 1519         sigset_t mask;
 1520 
 1521         OSIG2SIG(uap->mask, mask);
 1522         return (kern_sigsuspend(td, mask));
 1523 }
 1524 #endif /* COMPAT_43 */
 1525 
 1526 #if defined(COMPAT_43)
 1527 #ifndef _SYS_SYSPROTO_H_
 1528 struct osigstack_args {
 1529         struct  sigstack *nss;
 1530         struct  sigstack *oss;
 1531 };
 1532 #endif
 1533 /* ARGSUSED */
 1534 int
 1535 osigstack(td, uap)
 1536         struct thread *td;
 1537         register struct osigstack_args *uap;
 1538 {
 1539         struct sigstack nss, oss;
 1540         int error = 0;
 1541 
 1542         if (uap->nss != NULL) {
 1543                 error = copyin(uap->nss, &nss, sizeof(nss));
 1544                 if (error)
 1545                         return (error);
 1546         }
 1547         oss.ss_sp = td->td_sigstk.ss_sp;
 1548         oss.ss_onstack = sigonstack(cpu_getstack(td));
 1549         if (uap->nss != NULL) {
 1550                 td->td_sigstk.ss_sp = nss.ss_sp;
 1551                 td->td_sigstk.ss_size = 0;
 1552                 td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
 1553                 td->td_pflags |= TDP_ALTSTACK;
 1554         }
 1555         if (uap->oss != NULL)
 1556                 error = copyout(&oss, uap->oss, sizeof(oss));
 1557 
 1558         return (error);
 1559 }
 1560 #endif /* COMPAT_43 */
 1561 
 1562 #ifndef _SYS_SYSPROTO_H_
 1563 struct sigaltstack_args {
 1564         stack_t *ss;
 1565         stack_t *oss;
 1566 };
 1567 #endif
 1568 /* ARGSUSED */
 1569 int
 1570 sys_sigaltstack(td, uap)
 1571         struct thread *td;
 1572         register struct sigaltstack_args *uap;
 1573 {
 1574         stack_t ss, oss;
 1575         int error;
 1576 
 1577         if (uap->ss != NULL) {
 1578                 error = copyin(uap->ss, &ss, sizeof(ss));
 1579                 if (error)
 1580                         return (error);
 1581         }
 1582         error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
 1583             (uap->oss != NULL) ? &oss : NULL);
 1584         if (error)
 1585                 return (error);
 1586         if (uap->oss != NULL)
 1587                 error = copyout(&oss, uap->oss, sizeof(stack_t));
 1588         return (error);
 1589 }
 1590 
 1591 int
 1592 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
 1593 {
 1594         struct proc *p = td->td_proc;
 1595         int oonstack;
 1596 
 1597         oonstack = sigonstack(cpu_getstack(td));
 1598 
 1599         if (oss != NULL) {
 1600                 *oss = td->td_sigstk;
 1601                 oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
 1602                     ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
 1603         }
 1604 
 1605         if (ss != NULL) {
 1606                 if (oonstack)
 1607                         return (EPERM);
 1608                 if ((ss->ss_flags & ~SS_DISABLE) != 0)
 1609                         return (EINVAL);
 1610                 if (!(ss->ss_flags & SS_DISABLE)) {
 1611                         if (ss->ss_size < p->p_sysent->sv_minsigstksz)
 1612                                 return (ENOMEM);
 1613 
 1614                         td->td_sigstk = *ss;
 1615                         td->td_pflags |= TDP_ALTSTACK;
 1616                 } else {
 1617                         td->td_pflags &= ~TDP_ALTSTACK;
 1618                 }
 1619         }
 1620         return (0);
 1621 }
 1622 
 1623 /*
 1624  * Common code for kill process group/broadcast kill.
 1625  * cp is calling process.
 1626  */
 1627 static int
 1628 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
 1629 {
 1630         struct proc *p;
 1631         struct pgrp *pgrp;
 1632         int err;
 1633         int ret;
 1634 
 1635         ret = ESRCH;
 1636         if (all) {
 1637                 /*
 1638                  * broadcast
 1639                  */
 1640                 sx_slock(&allproc_lock);
 1641                 FOREACH_PROC_IN_SYSTEM(p) {
 1642                         PROC_LOCK(p);
 1643                         if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
 1644                             p == td->td_proc || p->p_state == PRS_NEW) {
 1645                                 PROC_UNLOCK(p);
 1646                                 continue;
 1647                         }
 1648                         err = p_cansignal(td, p, sig);
 1649                         if (err == 0) {
 1650                                 if (sig)
 1651                                         pksignal(p, sig, ksi);
 1652                                 ret = err;
 1653                         }
 1654                         else if (ret == ESRCH)
 1655                                 ret = err;
 1656                         PROC_UNLOCK(p);
 1657                 }
 1658                 sx_sunlock(&allproc_lock);
 1659         } else {
 1660                 sx_slock(&proctree_lock);
 1661                 if (pgid == 0) {
 1662                         /*
 1663                          * zero pgid means send to my process group.
 1664                          */
 1665                         pgrp = td->td_proc->p_pgrp;
 1666                         PGRP_LOCK(pgrp);
 1667                 } else {
 1668                         pgrp = pgfind(pgid);
 1669                         if (pgrp == NULL) {
 1670                                 sx_sunlock(&proctree_lock);
 1671                                 return (ESRCH);
 1672                         }
 1673                 }
 1674                 sx_sunlock(&proctree_lock);
 1675                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
 1676                         PROC_LOCK(p);
 1677                         if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
 1678                             p->p_state == PRS_NEW) {
 1679                                 PROC_UNLOCK(p);
 1680                                 continue;
 1681                         }
 1682                         err = p_cansignal(td, p, sig);
 1683                         if (err == 0) {
 1684                                 if (sig)
 1685                                         pksignal(p, sig, ksi);
 1686                                 ret = err;
 1687                         }
 1688                         else if (ret == ESRCH)
 1689                                 ret = err;
 1690                         PROC_UNLOCK(p);
 1691                 }
 1692                 PGRP_UNLOCK(pgrp);
 1693         }
 1694         return (ret);
 1695 }
 1696 
 1697 #ifndef _SYS_SYSPROTO_H_
 1698 struct kill_args {
 1699         int     pid;
 1700         int     signum;
 1701 };
 1702 #endif
 1703 /* ARGSUSED */
 1704 int
 1705 sys_kill(struct thread *td, struct kill_args *uap)
 1706 {
 1707         ksiginfo_t ksi;
 1708         struct proc *p;
 1709         int error;
 1710 
 1711         /*
 1712          * A process in capability mode can send signals only to himself.
 1713          * The main rationale behind this is that abort(3) is implemented as
 1714          * kill(getpid(), SIGABRT).
 1715          */
 1716         if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
 1717                 return (ECAPMODE);
 1718 
 1719         AUDIT_ARG_SIGNUM(uap->signum);
 1720         AUDIT_ARG_PID(uap->pid);
 1721         if ((u_int)uap->signum > _SIG_MAXSIG)
 1722                 return (EINVAL);
 1723 
 1724         ksiginfo_init(&ksi);
 1725         ksi.ksi_signo = uap->signum;
 1726         ksi.ksi_code = SI_USER;
 1727         ksi.ksi_pid = td->td_proc->p_pid;
 1728         ksi.ksi_uid = td->td_ucred->cr_ruid;
 1729 
 1730         if (uap->pid > 0) {
 1731                 /* kill single process */
 1732                 if ((p = pfind(uap->pid)) == NULL) {
 1733                         if ((p = zpfind(uap->pid)) == NULL)
 1734                                 return (ESRCH);
 1735                 }
 1736                 AUDIT_ARG_PROCESS(p);
 1737                 error = p_cansignal(td, p, uap->signum);
 1738                 if (error == 0 && uap->signum)
 1739                         pksignal(p, uap->signum, &ksi);
 1740                 PROC_UNLOCK(p);
 1741                 return (error);
 1742         }
 1743         switch (uap->pid) {
 1744         case -1:                /* broadcast signal */
 1745                 return (killpg1(td, uap->signum, 0, 1, &ksi));
 1746         case 0:                 /* signal own process group */
 1747                 return (killpg1(td, uap->signum, 0, 0, &ksi));
 1748         default:                /* negative explicit process group */
 1749                 return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
 1750         }
 1751         /* NOTREACHED */
 1752 }
 1753 
 1754 int
 1755 sys_pdkill(td, uap)
 1756         struct thread *td;
 1757         struct pdkill_args *uap;
 1758 {
 1759 #ifdef PROCDESC
 1760         struct proc *p;
 1761         cap_rights_t rights;
 1762         int error;
 1763 
 1764         AUDIT_ARG_SIGNUM(uap->signum);
 1765         AUDIT_ARG_FD(uap->fd);
 1766         if ((u_int)uap->signum > _SIG_MAXSIG)
 1767                 return (EINVAL);
 1768 
 1769         error = procdesc_find(td, uap->fd,
 1770             cap_rights_init(&rights, CAP_PDKILL), &p);
 1771         if (error)
 1772                 return (error);
 1773         AUDIT_ARG_PROCESS(p);
 1774         error = p_cansignal(td, p, uap->signum);
 1775         if (error == 0 && uap->signum)
 1776                 kern_psignal(p, uap->signum);
 1777         PROC_UNLOCK(p);
 1778         return (error);
 1779 #else
 1780         return (ENOSYS);
 1781 #endif
 1782 }
 1783 
 1784 #if defined(COMPAT_43)
 1785 #ifndef _SYS_SYSPROTO_H_
 1786 struct okillpg_args {
 1787         int     pgid;
 1788         int     signum;
 1789 };
 1790 #endif
 1791 /* ARGSUSED */
 1792 int
 1793 okillpg(struct thread *td, struct okillpg_args *uap)
 1794 {
 1795         ksiginfo_t ksi;
 1796 
 1797         AUDIT_ARG_SIGNUM(uap->signum);
 1798         AUDIT_ARG_PID(uap->pgid);
 1799         if ((u_int)uap->signum > _SIG_MAXSIG)
 1800                 return (EINVAL);
 1801 
 1802         ksiginfo_init(&ksi);
 1803         ksi.ksi_signo = uap->signum;
 1804         ksi.ksi_code = SI_USER;
 1805         ksi.ksi_pid = td->td_proc->p_pid;
 1806         ksi.ksi_uid = td->td_ucred->cr_ruid;
 1807         return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
 1808 }
 1809 #endif /* COMPAT_43 */
 1810 
 1811 #ifndef _SYS_SYSPROTO_H_
 1812 struct sigqueue_args {
 1813         pid_t pid;
 1814         int signum;
 1815         /* union sigval */ void *value;
 1816 };
 1817 #endif
 1818 int
 1819 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
 1820 {
 1821         ksiginfo_t ksi;
 1822         struct proc *p;
 1823         int error;
 1824 
 1825         if ((u_int)uap->signum > _SIG_MAXSIG)
 1826                 return (EINVAL);
 1827 
 1828         /*
 1829          * Specification says sigqueue can only send signal to
 1830          * single process.
 1831          */
 1832         if (uap->pid <= 0)
 1833                 return (EINVAL);
 1834 
 1835         if ((p = pfind(uap->pid)) == NULL) {
 1836                 if ((p = zpfind(uap->pid)) == NULL)
 1837                         return (ESRCH);
 1838         }
 1839         error = p_cansignal(td, p, uap->signum);
 1840         if (error == 0 && uap->signum != 0) {
 1841                 ksiginfo_init(&ksi);
 1842                 ksi.ksi_flags = KSI_SIGQ;
 1843                 ksi.ksi_signo = uap->signum;
 1844                 ksi.ksi_code = SI_QUEUE;
 1845                 ksi.ksi_pid = td->td_proc->p_pid;
 1846                 ksi.ksi_uid = td->td_ucred->cr_ruid;
 1847                 ksi.ksi_value.sival_ptr = uap->value;
 1848                 error = pksignal(p, ksi.ksi_signo, &ksi);
 1849         }
 1850         PROC_UNLOCK(p);
 1851         return (error);
 1852 }
 1853 
 1854 /*
 1855  * Send a signal to a process group.
 1856  */
 1857 void
 1858 gsignal(int pgid, int sig, ksiginfo_t *ksi)
 1859 {
 1860         struct pgrp *pgrp;
 1861 
 1862         if (pgid != 0) {
 1863                 sx_slock(&proctree_lock);
 1864                 pgrp = pgfind(pgid);
 1865                 sx_sunlock(&proctree_lock);
 1866                 if (pgrp != NULL) {
 1867                         pgsignal(pgrp, sig, 0, ksi);
 1868                         PGRP_UNLOCK(pgrp);
 1869                 }
 1870         }
 1871 }
 1872 
 1873 /*
 1874  * Send a signal to a process group.  If checktty is 1,
 1875  * limit to members which have a controlling terminal.
 1876  */
 1877 void
 1878 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
 1879 {
 1880         struct proc *p;
 1881 
 1882         if (pgrp) {
 1883                 PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
 1884                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
 1885                         PROC_LOCK(p);
 1886                         if (p->p_state == PRS_NORMAL &&
 1887                             (checkctty == 0 || p->p_flag & P_CONTROLT))
 1888                                 pksignal(p, sig, ksi);
 1889                         PROC_UNLOCK(p);
 1890                 }
 1891         }
 1892 }
 1893 
 1894 /*
 1895  * Send a signal caused by a trap to the current thread.  If it will be
 1896  * caught immediately, deliver it with correct code.  Otherwise, post it
 1897  * normally.
 1898  */
 1899 void
 1900 trapsignal(struct thread *td, ksiginfo_t *ksi)
 1901 {
 1902         struct sigacts *ps;
 1903         sigset_t mask;
 1904         struct proc *p;
 1905         int sig;
 1906         int code;
 1907 
 1908         p = td->td_proc;
 1909         sig = ksi->ksi_signo;
 1910         code = ksi->ksi_code;
 1911         KASSERT(_SIG_VALID(sig), ("invalid signal"));
 1912 
 1913         PROC_LOCK(p);
 1914         ps = p->p_sigacts;
 1915         mtx_lock(&ps->ps_mtx);
 1916         if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
 1917             !SIGISMEMBER(td->td_sigmask, sig)) {
 1918                 td->td_ru.ru_nsignals++;
 1919 #ifdef KTRACE
 1920                 if (KTRPOINT(curthread, KTR_PSIG))
 1921                         ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
 1922                             &td->td_sigmask, code);
 1923 #endif
 1924                 (*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
 1925                                 ksi, &td->td_sigmask);
 1926                 mask = ps->ps_catchmask[_SIG_IDX(sig)];
 1927                 if (!SIGISMEMBER(ps->ps_signodefer, sig))
 1928                         SIGADDSET(mask, sig);
 1929                 kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
 1930                     SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
 1931                 if (SIGISMEMBER(ps->ps_sigreset, sig))
 1932                         sigdflt(ps, sig);
 1933                 mtx_unlock(&ps->ps_mtx);
 1934         } else {
 1935                 /*
 1936                  * Avoid a possible infinite loop if the thread
 1937                  * masking the signal or process is ignoring the
 1938                  * signal.
 1939                  */
 1940                 if (kern_forcesigexit &&
 1941                     (SIGISMEMBER(td->td_sigmask, sig) ||
 1942                      ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
 1943                         SIGDELSET(td->td_sigmask, sig);
 1944                         SIGDELSET(ps->ps_sigcatch, sig);
 1945                         SIGDELSET(ps->ps_sigignore, sig);
 1946                         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
 1947                 }
 1948                 mtx_unlock(&ps->ps_mtx);
 1949                 p->p_code = code;       /* XXX for core dump/debugger */
 1950                 p->p_sig = sig;         /* XXX to verify code */
 1951                 tdsendsignal(p, td, sig, ksi);
 1952         }
 1953         PROC_UNLOCK(p);
 1954 }
 1955 
 1956 static struct thread *
 1957 sigtd(struct proc *p, int sig, int prop)
 1958 {
 1959         struct thread *td, *signal_td;
 1960 
 1961         PROC_LOCK_ASSERT(p, MA_OWNED);
 1962 
 1963         /*
 1964          * Check if current thread can handle the signal without
 1965          * switching context to another thread.
 1966          */
 1967         if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
 1968                 return (curthread);
 1969         signal_td = NULL;
 1970         FOREACH_THREAD_IN_PROC(p, td) {
 1971                 if (!SIGISMEMBER(td->td_sigmask, sig)) {
 1972                         signal_td = td;
 1973                         break;
 1974                 }
 1975         }
 1976         if (signal_td == NULL)
 1977                 signal_td = FIRST_THREAD_IN_PROC(p);
 1978         return (signal_td);
 1979 }
 1980 
 1981 /*
 1982  * Send the signal to the process.  If the signal has an action, the action
 1983  * is usually performed by the target process rather than the caller; we add
 1984  * the signal to the set of pending signals for the process.
 1985  *
 1986  * Exceptions:
 1987  *   o When a stop signal is sent to a sleeping process that takes the
 1988  *     default action, the process is stopped without awakening it.
 1989  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
 1990  *     regardless of the signal action (eg, blocked or ignored).
 1991  *
 1992  * Other ignored signals are discarded immediately.
 1993  *
 1994  * NB: This function may be entered from the debugger via the "kill" DDB
 1995  * command.  There is little that can be done to mitigate the possibly messy
 1996  * side effects of this unwise possibility.
 1997  */
 1998 void
 1999 kern_psignal(struct proc *p, int sig)
 2000 {
 2001         ksiginfo_t ksi;
 2002 
 2003         ksiginfo_init(&ksi);
 2004         ksi.ksi_signo = sig;
 2005         ksi.ksi_code = SI_KERNEL;
 2006         (void) tdsendsignal(p, NULL, sig, &ksi);
 2007 }
 2008 
 2009 int
 2010 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
 2011 {
 2012 
 2013         return (tdsendsignal(p, NULL, sig, ksi));
 2014 }
 2015 
 2016 /* Utility function for finding a thread to send signal event to. */
 2017 int
 2018 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
 2019 {
 2020         struct thread *td;
 2021 
 2022         if (sigev->sigev_notify == SIGEV_THREAD_ID) {
 2023                 td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
 2024                 if (td == NULL)
 2025                         return (ESRCH);
 2026                 *ttd = td;
 2027         } else {
 2028                 *ttd = NULL;
 2029                 PROC_LOCK(p);
 2030         }
 2031         return (0);
 2032 }
 2033 
 2034 void
 2035 tdsignal(struct thread *td, int sig)
 2036 {
 2037         ksiginfo_t ksi;
 2038 
 2039         ksiginfo_init(&ksi);
 2040         ksi.ksi_signo = sig;
 2041         ksi.ksi_code = SI_KERNEL;
 2042         (void) tdsendsignal(td->td_proc, td, sig, &ksi);
 2043 }
 2044 
 2045 void
 2046 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
 2047 {
 2048 
 2049         (void) tdsendsignal(td->td_proc, td, sig, ksi);
 2050 }
 2051 
 2052 int
 2053 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
 2054 {
 2055         sig_t action;
 2056         sigqueue_t *sigqueue;
 2057         int prop;
 2058         struct sigacts *ps;
 2059         int intrval;
 2060         int ret = 0;
 2061         int wakeup_swapper;
 2062 
 2063         MPASS(td == NULL || p == td->td_proc);
 2064         PROC_LOCK_ASSERT(p, MA_OWNED);
 2065 
 2066         if (!_SIG_VALID(sig))
 2067                 panic("%s(): invalid signal %d", __func__, sig);
 2068 
 2069         KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
 2070 
 2071         /*
 2072          * IEEE Std 1003.1-2001: return success when killing a zombie.
 2073          */
 2074         if (p->p_state == PRS_ZOMBIE) {
 2075                 if (ksi && (ksi->ksi_flags & KSI_INS))
 2076                         ksiginfo_tryfree(ksi);
 2077                 return (ret);
 2078         }
 2079 
 2080         ps = p->p_sigacts;
 2081         KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
 2082         prop = sigprop(sig);
 2083 
 2084         if (td == NULL) {
 2085                 td = sigtd(p, sig, prop);
 2086                 sigqueue = &p->p_sigqueue;
 2087         } else
 2088                 sigqueue = &td->td_sigqueue;
 2089 
 2090         SDT_PROBE(proc, kernel, , signal__send, td, p, sig, 0, 0 );
 2091 
 2092         /*
 2093          * If the signal is being ignored,
 2094          * then we forget about it immediately.
 2095          * (Note: we don't set SIGCONT in ps_sigignore,
 2096          * and if it is set to SIG_IGN,
 2097          * action will be SIG_DFL here.)
 2098          */
 2099         mtx_lock(&ps->ps_mtx);
 2100         if (SIGISMEMBER(ps->ps_sigignore, sig)) {
 2101                 SDT_PROBE(proc, kernel, , signal__discard, td, p, sig, 0, 0 );
 2102 
 2103                 mtx_unlock(&ps->ps_mtx);
 2104                 if (ksi && (ksi->ksi_flags & KSI_INS))
 2105                         ksiginfo_tryfree(ksi);
 2106                 return (ret);
 2107         }
 2108         if (SIGISMEMBER(td->td_sigmask, sig))
 2109                 action = SIG_HOLD;
 2110         else if (SIGISMEMBER(ps->ps_sigcatch, sig))
 2111                 action = SIG_CATCH;
 2112         else
 2113                 action = SIG_DFL;
 2114         if (SIGISMEMBER(ps->ps_sigintr, sig))
 2115                 intrval = EINTR;
 2116         else
 2117                 intrval = ERESTART;
 2118         mtx_unlock(&ps->ps_mtx);
 2119 
 2120         if (prop & SA_CONT)
 2121                 sigqueue_delete_stopmask_proc(p);
 2122         else if (prop & SA_STOP) {
 2123                 /*
 2124                  * If sending a tty stop signal to a member of an orphaned
 2125                  * process group, discard the signal here if the action
 2126                  * is default; don't stop the process below if sleeping,
 2127                  * and don't clear any pending SIGCONT.
 2128                  */
 2129                 if ((prop & SA_TTYSTOP) &&
 2130                     (p->p_pgrp->pg_jobc == 0) &&
 2131                     (action == SIG_DFL)) {
 2132                         if (ksi && (ksi->ksi_flags & KSI_INS))
 2133                                 ksiginfo_tryfree(ksi);
 2134                         return (ret);
 2135                 }
 2136                 sigqueue_delete_proc(p, SIGCONT);
 2137                 if (p->p_flag & P_CONTINUED) {
 2138                         p->p_flag &= ~P_CONTINUED;
 2139                         PROC_LOCK(p->p_pptr);
 2140                         sigqueue_take(p->p_ksi);
 2141                         PROC_UNLOCK(p->p_pptr);
 2142                 }
 2143         }
 2144 
 2145         ret = sigqueue_add(sigqueue, sig, ksi);
 2146         if (ret != 0)
 2147                 return (ret);
 2148         signotify(td);
 2149         /*
 2150          * Defer further processing for signals which are held,
 2151          * except that stopped processes must be continued by SIGCONT.
 2152          */
 2153         if (action == SIG_HOLD &&
 2154             !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
 2155                 return (ret);
 2156         /*
 2157          * SIGKILL: Remove procfs STOPEVENTs.
 2158          */
 2159         if (sig == SIGKILL) {
 2160                 /* from procfs_ioctl.c: PIOCBIC */
 2161                 p->p_stops = 0;
 2162                 /* from procfs_ioctl.c: PIOCCONT */
 2163                 p->p_step = 0;
 2164                 wakeup(&p->p_step);
 2165         }
 2166         /*
 2167          * Some signals have a process-wide effect and a per-thread
 2168          * component.  Most processing occurs when the process next
 2169          * tries to cross the user boundary, however there are some
 2170          * times when processing needs to be done immediately, such as
 2171          * waking up threads so that they can cross the user boundary.
 2172          * We try to do the per-process part here.
 2173          */
 2174         if (P_SHOULDSTOP(p)) {
 2175                 KASSERT(!(p->p_flag & P_WEXIT),
 2176                     ("signal to stopped but exiting process"));
 2177                 if (sig == SIGKILL) {
 2178                         /*
 2179                          * If traced process is already stopped,
 2180                          * then no further action is necessary.
 2181                          */
 2182                         if (p->p_flag & P_TRACED)
 2183                                 goto out;
 2184                         /*
 2185                          * SIGKILL sets process running.
 2186                          * It will die elsewhere.
 2187                          * All threads must be restarted.
 2188                          */
 2189                         p->p_flag &= ~P_STOPPED_SIG;
 2190                         goto runfast;
 2191                 }
 2192 
 2193                 if (prop & SA_CONT) {
 2194                         /*
 2195                          * If traced process is already stopped,
 2196                          * then no further action is necessary.
 2197                          */
 2198                         if (p->p_flag & P_TRACED)
 2199                                 goto out;
 2200                         /*
 2201                          * If SIGCONT is default (or ignored), we continue the
 2202                          * process but don't leave the signal in sigqueue as
 2203                          * it has no further action.  If SIGCONT is held, we
 2204                          * continue the process and leave the signal in
 2205                          * sigqueue.  If the process catches SIGCONT, let it
 2206                          * handle the signal itself.  If it isn't waiting on
 2207                          * an event, it goes back to run state.
 2208                          * Otherwise, process goes back to sleep state.
 2209                          */
 2210                         p->p_flag &= ~P_STOPPED_SIG;
 2211                         PROC_SLOCK(p);
 2212                         if (p->p_numthreads == p->p_suspcount) {
 2213                                 PROC_SUNLOCK(p);
 2214                                 p->p_flag |= P_CONTINUED;
 2215                                 p->p_xstat = SIGCONT;
 2216                                 PROC_LOCK(p->p_pptr);
 2217                                 childproc_continued(p);
 2218                                 PROC_UNLOCK(p->p_pptr);
 2219                                 PROC_SLOCK(p);
 2220                         }
 2221                         if (action == SIG_DFL) {
 2222                                 thread_unsuspend(p);
 2223                                 PROC_SUNLOCK(p);
 2224                                 sigqueue_delete(sigqueue, sig);
 2225                                 goto out;
 2226                         }
 2227                         if (action == SIG_CATCH) {
 2228                                 /*
 2229                                  * The process wants to catch it so it needs
 2230                                  * to run at least one thread, but which one?
 2231                                  */
 2232                                 PROC_SUNLOCK(p);
 2233                                 goto runfast;
 2234                         }
 2235                         /*
 2236                          * The signal is not ignored or caught.
 2237                          */
 2238                         thread_unsuspend(p);
 2239                         PROC_SUNLOCK(p);
 2240                         goto out;
 2241                 }
 2242 
 2243                 if (prop & SA_STOP) {
 2244                         /*
 2245                          * If traced process is already stopped,
 2246                          * then no further action is necessary.
 2247                          */
 2248                         if (p->p_flag & P_TRACED)
 2249                                 goto out;
 2250                         /*
 2251                          * Already stopped, don't need to stop again
 2252                          * (If we did the shell could get confused).
 2253                          * Just make sure the signal STOP bit set.
 2254                          */
 2255                         p->p_flag |= P_STOPPED_SIG;
 2256                         sigqueue_delete(sigqueue, sig);
 2257                         goto out;
 2258                 }
 2259 
 2260                 /*
 2261                  * All other kinds of signals:
 2262                  * If a thread is sleeping interruptibly, simulate a
 2263                  * wakeup so that when it is continued it will be made
 2264                  * runnable and can look at the signal.  However, don't make
 2265                  * the PROCESS runnable, leave it stopped.
 2266                  * It may run a bit until it hits a thread_suspend_check().
 2267                  */
 2268                 wakeup_swapper = 0;
 2269                 PROC_SLOCK(p);
 2270                 thread_lock(td);
 2271                 if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
 2272                         wakeup_swapper = sleepq_abort(td, intrval);
 2273                 thread_unlock(td);
 2274                 PROC_SUNLOCK(p);
 2275                 if (wakeup_swapper)
 2276                         kick_proc0();
 2277                 goto out;
 2278                 /*
 2279                  * Mutexes are short lived. Threads waiting on them will
 2280                  * hit thread_suspend_check() soon.
 2281                  */
 2282         } else if (p->p_state == PRS_NORMAL) {
 2283                 if (p->p_flag & P_TRACED || action == SIG_CATCH) {
 2284                         tdsigwakeup(td, sig, action, intrval);
 2285                         goto out;
 2286                 }
 2287 
 2288                 MPASS(action == SIG_DFL);
 2289 
 2290                 if (prop & SA_STOP) {
 2291                         if (p->p_flag & (P_PPWAIT|P_WEXIT))
 2292                                 goto out;
 2293                         p->p_flag |= P_STOPPED_SIG;
 2294                         p->p_xstat = sig;
 2295                         PROC_SLOCK(p);
 2296                         sig_suspend_threads(td, p, 1);
 2297                         if (p->p_numthreads == p->p_suspcount) {
 2298                                 /*
 2299                                  * only thread sending signal to another
 2300                                  * process can reach here, if thread is sending
 2301                                  * signal to its process, because thread does
 2302                                  * not suspend itself here, p_numthreads
 2303                                  * should never be equal to p_suspcount.
 2304                                  */
 2305                                 thread_stopped(p);
 2306                                 PROC_SUNLOCK(p);
 2307                                 sigqueue_delete_proc(p, p->p_xstat);
 2308                         } else
 2309                                 PROC_SUNLOCK(p);
 2310                         goto out;
 2311                 }
 2312         } else {
 2313                 /* Not in "NORMAL" state. discard the signal. */
 2314                 sigqueue_delete(sigqueue, sig);
 2315                 goto out;
 2316         }
 2317 
 2318         /*
 2319          * The process is not stopped so we need to apply the signal to all the
 2320          * running threads.
 2321          */
 2322 runfast:
 2323         tdsigwakeup(td, sig, action, intrval);
 2324         PROC_SLOCK(p);
 2325         thread_unsuspend(p);
 2326         PROC_SUNLOCK(p);
 2327 out:
 2328         /* If we jump here, proc slock should not be owned. */
 2329         PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
 2330         return (ret);
 2331 }
 2332 
 2333 /*
 2334  * The force of a signal has been directed against a single
 2335  * thread.  We need to see what we can do about knocking it
 2336  * out of any sleep it may be in etc.
 2337  */
 2338 static void
 2339 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
 2340 {
 2341         struct proc *p = td->td_proc;
 2342         register int prop;
 2343         int wakeup_swapper;
 2344 
 2345         wakeup_swapper = 0;
 2346         PROC_LOCK_ASSERT(p, MA_OWNED);
 2347         prop = sigprop(sig);
 2348 
 2349         PROC_SLOCK(p);
 2350         thread_lock(td);
 2351         /*
 2352          * Bring the priority of a thread up if we want it to get
 2353          * killed in this lifetime.
 2354          */
 2355         if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
 2356                 sched_prio(td, PUSER);
 2357         if (TD_ON_SLEEPQ(td)) {
 2358                 /*
 2359                  * If thread is sleeping uninterruptibly
 2360                  * we can't interrupt the sleep... the signal will
 2361                  * be noticed when the process returns through
 2362                  * trap() or syscall().
 2363                  */
 2364                 if ((td->td_flags & TDF_SINTR) == 0)
 2365                         goto out;
 2366                 /*
 2367                  * If SIGCONT is default (or ignored) and process is
 2368                  * asleep, we are finished; the process should not
 2369                  * be awakened.
 2370                  */
 2371                 if ((prop & SA_CONT) && action == SIG_DFL) {
 2372                         thread_unlock(td);
 2373                         PROC_SUNLOCK(p);
 2374                         sigqueue_delete(&p->p_sigqueue, sig);
 2375                         /*
 2376                          * It may be on either list in this state.
 2377                          * Remove from both for now.
 2378                          */
 2379                         sigqueue_delete(&td->td_sigqueue, sig);
 2380                         return;
 2381                 }
 2382 
 2383                 /*
 2384                  * Don't awaken a sleeping thread for SIGSTOP if the
 2385                  * STOP signal is deferred.
 2386                  */
 2387                 if ((prop & SA_STOP) && (td->td_flags & TDF_SBDRY))
 2388                         goto out;
 2389 
 2390                 /*
 2391                  * Give low priority threads a better chance to run.
 2392                  */
 2393                 if (td->td_priority > PUSER)
 2394                         sched_prio(td, PUSER);
 2395 
 2396                 wakeup_swapper = sleepq_abort(td, intrval);
 2397         } else {
 2398                 /*
 2399                  * Other states do nothing with the signal immediately,
 2400                  * other than kicking ourselves if we are running.
 2401                  * It will either never be noticed, or noticed very soon.
 2402                  */
 2403 #ifdef SMP
 2404                 if (TD_IS_RUNNING(td) && td != curthread)
 2405                         forward_signal(td);
 2406 #endif
 2407         }
 2408 out:
 2409         PROC_SUNLOCK(p);
 2410         thread_unlock(td);
 2411         if (wakeup_swapper)
 2412                 kick_proc0();
 2413 }
 2414 
 2415 static void
 2416 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
 2417 {
 2418         struct thread *td2;
 2419 
 2420         PROC_LOCK_ASSERT(p, MA_OWNED);
 2421         PROC_SLOCK_ASSERT(p, MA_OWNED);
 2422 
 2423         FOREACH_THREAD_IN_PROC(p, td2) {
 2424                 thread_lock(td2);
 2425                 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
 2426                 if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
 2427                     (td2->td_flags & TDF_SINTR)) {
 2428                         if (td2->td_flags & TDF_SBDRY) {
 2429                                 /*
 2430                                  * Once a thread is asleep with
 2431                                  * TDF_SBDRY set, it should never
 2432                                  * become suspended due to this check.
 2433                                  */
 2434                                 KASSERT(!TD_IS_SUSPENDED(td2),
 2435                                     ("thread with deferred stops suspended"));
 2436                         } else if (!TD_IS_SUSPENDED(td2)) {
 2437                                 thread_suspend_one(td2);
 2438                         }
 2439                 } else if (!TD_IS_SUSPENDED(td2)) {
 2440                         if (sending || td != td2)
 2441                                 td2->td_flags |= TDF_ASTPENDING;
 2442 #ifdef SMP
 2443                         if (TD_IS_RUNNING(td2) && td2 != td)
 2444                                 forward_signal(td2);
 2445 #endif
 2446                 }
 2447                 thread_unlock(td2);
 2448         }
 2449 }
 2450 
 2451 int
 2452 ptracestop(struct thread *td, int sig)
 2453 {
 2454         struct proc *p = td->td_proc;
 2455 
 2456         PROC_LOCK_ASSERT(p, MA_OWNED);
 2457         KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
 2458         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
 2459             &p->p_mtx.lock_object, "Stopping for traced signal");
 2460 
 2461         td->td_dbgflags |= TDB_XSIG;
 2462         td->td_xsig = sig;
 2463         PROC_SLOCK(p);
 2464         while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
 2465                 if (p->p_flag & P_SINGLE_EXIT) {
 2466                         td->td_dbgflags &= ~TDB_XSIG;
 2467                         PROC_SUNLOCK(p);
 2468                         return (sig);
 2469                 }
 2470                 /*
 2471                  * Just make wait() to work, the last stopped thread
 2472                  * will win.
 2473                  */
 2474                 p->p_xstat = sig;
 2475                 p->p_xthread = td;
 2476                 p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
 2477                 sig_suspend_threads(td, p, 0);
 2478                 if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
 2479                         td->td_dbgflags &= ~TDB_STOPATFORK;
 2480                         cv_broadcast(&p->p_dbgwait);
 2481                 }
 2482 stopme:
 2483                 thread_suspend_switch(td);
 2484                 if (p->p_xthread == td)
 2485                         p->p_xthread = NULL;
 2486                 if (!(p->p_flag & P_TRACED))
 2487                         break;
 2488                 if (td->td_dbgflags & TDB_SUSPEND) {
 2489                         if (p->p_flag & P_SINGLE_EXIT)
 2490                                 break;
 2491                         goto stopme;
 2492                 }
 2493         }
 2494         PROC_SUNLOCK(p);
 2495         return (td->td_xsig);
 2496 }
 2497 
 2498 static void
 2499 reschedule_signals(struct proc *p, sigset_t block, int flags)
 2500 {
 2501         struct sigacts *ps;
 2502         struct thread *td;
 2503         int sig;
 2504 
 2505         PROC_LOCK_ASSERT(p, MA_OWNED);
 2506         if (SIGISEMPTY(p->p_siglist))
 2507                 return;
 2508         ps = p->p_sigacts;
 2509         SIGSETAND(block, p->p_siglist);
 2510         while ((sig = sig_ffs(&block)) != 0) {
 2511                 SIGDELSET(block, sig);
 2512                 td = sigtd(p, sig, 0);
 2513                 signotify(td);
 2514                 if (!(flags & SIGPROCMASK_PS_LOCKED))
 2515                         mtx_lock(&ps->ps_mtx);
 2516                 if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
 2517                         tdsigwakeup(td, sig, SIG_CATCH,
 2518                             (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
 2519                              ERESTART));
 2520                 if (!(flags & SIGPROCMASK_PS_LOCKED))
 2521                         mtx_unlock(&ps->ps_mtx);
 2522         }
 2523 }
 2524 
 2525 void
 2526 tdsigcleanup(struct thread *td)
 2527 {
 2528         struct proc *p;
 2529         sigset_t unblocked;
 2530 
 2531         p = td->td_proc;
 2532         PROC_LOCK_ASSERT(p, MA_OWNED);
 2533 
 2534         sigqueue_flush(&td->td_sigqueue);
 2535         if (p->p_numthreads == 1)
 2536                 return;
 2537 
 2538         /*
 2539          * Since we cannot handle signals, notify signal post code
 2540          * about this by filling the sigmask.
 2541          *
 2542          * Also, if needed, wake up thread(s) that do not block the
 2543          * same signals as the exiting thread, since the thread might
 2544          * have been selected for delivery and woken up.
 2545          */
 2546         SIGFILLSET(unblocked);
 2547         SIGSETNAND(unblocked, td->td_sigmask);
 2548         SIGFILLSET(td->td_sigmask);
 2549         reschedule_signals(p, unblocked, 0);
 2550 
 2551 }
 2552 
 2553 /*
 2554  * Defer the delivery of SIGSTOP for the current thread.  Returns true
 2555  * if stops were deferred and false if they were already deferred.
 2556  */
 2557 int
 2558 sigdeferstop(void)
 2559 {
 2560         struct thread *td;
 2561 
 2562         td = curthread;
 2563         if (td->td_flags & TDF_SBDRY)
 2564                 return (0);
 2565         thread_lock(td);
 2566         td->td_flags |= TDF_SBDRY;
 2567         thread_unlock(td);
 2568         return (1);
 2569 }
 2570 
 2571 /*
 2572  * Permit the delivery of SIGSTOP for the current thread.  This does
 2573  * not immediately suspend if a stop was posted.  Instead, the thread
 2574  * will suspend either via ast() or a subsequent interruptible sleep.
 2575  */
 2576 void
 2577 sigallowstop()
 2578 {
 2579         struct thread *td;
 2580 
 2581         td = curthread;
 2582         thread_lock(td);
 2583         td->td_flags &= ~TDF_SBDRY;
 2584         thread_unlock(td);
 2585 }
 2586 
 2587 /*
 2588  * If the current process has received a signal (should be caught or cause
 2589  * termination, should interrupt current syscall), return the signal number.
 2590  * Stop signals with default action are processed immediately, then cleared;
 2591  * they aren't returned.  This is checked after each entry to the system for
 2592  * a syscall or trap (though this can usually be done without calling issignal
 2593  * by checking the pending signal masks in cursig.) The normal call
 2594  * sequence is
 2595  *
 2596  *      while (sig = cursig(curthread))
 2597  *              postsig(sig);
 2598  */
 2599 static int
 2600 issignal(struct thread *td)
 2601 {
 2602         struct proc *p;
 2603         struct sigacts *ps;
 2604         struct sigqueue *queue;
 2605         sigset_t sigpending;
 2606         int sig, prop, newsig;
 2607 
 2608         p = td->td_proc;
 2609         ps = p->p_sigacts;
 2610         mtx_assert(&ps->ps_mtx, MA_OWNED);
 2611         PROC_LOCK_ASSERT(p, MA_OWNED);
 2612         for (;;) {
 2613                 int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
 2614 
 2615                 sigpending = td->td_sigqueue.sq_signals;
 2616                 SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
 2617                 SIGSETNAND(sigpending, td->td_sigmask);
 2618 
 2619                 if (p->p_flag & P_PPWAIT || td->td_flags & TDF_SBDRY)
 2620                         SIG_STOPSIGMASK(sigpending);
 2621                 if (SIGISEMPTY(sigpending))     /* no signal to send */
 2622                         return (0);
 2623                 sig = sig_ffs(&sigpending);
 2624 
 2625                 if (p->p_stops & S_SIG) {
 2626                         mtx_unlock(&ps->ps_mtx);
 2627                         stopevent(p, S_SIG, sig);
 2628                         mtx_lock(&ps->ps_mtx);
 2629                 }
 2630 
 2631                 /*
 2632                  * We should see pending but ignored signals
 2633                  * only if P_TRACED was on when they were posted.
 2634                  */
 2635                 if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
 2636                         sigqueue_delete(&td->td_sigqueue, sig);
 2637                         sigqueue_delete(&p->p_sigqueue, sig);
 2638                         continue;
 2639                 }
 2640                 if (p->p_flag & P_TRACED && (p->p_flag & P_PPTRACE) == 0) {
 2641                         /*
 2642                          * If traced, always stop.
 2643                          * Remove old signal from queue before the stop.
 2644                          * XXX shrug off debugger, it causes siginfo to
 2645                          * be thrown away.
 2646                          */
 2647                         queue = &td->td_sigqueue;
 2648                         td->td_dbgksi.ksi_signo = 0;
 2649                         if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
 2650                                 queue = &p->p_sigqueue;
 2651                                 sigqueue_get(queue, sig, &td->td_dbgksi);
 2652                         }
 2653 
 2654                         mtx_unlock(&ps->ps_mtx);
 2655                         newsig = ptracestop(td, sig);
 2656                         mtx_lock(&ps->ps_mtx);
 2657 
 2658                         if (sig != newsig) {
 2659 
 2660                                 /*
 2661                                  * If parent wants us to take the signal,
 2662                                  * then it will leave it in p->p_xstat;
 2663                                  * otherwise we just look for signals again.
 2664                                 */
 2665                                 if (newsig == 0)
 2666                                         continue;
 2667                                 sig = newsig;
 2668 
 2669                                 /*
 2670                                  * Put the new signal into td_sigqueue. If the
 2671                                  * signal is being masked, look for other
 2672                                  * signals.
 2673                                  */
 2674                                 sigqueue_add(queue, sig, NULL);
 2675                                 if (SIGISMEMBER(td->td_sigmask, sig))
 2676                                         continue;
 2677                                 signotify(td);
 2678                         } else {
 2679                                 if (td->td_dbgksi.ksi_signo != 0) {
 2680                                         td->td_dbgksi.ksi_flags |= KSI_HEAD;
 2681                                         if (sigqueue_add(&td->td_sigqueue, sig,
 2682                                             &td->td_dbgksi) != 0)
 2683                                                 td->td_dbgksi.ksi_signo = 0;
 2684                                 }
 2685                                 if (td->td_dbgksi.ksi_signo == 0)
 2686                                         sigqueue_add(&td->td_sigqueue, sig,
 2687                                             NULL);
 2688                         }
 2689 
 2690                         /*
 2691                          * If the traced bit got turned off, go back up
 2692                          * to the top to rescan signals.  This ensures
 2693                          * that p_sig* and p_sigact are consistent.
 2694                          */
 2695                         if ((p->p_flag & P_TRACED) == 0)
 2696                                 continue;
 2697                 }
 2698 
 2699                 prop = sigprop(sig);
 2700 
 2701                 /*
 2702                  * Decide whether the signal should be returned.
 2703                  * Return the signal's number, or fall through
 2704                  * to clear it from the pending mask.
 2705                  */
 2706                 switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
 2707 
 2708                 case (intptr_t)SIG_DFL:
 2709                         /*
 2710                          * Don't take default actions on system processes.
 2711                          */
 2712                         if (p->p_pid <= 1) {
 2713 #ifdef DIAGNOSTIC
 2714                                 /*
 2715                                  * Are you sure you want to ignore SIGSEGV
 2716                                  * in init? XXX
 2717                                  */
 2718                                 printf("Process (pid %lu) got signal %d\n",
 2719                                         (u_long)p->p_pid, sig);
 2720 #endif
 2721                                 break;          /* == ignore */
 2722                         }
 2723                         /*
 2724                          * If there is a pending stop signal to process
 2725                          * with default action, stop here,
 2726                          * then clear the signal.  However,
 2727                          * if process is member of an orphaned
 2728                          * process group, ignore tty stop signals.
 2729                          */
 2730                         if (prop & SA_STOP) {
 2731                                 if (p->p_flag & (P_TRACED|P_WEXIT) ||
 2732                                     (p->p_pgrp->pg_jobc == 0 &&
 2733                                      prop & SA_TTYSTOP))
 2734                                         break;  /* == ignore */
 2735                                 mtx_unlock(&ps->ps_mtx);
 2736                                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
 2737                                     &p->p_mtx.lock_object, "Catching SIGSTOP");
 2738                                 p->p_flag |= P_STOPPED_SIG;
 2739                                 p->p_xstat = sig;
 2740                                 PROC_SLOCK(p);
 2741                                 sig_suspend_threads(td, p, 0);
 2742                                 thread_suspend_switch(td);
 2743                                 PROC_SUNLOCK(p);
 2744                                 mtx_lock(&ps->ps_mtx);
 2745                                 break;
 2746                         } else if (prop & SA_IGNORE) {
 2747                                 /*
 2748                                  * Except for SIGCONT, shouldn't get here.
 2749                                  * Default action is to ignore; drop it.
 2750                                  */
 2751                                 break;          /* == ignore */
 2752                         } else
 2753                                 return (sig);
 2754                         /*NOTREACHED*/
 2755 
 2756                 case (intptr_t)SIG_IGN:
 2757                         /*
 2758                          * Masking above should prevent us ever trying
 2759                          * to take action on an ignored signal other
 2760                          * than SIGCONT, unless process is traced.
 2761                          */
 2762                         if ((prop & SA_CONT) == 0 &&
 2763                             (p->p_flag & P_TRACED) == 0)
 2764                                 printf("issignal\n");
 2765                         break;          /* == ignore */
 2766 
 2767                 default:
 2768                         /*
 2769                          * This signal has an action, let
 2770                          * postsig() process it.
 2771                          */
 2772                         return (sig);
 2773                 }
 2774                 sigqueue_delete(&td->td_sigqueue, sig); /* take the signal! */
 2775                 sigqueue_delete(&p->p_sigqueue, sig);
 2776         }
 2777         /* NOTREACHED */
 2778 }
 2779 
 2780 void
 2781 thread_stopped(struct proc *p)
 2782 {
 2783         int n;
 2784 
 2785         PROC_LOCK_ASSERT(p, MA_OWNED);
 2786         PROC_SLOCK_ASSERT(p, MA_OWNED);
 2787         n = p->p_suspcount;
 2788         if (p == curproc)
 2789                 n++;
 2790         if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
 2791                 PROC_SUNLOCK(p);
 2792                 p->p_flag &= ~P_WAITED;
 2793                 PROC_LOCK(p->p_pptr);
 2794                 childproc_stopped(p, (p->p_flag & P_TRACED) ?
 2795                         CLD_TRAPPED : CLD_STOPPED);
 2796                 PROC_UNLOCK(p->p_pptr);
 2797                 PROC_SLOCK(p);
 2798         }
 2799 }
 2800 
 2801 /*
 2802  * Take the action for the specified signal
 2803  * from the current set of pending signals.
 2804  */
 2805 int
 2806 postsig(sig)
 2807         register int sig;
 2808 {
 2809         struct thread *td = curthread;
 2810         register struct proc *p = td->td_proc;
 2811         struct sigacts *ps;
 2812         sig_t action;
 2813         ksiginfo_t ksi;
 2814         sigset_t returnmask, mask;
 2815 
 2816         KASSERT(sig != 0, ("postsig"));
 2817 
 2818         PROC_LOCK_ASSERT(p, MA_OWNED);
 2819         ps = p->p_sigacts;
 2820         mtx_assert(&ps->ps_mtx, MA_OWNED);
 2821         ksiginfo_init(&ksi);
 2822         if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
 2823             sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
 2824                 return (0);
 2825         ksi.ksi_signo = sig;
 2826         if (ksi.ksi_code == SI_TIMER)
 2827                 itimer_accept(p, ksi.ksi_timerid, &ksi);
 2828         action = ps->ps_sigact[_SIG_IDX(sig)];
 2829 #ifdef KTRACE
 2830         if (KTRPOINT(td, KTR_PSIG))
 2831                 ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
 2832                     &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
 2833 #endif
 2834         if (p->p_stops & S_SIG) {
 2835                 mtx_unlock(&ps->ps_mtx);
 2836                 stopevent(p, S_SIG, sig);
 2837                 mtx_lock(&ps->ps_mtx);
 2838         }
 2839 
 2840         if (action == SIG_DFL) {
 2841                 /*
 2842                  * Default action, where the default is to kill
 2843                  * the process.  (Other cases were ignored above.)
 2844                  */
 2845                 mtx_unlock(&ps->ps_mtx);
 2846                 sigexit(td, sig);
 2847                 /* NOTREACHED */
 2848         } else {
 2849                 /*
 2850                  * If we get here, the signal must be caught.
 2851                  */
 2852                 KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
 2853                     ("postsig action"));
 2854                 /*
 2855                  * Set the new mask value and also defer further
 2856                  * occurrences of this signal.
 2857                  *
 2858                  * Special case: user has done a sigsuspend.  Here the
 2859                  * current mask is not of interest, but rather the
 2860                  * mask from before the sigsuspend is what we want
 2861                  * restored after the signal processing is completed.
 2862                  */
 2863                 if (td->td_pflags & TDP_OLDMASK) {
 2864                         returnmask = td->td_oldsigmask;
 2865                         td->td_pflags &= ~TDP_OLDMASK;
 2866                 } else
 2867                         returnmask = td->td_sigmask;
 2868 
 2869                 mask = ps->ps_catchmask[_SIG_IDX(sig)];
 2870                 if (!SIGISMEMBER(ps->ps_signodefer, sig))
 2871                         SIGADDSET(mask, sig);
 2872                 kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
 2873                     SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
 2874 
 2875                 if (SIGISMEMBER(ps->ps_sigreset, sig))
 2876                         sigdflt(ps, sig);
 2877                 td->td_ru.ru_nsignals++;
 2878                 if (p->p_sig == sig) {
 2879                         p->p_code = 0;
 2880                         p->p_sig = 0;
 2881                 }
 2882                 (*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
 2883         }
 2884         return (1);
 2885 }
 2886 
 2887 /*
 2888  * Kill the current process for stated reason.
 2889  */
 2890 void
 2891 killproc(p, why)
 2892         struct proc *p;
 2893         char *why;
 2894 {
 2895 
 2896         PROC_LOCK_ASSERT(p, MA_OWNED);
 2897         CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
 2898             p->p_comm);
 2899         log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
 2900             p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
 2901         p->p_flag |= P_WKILLED;
 2902         kern_psignal(p, SIGKILL);
 2903 }
 2904 
 2905 /*
 2906  * Force the current process to exit with the specified signal, dumping core
 2907  * if appropriate.  We bypass the normal tests for masked and caught signals,
 2908  * allowing unrecoverable failures to terminate the process without changing
 2909  * signal state.  Mark the accounting record with the signal termination.
 2910  * If dumping core, save the signal number for the debugger.  Calls exit and
 2911  * does not return.
 2912  */
 2913 void
 2914 sigexit(td, sig)
 2915         struct thread *td;
 2916         int sig;
 2917 {
 2918         struct proc *p = td->td_proc;
 2919 
 2920         PROC_LOCK_ASSERT(p, MA_OWNED);
 2921         p->p_acflag |= AXSIG;
 2922         /*
 2923          * We must be single-threading to generate a core dump.  This
 2924          * ensures that the registers in the core file are up-to-date.
 2925          * Also, the ELF dump handler assumes that the thread list doesn't
 2926          * change out from under it.
 2927          *
 2928          * XXX If another thread attempts to single-thread before us
 2929          *     (e.g. via fork()), we won't get a dump at all.
 2930          */
 2931         if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
 2932                 p->p_sig = sig;
 2933                 /*
 2934                  * Log signals which would cause core dumps
 2935                  * (Log as LOG_INFO to appease those who don't want
 2936                  * these messages.)
 2937                  * XXX : Todo, as well as euid, write out ruid too
 2938                  * Note that coredump() drops proc lock.
 2939                  */
 2940                 if (coredump(td) == 0)
 2941                         sig |= WCOREFLAG;
 2942                 if (kern_logsigexit)
 2943                         log(LOG_INFO,
 2944                             "pid %d (%s), uid %d: exited on signal %d%s\n",
 2945                             p->p_pid, p->p_comm,
 2946                             td->td_ucred ? td->td_ucred->cr_uid : -1,
 2947                             sig &~ WCOREFLAG,
 2948                             sig & WCOREFLAG ? " (core dumped)" : "");
 2949         } else
 2950                 PROC_UNLOCK(p);
 2951         exit1(td, W_EXITCODE(0, sig));
 2952         /* NOTREACHED */
 2953 }
 2954 
 2955 /*
 2956  * Send queued SIGCHLD to parent when child process's state
 2957  * is changed.
 2958  */
 2959 static void
 2960 sigparent(struct proc *p, int reason, int status)
 2961 {
 2962         PROC_LOCK_ASSERT(p, MA_OWNED);
 2963         PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
 2964 
 2965         if (p->p_ksi != NULL) {
 2966                 p->p_ksi->ksi_signo  = SIGCHLD;
 2967                 p->p_ksi->ksi_code   = reason;
 2968                 p->p_ksi->ksi_status = status;
 2969                 p->p_ksi->ksi_pid    = p->p_pid;
 2970                 p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
 2971                 if (KSI_ONQ(p->p_ksi))
 2972                         return;
 2973         }
 2974         pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
 2975 }
 2976 
 2977 static void
 2978 childproc_jobstate(struct proc *p, int reason, int sig)
 2979 {
 2980         struct sigacts *ps;
 2981 
 2982         PROC_LOCK_ASSERT(p, MA_OWNED);
 2983         PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
 2984 
 2985         /*
 2986          * Wake up parent sleeping in kern_wait(), also send
 2987          * SIGCHLD to parent, but SIGCHLD does not guarantee
 2988          * that parent will awake, because parent may masked
 2989          * the signal.
 2990          */
 2991         p->p_pptr->p_flag |= P_STATCHILD;
 2992         wakeup(p->p_pptr);
 2993 
 2994         ps = p->p_pptr->p_sigacts;
 2995         mtx_lock(&ps->ps_mtx);
 2996         if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
 2997                 mtx_unlock(&ps->ps_mtx);
 2998                 sigparent(p, reason, sig);
 2999         } else
 3000                 mtx_unlock(&ps->ps_mtx);
 3001 }
 3002 
 3003 void
 3004 childproc_stopped(struct proc *p, int reason)
 3005 {
 3006         /* p_xstat is a plain signal number, not a full wait() status here. */
 3007         childproc_jobstate(p, reason, p->p_xstat);
 3008 }
 3009 
 3010 void
 3011 childproc_continued(struct proc *p)
 3012 {
 3013         childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
 3014 }
 3015 
 3016 void
 3017 childproc_exited(struct proc *p)
 3018 {
 3019         int reason;
 3020         int xstat = p->p_xstat; /* convert to int */
 3021         int status;
 3022 
 3023         if (WCOREDUMP(xstat))
 3024                 reason = CLD_DUMPED, status = WTERMSIG(xstat);
 3025         else if (WIFSIGNALED(xstat))
 3026                 reason = CLD_KILLED, status = WTERMSIG(xstat);
 3027         else
 3028                 reason = CLD_EXITED, status = WEXITSTATUS(xstat);
 3029         /*
 3030          * XXX avoid calling wakeup(p->p_pptr), the work is
 3031          * done in exit1().
 3032          */
 3033         sigparent(p, reason, status);
 3034 }
 3035 
 3036 /*
 3037  * We only have 1 character for the core count in the format
 3038  * string, so the range will be 0-9
 3039  */
 3040 #define MAX_NUM_CORES 10
 3041 static int num_cores = 5;
 3042 
 3043 static int
 3044 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
 3045 {
 3046         int error;
 3047         int new_val;
 3048 
 3049         new_val = num_cores;
 3050         error = sysctl_handle_int(oidp, &new_val, 0, req);
 3051         if (error != 0 || req->newptr == NULL)
 3052                 return (error);
 3053         if (new_val > MAX_NUM_CORES)
 3054                 new_val = MAX_NUM_CORES;
 3055         if (new_val < 0)
 3056                 new_val = 0;
 3057         num_cores = new_val;
 3058         return (0);
 3059 }
 3060 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
 3061             0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
 3062 
 3063 #if defined(COMPRESS_USER_CORES)
 3064 int compress_user_cores = 1;
 3065 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
 3066     &compress_user_cores, 0, "Compression of user corefiles");
 3067 
 3068 int compress_user_cores_gzlevel = -1; /* default level */
 3069 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
 3070     &compress_user_cores_gzlevel, -1, "Corefile gzip compression level");
 3071 
 3072 #define GZ_SUFFIX       ".gz"
 3073 #define GZ_SUFFIX_LEN   3
 3074 #endif
 3075 
 3076 static char corefilename[MAXPATHLEN] = {"%N.core"};
 3077 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
 3078 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
 3079     sizeof(corefilename), "Process corefile name format string");
 3080 
 3081 /*
 3082  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
 3083  * Expand the name described in corefilename, using name, uid, and pid
 3084  * and open/create core file.
 3085  * corefilename is a printf-like string, with three format specifiers:
 3086  *      %N      name of process ("name")
 3087  *      %P      process id (pid)
 3088  *      %U      user id (uid)
 3089  * For example, "%N.core" is the default; they can be disabled completely
 3090  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
 3091  * This is controlled by the sysctl variable kern.corefile (see above).
 3092  */
 3093 static int
 3094 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
 3095     int compress, struct vnode **vpp, char **namep)
 3096 {
 3097         struct nameidata nd;
 3098         struct sbuf sb;
 3099         const char *format;
 3100         char *hostname, *name;
 3101         int indexpos, i, error, cmode, flags, oflags;
 3102 
 3103         hostname = NULL;
 3104         format = corefilename;
 3105         name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
 3106         indexpos = -1;
 3107         (void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
 3108         for (i = 0; format[i] != '\0'; i++) {
 3109                 switch (format[i]) {
 3110                 case '%':       /* Format character */
 3111                         i++;
 3112                         switch (format[i]) {
 3113                         case '%':
 3114                                 sbuf_putc(&sb, '%');
 3115                                 break;
 3116                         case 'H':       /* hostname */
 3117                                 if (hostname == NULL) {
 3118                                         hostname = malloc(MAXHOSTNAMELEN,
 3119                                             M_TEMP, M_WAITOK);
 3120                                 }
 3121                                 getcredhostname(td->td_ucred, hostname,
 3122                                     MAXHOSTNAMELEN);
 3123                                 sbuf_printf(&sb, "%s", hostname);
 3124                                 break;
 3125                         case 'I':       /* autoincrementing index */
 3126                                 sbuf_printf(&sb, "");
 3127                                 indexpos = sbuf_len(&sb) - 1;
 3128                                 break;
 3129                         case 'N':       /* process name */
 3130                                 sbuf_printf(&sb, "%s", comm);
 3131                                 break;
 3132                         case 'P':       /* process id */
 3133                                 sbuf_printf(&sb, "%u", pid);
 3134                                 break;
 3135                         case 'U':       /* user id */
 3136                                 sbuf_printf(&sb, "%u", uid);
 3137                                 break;
 3138                         default:
 3139                                 log(LOG_ERR,
 3140                                     "Unknown format character %c in "
 3141                                     "corename `%s'\n", format[i], format);
 3142                                 break;
 3143                         }
 3144                         break;
 3145                 default:
 3146                         sbuf_putc(&sb, format[i]);
 3147                         break;
 3148                 }
 3149         }
 3150         free(hostname, M_TEMP);
 3151 #ifdef COMPRESS_USER_CORES
 3152         if (compress)
 3153                 sbuf_printf(&sb, GZ_SUFFIX);
 3154 #endif
 3155         if (sbuf_error(&sb) != 0) {
 3156                 log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
 3157                     "long\n", (long)pid, comm, (u_long)uid);
 3158                 sbuf_delete(&sb);
 3159                 free(name, M_TEMP);
 3160                 return (ENOMEM);
 3161         }
 3162         sbuf_finish(&sb);
 3163         sbuf_delete(&sb);
 3164 
 3165         cmode = S_IRUSR | S_IWUSR;
 3166         oflags = VN_OPEN_NOAUDIT | (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
 3167 
 3168         /*
 3169          * If the core format has a %I in it, then we need to check
 3170          * for existing corefiles before returning a name.
 3171          * To do this we iterate over 0..num_cores to find a
 3172          * non-existing core file name to use.
 3173          */
 3174         if (indexpos != -1) {
 3175                 for (i = 0; i < num_cores; i++) {
 3176                         flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
 3177                         name[indexpos] = '' + i;
 3178                         NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
 3179                         error = vn_open_cred(&nd, &flags, cmode, oflags,
 3180                             td->td_ucred, NULL);
 3181                         if (error) {
 3182                                 if (error == EEXIST)
 3183                                         continue;
 3184                                 log(LOG_ERR,
 3185                                     "pid %d (%s), uid (%u):  Path `%s' failed "
 3186                                     "on initial open test, error = %d\n",
 3187                                     pid, comm, uid, name, error);
 3188                         }
 3189                         goto out;
 3190                 }
 3191         }
 3192 
 3193         flags = O_CREAT | FWRITE | O_NOFOLLOW;
 3194         NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
 3195         error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
 3196 out:
 3197         if (error) {
 3198 #ifdef AUDIT
 3199                 audit_proc_coredump(td, name, error);
 3200 #endif
 3201                 free(name, M_TEMP);
 3202                 return (error);
 3203         }
 3204         NDFREE(&nd, NDF_ONLY_PNBUF);
 3205         *vpp = nd.ni_vp;
 3206         *namep = name;
 3207         return (0);
 3208 }
 3209 
 3210 /*
 3211  * Dump a process' core.  The main routine does some
 3212  * policy checking, and creates the name of the coredump;
 3213  * then it passes on a vnode and a size limit to the process-specific
 3214  * coredump routine if there is one; if there _is not_ one, it returns
 3215  * ENOSYS; otherwise it returns the error from the process-specific routine.
 3216  */
 3217 
 3218 static int
 3219 coredump(struct thread *td)
 3220 {
 3221         struct proc *p = td->td_proc;
 3222         struct ucred *cred = td->td_ucred;
 3223         struct vnode *vp;
 3224         struct flock lf;
 3225         struct vattr vattr;
 3226         int error, error1, locked;
 3227         struct mount *mp;
 3228         char *name;                     /* name of corefile */
 3229         off_t limit;
 3230         int compress;
 3231 
 3232 #ifdef COMPRESS_USER_CORES
 3233         compress = compress_user_cores;
 3234 #else
 3235         compress = 0;
 3236 #endif
 3237         PROC_LOCK_ASSERT(p, MA_OWNED);
 3238         MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
 3239         _STOPEVENT(p, S_CORE, 0);
 3240 
 3241         if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0)) {
 3242                 PROC_UNLOCK(p);
 3243                 return (EFAULT);
 3244         }
 3245 
 3246         /*
 3247          * Note that the bulk of limit checking is done after
 3248          * the corefile is created.  The exception is if the limit
 3249          * for corefiles is 0, in which case we don't bother
 3250          * creating the corefile at all.  This layout means that
 3251          * a corefile is truncated instead of not being created,
 3252          * if it is larger than the limit.
 3253          */
 3254         limit = (off_t)lim_cur(p, RLIMIT_CORE);
 3255         if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
 3256                 PROC_UNLOCK(p);
 3257                 return (EFBIG);
 3258         }
 3259         PROC_UNLOCK(p);
 3260 
 3261 restart:
 3262         error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, compress,
 3263             &vp, &name);
 3264         if (error != 0)
 3265                 return (error);
 3266 
 3267         /* Don't dump to non-regular files or files with links. */
 3268         if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
 3269             vattr.va_nlink != 1) {
 3270                 VOP_UNLOCK(vp, 0);
 3271                 error = EFAULT;
 3272                 goto close;
 3273         }
 3274 
 3275         VOP_UNLOCK(vp, 0);
 3276         lf.l_whence = SEEK_SET;
 3277         lf.l_start = 0;
 3278         lf.l_len = 0;
 3279         lf.l_type = F_WRLCK;
 3280         locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
 3281 
 3282         if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 3283                 lf.l_type = F_UNLCK;
 3284                 if (locked)
 3285                         VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
 3286                 if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
 3287                         goto out;
 3288                 if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
 3289                         goto out;
 3290                 free(name, M_TEMP);
 3291                 goto restart;
 3292         }
 3293 
 3294         VATTR_NULL(&vattr);
 3295         vattr.va_size = 0;
 3296         if (set_core_nodump_flag)
 3297                 vattr.va_flags = UF_NODUMP;
 3298         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 3299         VOP_SETATTR(vp, &vattr, cred);
 3300         VOP_UNLOCK(vp, 0);
 3301         vn_finished_write(mp);
 3302         PROC_LOCK(p);
 3303         p->p_acflag |= ACORE;
 3304         PROC_UNLOCK(p);
 3305 
 3306         if (p->p_sysent->sv_coredump != NULL) {
 3307                 error = p->p_sysent->sv_coredump(td, vp, limit,
 3308                     compress ? IMGACT_CORE_COMPRESS : 0);
 3309         } else {
 3310                 error = ENOSYS;
 3311         }
 3312 
 3313         if (locked) {
 3314                 lf.l_type = F_UNLCK;
 3315                 VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
 3316         }
 3317 close:
 3318         error1 = vn_close(vp, FWRITE, cred, td);
 3319         if (error == 0)
 3320                 error = error1;
 3321 out:
 3322 #ifdef AUDIT
 3323         audit_proc_coredump(td, name, error);
 3324 #endif
 3325         free(name, M_TEMP);
 3326         return (error);
 3327 }
 3328 
 3329 /*
 3330  * Nonexistent system call-- signal process (may want to handle it).  Flag
 3331  * error in case process won't see signal immediately (blocked or ignored).
 3332  */
 3333 #ifndef _SYS_SYSPROTO_H_
 3334 struct nosys_args {
 3335         int     dummy;
 3336 };
 3337 #endif
 3338 /* ARGSUSED */
 3339 int
 3340 nosys(td, args)
 3341         struct thread *td;
 3342         struct nosys_args *args;
 3343 {
 3344         struct proc *p = td->td_proc;
 3345 
 3346         PROC_LOCK(p);
 3347         tdsignal(td, SIGSYS);
 3348         PROC_UNLOCK(p);
 3349         return (ENOSYS);
 3350 }
 3351 
 3352 /*
 3353  * Send a SIGIO or SIGURG signal to a process or process group using stored
 3354  * credentials rather than those of the current process.
 3355  */
 3356 void
 3357 pgsigio(sigiop, sig, checkctty)
 3358         struct sigio **sigiop;
 3359         int sig, checkctty;
 3360 {
 3361         ksiginfo_t ksi;
 3362         struct sigio *sigio;
 3363 
 3364         ksiginfo_init(&ksi);
 3365         ksi.ksi_signo = sig;
 3366         ksi.ksi_code = SI_KERNEL;
 3367 
 3368         SIGIO_LOCK();
 3369         sigio = *sigiop;
 3370         if (sigio == NULL) {
 3371                 SIGIO_UNLOCK();
 3372                 return;
 3373         }
 3374         if (sigio->sio_pgid > 0) {
 3375                 PROC_LOCK(sigio->sio_proc);
 3376                 if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
 3377                         kern_psignal(sigio->sio_proc, sig);
 3378                 PROC_UNLOCK(sigio->sio_proc);
 3379         } else if (sigio->sio_pgid < 0) {
 3380                 struct proc *p;
 3381 
 3382                 PGRP_LOCK(sigio->sio_pgrp);
 3383                 LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
 3384                         PROC_LOCK(p);
 3385                         if (p->p_state == PRS_NORMAL &&
 3386                             CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
 3387                             (checkctty == 0 || (p->p_flag & P_CONTROLT)))
 3388                                 kern_psignal(p, sig);
 3389                         PROC_UNLOCK(p);
 3390                 }
 3391                 PGRP_UNLOCK(sigio->sio_pgrp);
 3392         }
 3393         SIGIO_UNLOCK();
 3394 }
 3395 
 3396 static int
 3397 filt_sigattach(struct knote *kn)
 3398 {
 3399         struct proc *p = curproc;
 3400 
 3401         kn->kn_ptr.p_proc = p;
 3402         kn->kn_flags |= EV_CLEAR;               /* automatically set */
 3403 
 3404         knlist_add(&p->p_klist, kn, 0);
 3405 
 3406         return (0);
 3407 }
 3408 
 3409 static void
 3410 filt_sigdetach(struct knote *kn)
 3411 {
 3412         struct proc *p = kn->kn_ptr.p_proc;
 3413 
 3414         knlist_remove(&p->p_klist, kn, 0);
 3415 }
 3416 
 3417 /*
 3418  * signal knotes are shared with proc knotes, so we apply a mask to
 3419  * the hint in order to differentiate them from process hints.  This
 3420  * could be avoided by using a signal-specific knote list, but probably
 3421  * isn't worth the trouble.
 3422  */
 3423 static int
 3424 filt_signal(struct knote *kn, long hint)
 3425 {
 3426 
 3427         if (hint & NOTE_SIGNAL) {
 3428                 hint &= ~NOTE_SIGNAL;
 3429 
 3430                 if (kn->kn_id == hint)
 3431                         kn->kn_data++;
 3432         }
 3433         return (kn->kn_data != 0);
 3434 }
 3435 
 3436 struct sigacts *
 3437 sigacts_alloc(void)
 3438 {
 3439         struct sigacts *ps;
 3440 
 3441         ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
 3442         ps->ps_refcnt = 1;
 3443         mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
 3444         return (ps);
 3445 }
 3446 
 3447 void
 3448 sigacts_free(struct sigacts *ps)
 3449 {
 3450 
 3451         if (refcount_release(&ps->ps_refcnt) == 0)
 3452                 return;
 3453         mtx_destroy(&ps->ps_mtx);
 3454         free(ps, M_SUBPROC);
 3455 }
 3456 
 3457 struct sigacts *
 3458 sigacts_hold(struct sigacts *ps)
 3459 {
 3460 
 3461         refcount_acquire(&ps->ps_refcnt);
 3462         return (ps);
 3463 }
 3464 
 3465 void
 3466 sigacts_copy(struct sigacts *dest, struct sigacts *src)
 3467 {
 3468 
 3469         KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
 3470         mtx_lock(&src->ps_mtx);
 3471         bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
 3472         mtx_unlock(&src->ps_mtx);
 3473 }
 3474 
 3475 int
 3476 sigacts_shared(struct sigacts *ps)
 3477 {
 3478 
 3479         return (ps->ps_refcnt > 1);
 3480 }

Cache object: 5363f5dca93f8949b35eab3f48535fe2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.