The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_sig.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)kern_sig.c  8.7 (Berkeley) 4/18/94
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD: releng/12.0/sys/kern/kern_sig.c 337330 2018-08-04 20:45:43Z kib $");
   41 
   42 #include "opt_ktrace.h"
   43 
   44 #include <sys/param.h>
   45 #include <sys/ctype.h>
   46 #include <sys/systm.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/vnode.h>
   49 #include <sys/acct.h>
   50 #include <sys/bus.h>
   51 #include <sys/capsicum.h>
   52 #include <sys/compressor.h>
   53 #include <sys/condvar.h>
   54 #include <sys/event.h>
   55 #include <sys/fcntl.h>
   56 #include <sys/imgact.h>
   57 #include <sys/kernel.h>
   58 #include <sys/ktr.h>
   59 #include <sys/ktrace.h>
   60 #include <sys/lock.h>
   61 #include <sys/malloc.h>
   62 #include <sys/mutex.h>
   63 #include <sys/refcount.h>
   64 #include <sys/namei.h>
   65 #include <sys/proc.h>
   66 #include <sys/procdesc.h>
   67 #include <sys/posix4.h>
   68 #include <sys/pioctl.h>
   69 #include <sys/racct.h>
   70 #include <sys/resourcevar.h>
   71 #include <sys/sdt.h>
   72 #include <sys/sbuf.h>
   73 #include <sys/sleepqueue.h>
   74 #include <sys/smp.h>
   75 #include <sys/stat.h>
   76 #include <sys/sx.h>
   77 #include <sys/syscallsubr.h>
   78 #include <sys/sysctl.h>
   79 #include <sys/sysent.h>
   80 #include <sys/syslog.h>
   81 #include <sys/sysproto.h>
   82 #include <sys/timers.h>
   83 #include <sys/unistd.h>
   84 #include <sys/wait.h>
   85 #include <vm/vm.h>
   86 #include <vm/vm_extern.h>
   87 #include <vm/uma.h>
   88 
   89 #include <sys/jail.h>
   90 
   91 #include <machine/cpu.h>
   92 
   93 #include <security/audit/audit.h>
   94 
   95 #define ONSIG   32              /* NSIG for osig* syscalls.  XXX. */
   96 
   97 SDT_PROVIDER_DECLARE(proc);
   98 SDT_PROBE_DEFINE3(proc, , , signal__send,
   99     "struct thread *", "struct proc *", "int");
  100 SDT_PROBE_DEFINE2(proc, , , signal__clear,
  101     "int", "ksiginfo_t *");
  102 SDT_PROBE_DEFINE3(proc, , , signal__discard,
  103     "struct thread *", "struct proc *", "int");
  104 
  105 static int      coredump(struct thread *);
  106 static int      killpg1(struct thread *td, int sig, int pgid, int all,
  107                     ksiginfo_t *ksi);
  108 static int      issignal(struct thread *td);
  109 static int      sigprop(int sig);
  110 static void     tdsigwakeup(struct thread *, int, sig_t, int);
  111 static int      sig_suspend_threads(struct thread *, struct proc *, int);
  112 static int      filt_sigattach(struct knote *kn);
  113 static void     filt_sigdetach(struct knote *kn);
  114 static int      filt_signal(struct knote *kn, long hint);
  115 static struct thread *sigtd(struct proc *p, int sig, int prop);
  116 static void     sigqueue_start(void);
  117 
  118 static uma_zone_t       ksiginfo_zone = NULL;
  119 struct filterops sig_filtops = {
  120         .f_isfd = 0,
  121         .f_attach = filt_sigattach,
  122         .f_detach = filt_sigdetach,
  123         .f_event = filt_signal,
  124 };
  125 
  126 static int      kern_logsigexit = 1;
  127 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
  128     &kern_logsigexit, 0,
  129     "Log processes quitting on abnormal signals to syslog(3)");
  130 
  131 static int      kern_forcesigexit = 1;
  132 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
  133     &kern_forcesigexit, 0, "Force trap signal to be handled");
  134 
  135 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
  136     "POSIX real time signal");
  137 
  138 static int      max_pending_per_proc = 128;
  139 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
  140     &max_pending_per_proc, 0, "Max pending signals per proc");
  141 
  142 static int      preallocate_siginfo = 1024;
  143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
  144     &preallocate_siginfo, 0, "Preallocated signal memory size");
  145 
  146 static int      signal_overflow = 0;
  147 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
  148     &signal_overflow, 0, "Number of signals overflew");
  149 
  150 static int      signal_alloc_fail = 0;
  151 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
  152     &signal_alloc_fail, 0, "signals failed to be allocated");
  153 
  154 static int      kern_lognosys = 0;
  155 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
  156     "Log invalid syscalls");
  157 
  158 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
  159 
  160 /*
  161  * Policy -- Can ucred cr1 send SIGIO to process cr2?
  162  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
  163  * in the right situations.
  164  */
  165 #define CANSIGIO(cr1, cr2) \
  166         ((cr1)->cr_uid == 0 || \
  167             (cr1)->cr_ruid == (cr2)->cr_ruid || \
  168             (cr1)->cr_uid == (cr2)->cr_ruid || \
  169             (cr1)->cr_ruid == (cr2)->cr_uid || \
  170             (cr1)->cr_uid == (cr2)->cr_uid)
  171 
  172 static int      sugid_coredump;
  173 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
  174     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
  175 
  176 static int      capmode_coredump;
  177 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
  178     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
  179 
  180 static int      do_coredump = 1;
  181 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
  182         &do_coredump, 0, "Enable/Disable coredumps");
  183 
  184 static int      set_core_nodump_flag = 0;
  185 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
  186         0, "Enable setting the NODUMP flag on coredump files");
  187 
  188 static int      coredump_devctl = 0;
  189 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
  190         0, "Generate a devctl notification when processes coredump");
  191 
  192 /*
  193  * Signal properties and actions.
  194  * The array below categorizes the signals and their default actions
  195  * according to the following properties:
  196  */
  197 #define SIGPROP_KILL            0x01    /* terminates process by default */
  198 #define SIGPROP_CORE            0x02    /* ditto and coredumps */
  199 #define SIGPROP_STOP            0x04    /* suspend process */
  200 #define SIGPROP_TTYSTOP         0x08    /* ditto, from tty */
  201 #define SIGPROP_IGNORE          0x10    /* ignore by default */
  202 #define SIGPROP_CONT            0x20    /* continue if suspended */
  203 #define SIGPROP_CANTMASK        0x40    /* non-maskable, catchable */
  204 
  205 static int sigproptbl[NSIG] = {
  206         [SIGHUP] =      SIGPROP_KILL,
  207         [SIGINT] =      SIGPROP_KILL,
  208         [SIGQUIT] =     SIGPROP_KILL | SIGPROP_CORE,
  209         [SIGILL] =      SIGPROP_KILL | SIGPROP_CORE,
  210         [SIGTRAP] =     SIGPROP_KILL | SIGPROP_CORE,
  211         [SIGABRT] =     SIGPROP_KILL | SIGPROP_CORE,
  212         [SIGEMT] =      SIGPROP_KILL | SIGPROP_CORE,
  213         [SIGFPE] =      SIGPROP_KILL | SIGPROP_CORE,
  214         [SIGKILL] =     SIGPROP_KILL,
  215         [SIGBUS] =      SIGPROP_KILL | SIGPROP_CORE,
  216         [SIGSEGV] =     SIGPROP_KILL | SIGPROP_CORE,
  217         [SIGSYS] =      SIGPROP_KILL | SIGPROP_CORE,
  218         [SIGPIPE] =     SIGPROP_KILL,
  219         [SIGALRM] =     SIGPROP_KILL,
  220         [SIGTERM] =     SIGPROP_KILL,
  221         [SIGURG] =      SIGPROP_IGNORE,
  222         [SIGSTOP] =     SIGPROP_STOP,
  223         [SIGTSTP] =     SIGPROP_STOP | SIGPROP_TTYSTOP,
  224         [SIGCONT] =     SIGPROP_IGNORE | SIGPROP_CONT,
  225         [SIGCHLD] =     SIGPROP_IGNORE,
  226         [SIGTTIN] =     SIGPROP_STOP | SIGPROP_TTYSTOP,
  227         [SIGTTOU] =     SIGPROP_STOP | SIGPROP_TTYSTOP,
  228         [SIGIO] =       SIGPROP_IGNORE,
  229         [SIGXCPU] =     SIGPROP_KILL,
  230         [SIGXFSZ] =     SIGPROP_KILL,
  231         [SIGVTALRM] =   SIGPROP_KILL,
  232         [SIGPROF] =     SIGPROP_KILL,
  233         [SIGWINCH] =    SIGPROP_IGNORE,
  234         [SIGINFO] =     SIGPROP_IGNORE,
  235         [SIGUSR1] =     SIGPROP_KILL,
  236         [SIGUSR2] =     SIGPROP_KILL,
  237 };
  238 
  239 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
  240 
  241 static void
  242 sigqueue_start(void)
  243 {
  244         ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
  245                 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  246         uma_prealloc(ksiginfo_zone, preallocate_siginfo);
  247         p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
  248         p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
  249         p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
  250 }
  251 
  252 ksiginfo_t *
  253 ksiginfo_alloc(int wait)
  254 {
  255         int flags;
  256 
  257         flags = M_ZERO;
  258         if (! wait)
  259                 flags |= M_NOWAIT;
  260         if (ksiginfo_zone != NULL)
  261                 return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
  262         return (NULL);
  263 }
  264 
  265 void
  266 ksiginfo_free(ksiginfo_t *ksi)
  267 {
  268         uma_zfree(ksiginfo_zone, ksi);
  269 }
  270 
  271 static __inline int
  272 ksiginfo_tryfree(ksiginfo_t *ksi)
  273 {
  274         if (!(ksi->ksi_flags & KSI_EXT)) {
  275                 uma_zfree(ksiginfo_zone, ksi);
  276                 return (1);
  277         }
  278         return (0);
  279 }
  280 
  281 void
  282 sigqueue_init(sigqueue_t *list, struct proc *p)
  283 {
  284         SIGEMPTYSET(list->sq_signals);
  285         SIGEMPTYSET(list->sq_kill);
  286         SIGEMPTYSET(list->sq_ptrace);
  287         TAILQ_INIT(&list->sq_list);
  288         list->sq_proc = p;
  289         list->sq_flags = SQ_INIT;
  290 }
  291 
  292 /*
  293  * Get a signal's ksiginfo.
  294  * Return:
  295  *      0       -       signal not found
  296  *      others  -       signal number
  297  */
  298 static int
  299 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
  300 {
  301         struct proc *p = sq->sq_proc;
  302         struct ksiginfo *ksi, *next;
  303         int count = 0;
  304 
  305         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  306 
  307         if (!SIGISMEMBER(sq->sq_signals, signo))
  308                 return (0);
  309 
  310         if (SIGISMEMBER(sq->sq_ptrace, signo)) {
  311                 count++;
  312                 SIGDELSET(sq->sq_ptrace, signo);
  313                 si->ksi_flags |= KSI_PTRACE;
  314         }
  315         if (SIGISMEMBER(sq->sq_kill, signo)) {
  316                 count++;
  317                 if (count == 1)
  318                         SIGDELSET(sq->sq_kill, signo);
  319         }
  320 
  321         TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
  322                 if (ksi->ksi_signo == signo) {
  323                         if (count == 0) {
  324                                 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  325                                 ksi->ksi_sigq = NULL;
  326                                 ksiginfo_copy(ksi, si);
  327                                 if (ksiginfo_tryfree(ksi) && p != NULL)
  328                                         p->p_pendingcnt--;
  329                         }
  330                         if (++count > 1)
  331                                 break;
  332                 }
  333         }
  334 
  335         if (count <= 1)
  336                 SIGDELSET(sq->sq_signals, signo);
  337         si->ksi_signo = signo;
  338         return (signo);
  339 }
  340 
  341 void
  342 sigqueue_take(ksiginfo_t *ksi)
  343 {
  344         struct ksiginfo *kp;
  345         struct proc     *p;
  346         sigqueue_t      *sq;
  347 
  348         if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
  349                 return;
  350 
  351         p = sq->sq_proc;
  352         TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  353         ksi->ksi_sigq = NULL;
  354         if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
  355                 p->p_pendingcnt--;
  356 
  357         for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
  358              kp = TAILQ_NEXT(kp, ksi_link)) {
  359                 if (kp->ksi_signo == ksi->ksi_signo)
  360                         break;
  361         }
  362         if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
  363             !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
  364                 SIGDELSET(sq->sq_signals, ksi->ksi_signo);
  365 }
  366 
  367 static int
  368 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
  369 {
  370         struct proc *p = sq->sq_proc;
  371         struct ksiginfo *ksi;
  372         int ret = 0;
  373 
  374         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  375 
  376         /*
  377          * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
  378          * for these signals.
  379          */
  380         if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
  381                 SIGADDSET(sq->sq_kill, signo);
  382                 goto out_set_bit;
  383         }
  384 
  385         /* directly insert the ksi, don't copy it */
  386         if (si->ksi_flags & KSI_INS) {
  387                 if (si->ksi_flags & KSI_HEAD)
  388                         TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
  389                 else
  390                         TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
  391                 si->ksi_sigq = sq;
  392                 goto out_set_bit;
  393         }
  394 
  395         if (__predict_false(ksiginfo_zone == NULL)) {
  396                 SIGADDSET(sq->sq_kill, signo);
  397                 goto out_set_bit;
  398         }
  399 
  400         if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
  401                 signal_overflow++;
  402                 ret = EAGAIN;
  403         } else if ((ksi = ksiginfo_alloc(0)) == NULL) {
  404                 signal_alloc_fail++;
  405                 ret = EAGAIN;
  406         } else {
  407                 if (p != NULL)
  408                         p->p_pendingcnt++;
  409                 ksiginfo_copy(si, ksi);
  410                 ksi->ksi_signo = signo;
  411                 if (si->ksi_flags & KSI_HEAD)
  412                         TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
  413                 else
  414                         TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
  415                 ksi->ksi_sigq = sq;
  416         }
  417 
  418         if (ret != 0) {
  419                 if ((si->ksi_flags & KSI_PTRACE) != 0) {
  420                         SIGADDSET(sq->sq_ptrace, signo);
  421                         ret = 0;
  422                         goto out_set_bit;
  423                 } else if ((si->ksi_flags & KSI_TRAP) != 0 ||
  424                     (si->ksi_flags & KSI_SIGQ) == 0) {
  425                         SIGADDSET(sq->sq_kill, signo);
  426                         ret = 0;
  427                         goto out_set_bit;
  428                 }
  429                 return (ret);
  430         }
  431 
  432 out_set_bit:
  433         SIGADDSET(sq->sq_signals, signo);
  434         return (ret);
  435 }
  436 
  437 void
  438 sigqueue_flush(sigqueue_t *sq)
  439 {
  440         struct proc *p = sq->sq_proc;
  441         ksiginfo_t *ksi;
  442 
  443         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  444 
  445         if (p != NULL)
  446                 PROC_LOCK_ASSERT(p, MA_OWNED);
  447 
  448         while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
  449                 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  450                 ksi->ksi_sigq = NULL;
  451                 if (ksiginfo_tryfree(ksi) && p != NULL)
  452                         p->p_pendingcnt--;
  453         }
  454 
  455         SIGEMPTYSET(sq->sq_signals);
  456         SIGEMPTYSET(sq->sq_kill);
  457         SIGEMPTYSET(sq->sq_ptrace);
  458 }
  459 
  460 static void
  461 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
  462 {
  463         sigset_t tmp;
  464         struct proc *p1, *p2;
  465         ksiginfo_t *ksi, *next;
  466 
  467         KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
  468         KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
  469         p1 = src->sq_proc;
  470         p2 = dst->sq_proc;
  471         /* Move siginfo to target list */
  472         TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
  473                 if (SIGISMEMBER(*set, ksi->ksi_signo)) {
  474                         TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
  475                         if (p1 != NULL)
  476                                 p1->p_pendingcnt--;
  477                         TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
  478                         ksi->ksi_sigq = dst;
  479                         if (p2 != NULL)
  480                                 p2->p_pendingcnt++;
  481                 }
  482         }
  483 
  484         /* Move pending bits to target list */
  485         tmp = src->sq_kill;
  486         SIGSETAND(tmp, *set);
  487         SIGSETOR(dst->sq_kill, tmp);
  488         SIGSETNAND(src->sq_kill, tmp);
  489 
  490         tmp = src->sq_ptrace;
  491         SIGSETAND(tmp, *set);
  492         SIGSETOR(dst->sq_ptrace, tmp);
  493         SIGSETNAND(src->sq_ptrace, tmp);
  494 
  495         tmp = src->sq_signals;
  496         SIGSETAND(tmp, *set);
  497         SIGSETOR(dst->sq_signals, tmp);
  498         SIGSETNAND(src->sq_signals, tmp);
  499 }
  500 
  501 #if 0
  502 static void
  503 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
  504 {
  505         sigset_t set;
  506 
  507         SIGEMPTYSET(set);
  508         SIGADDSET(set, signo);
  509         sigqueue_move_set(src, dst, &set);
  510 }
  511 #endif
  512 
  513 static void
  514 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
  515 {
  516         struct proc *p = sq->sq_proc;
  517         ksiginfo_t *ksi, *next;
  518 
  519         KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
  520 
  521         /* Remove siginfo queue */
  522         TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
  523                 if (SIGISMEMBER(*set, ksi->ksi_signo)) {
  524                         TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  525                         ksi->ksi_sigq = NULL;
  526                         if (ksiginfo_tryfree(ksi) && p != NULL)
  527                                 p->p_pendingcnt--;
  528                 }
  529         }
  530         SIGSETNAND(sq->sq_kill, *set);
  531         SIGSETNAND(sq->sq_ptrace, *set);
  532         SIGSETNAND(sq->sq_signals, *set);
  533 }
  534 
  535 void
  536 sigqueue_delete(sigqueue_t *sq, int signo)
  537 {
  538         sigset_t set;
  539 
  540         SIGEMPTYSET(set);
  541         SIGADDSET(set, signo);
  542         sigqueue_delete_set(sq, &set);
  543 }
  544 
  545 /* Remove a set of signals for a process */
  546 static void
  547 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
  548 {
  549         sigqueue_t worklist;
  550         struct thread *td0;
  551 
  552         PROC_LOCK_ASSERT(p, MA_OWNED);
  553 
  554         sigqueue_init(&worklist, NULL);
  555         sigqueue_move_set(&p->p_sigqueue, &worklist, set);
  556 
  557         FOREACH_THREAD_IN_PROC(p, td0)
  558                 sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
  559 
  560         sigqueue_flush(&worklist);
  561 }
  562 
  563 void
  564 sigqueue_delete_proc(struct proc *p, int signo)
  565 {
  566         sigset_t set;
  567 
  568         SIGEMPTYSET(set);
  569         SIGADDSET(set, signo);
  570         sigqueue_delete_set_proc(p, &set);
  571 }
  572 
  573 static void
  574 sigqueue_delete_stopmask_proc(struct proc *p)
  575 {
  576         sigset_t set;
  577 
  578         SIGEMPTYSET(set);
  579         SIGADDSET(set, SIGSTOP);
  580         SIGADDSET(set, SIGTSTP);
  581         SIGADDSET(set, SIGTTIN);
  582         SIGADDSET(set, SIGTTOU);
  583         sigqueue_delete_set_proc(p, &set);
  584 }
  585 
  586 /*
  587  * Determine signal that should be delivered to thread td, the current
  588  * thread, 0 if none.  If there is a pending stop signal with default
  589  * action, the process stops in issignal().
  590  */
  591 int
  592 cursig(struct thread *td)
  593 {
  594         PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
  595         mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
  596         THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
  597         return (SIGPENDING(td) ? issignal(td) : 0);
  598 }
  599 
  600 /*
  601  * Arrange for ast() to handle unmasked pending signals on return to user
  602  * mode.  This must be called whenever a signal is added to td_sigqueue or
  603  * unmasked in td_sigmask.
  604  */
  605 void
  606 signotify(struct thread *td)
  607 {
  608 
  609         PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
  610 
  611         if (SIGPENDING(td)) {
  612                 thread_lock(td);
  613                 td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
  614                 thread_unlock(td);
  615         }
  616 }
  617 
  618 int
  619 sigonstack(size_t sp)
  620 {
  621         struct thread *td = curthread;
  622 
  623         return ((td->td_pflags & TDP_ALTSTACK) ?
  624 #if defined(COMPAT_43)
  625             ((td->td_sigstk.ss_size == 0) ?
  626                 (td->td_sigstk.ss_flags & SS_ONSTACK) :
  627                 ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
  628 #else
  629             ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
  630 #endif
  631             : 0);
  632 }
  633 
  634 static __inline int
  635 sigprop(int sig)
  636 {
  637 
  638         if (sig > 0 && sig < nitems(sigproptbl))
  639                 return (sigproptbl[sig]);
  640         return (0);
  641 }
  642 
  643 int
  644 sig_ffs(sigset_t *set)
  645 {
  646         int i;
  647 
  648         for (i = 0; i < _SIG_WORDS; i++)
  649                 if (set->__bits[i])
  650                         return (ffs(set->__bits[i]) + (i * 32));
  651         return (0);
  652 }
  653 
  654 static bool
  655 sigact_flag_test(const struct sigaction *act, int flag)
  656 {
  657 
  658         /*
  659          * SA_SIGINFO is reset when signal disposition is set to
  660          * ignore or default.  Other flags are kept according to user
  661          * settings.
  662          */
  663         return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
  664             ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
  665             (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
  666 }
  667 
  668 /*
  669  * kern_sigaction
  670  * sigaction
  671  * freebsd4_sigaction
  672  * osigaction
  673  */
  674 int
  675 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
  676     struct sigaction *oact, int flags)
  677 {
  678         struct sigacts *ps;
  679         struct proc *p = td->td_proc;
  680 
  681         if (!_SIG_VALID(sig))
  682                 return (EINVAL);
  683         if (act != NULL && act->sa_handler != SIG_DFL &&
  684             act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
  685             SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
  686             SA_NOCLDWAIT | SA_SIGINFO)) != 0)
  687                 return (EINVAL);
  688 
  689         PROC_LOCK(p);
  690         ps = p->p_sigacts;
  691         mtx_lock(&ps->ps_mtx);
  692         if (oact) {
  693                 memset(oact, 0, sizeof(*oact));
  694                 oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
  695                 if (SIGISMEMBER(ps->ps_sigonstack, sig))
  696                         oact->sa_flags |= SA_ONSTACK;
  697                 if (!SIGISMEMBER(ps->ps_sigintr, sig))
  698                         oact->sa_flags |= SA_RESTART;
  699                 if (SIGISMEMBER(ps->ps_sigreset, sig))
  700                         oact->sa_flags |= SA_RESETHAND;
  701                 if (SIGISMEMBER(ps->ps_signodefer, sig))
  702                         oact->sa_flags |= SA_NODEFER;
  703                 if (SIGISMEMBER(ps->ps_siginfo, sig)) {
  704                         oact->sa_flags |= SA_SIGINFO;
  705                         oact->sa_sigaction =
  706                             (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
  707                 } else
  708                         oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
  709                 if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
  710                         oact->sa_flags |= SA_NOCLDSTOP;
  711                 if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
  712                         oact->sa_flags |= SA_NOCLDWAIT;
  713         }
  714         if (act) {
  715                 if ((sig == SIGKILL || sig == SIGSTOP) &&
  716                     act->sa_handler != SIG_DFL) {
  717                         mtx_unlock(&ps->ps_mtx);
  718                         PROC_UNLOCK(p);
  719                         return (EINVAL);
  720                 }
  721 
  722                 /*
  723                  * Change setting atomically.
  724                  */
  725 
  726                 ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
  727                 SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
  728                 if (sigact_flag_test(act, SA_SIGINFO)) {
  729                         ps->ps_sigact[_SIG_IDX(sig)] =
  730                             (__sighandler_t *)act->sa_sigaction;
  731                         SIGADDSET(ps->ps_siginfo, sig);
  732                 } else {
  733                         ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
  734                         SIGDELSET(ps->ps_siginfo, sig);
  735                 }
  736                 if (!sigact_flag_test(act, SA_RESTART))
  737                         SIGADDSET(ps->ps_sigintr, sig);
  738                 else
  739                         SIGDELSET(ps->ps_sigintr, sig);
  740                 if (sigact_flag_test(act, SA_ONSTACK))
  741                         SIGADDSET(ps->ps_sigonstack, sig);
  742                 else
  743                         SIGDELSET(ps->ps_sigonstack, sig);
  744                 if (sigact_flag_test(act, SA_RESETHAND))
  745                         SIGADDSET(ps->ps_sigreset, sig);
  746                 else
  747                         SIGDELSET(ps->ps_sigreset, sig);
  748                 if (sigact_flag_test(act, SA_NODEFER))
  749                         SIGADDSET(ps->ps_signodefer, sig);
  750                 else
  751                         SIGDELSET(ps->ps_signodefer, sig);
  752                 if (sig == SIGCHLD) {
  753                         if (act->sa_flags & SA_NOCLDSTOP)
  754                                 ps->ps_flag |= PS_NOCLDSTOP;
  755                         else
  756                                 ps->ps_flag &= ~PS_NOCLDSTOP;
  757                         if (act->sa_flags & SA_NOCLDWAIT) {
  758                                 /*
  759                                  * Paranoia: since SA_NOCLDWAIT is implemented
  760                                  * by reparenting the dying child to PID 1 (and
  761                                  * trust it to reap the zombie), PID 1 itself
  762                                  * is forbidden to set SA_NOCLDWAIT.
  763                                  */
  764                                 if (p->p_pid == 1)
  765                                         ps->ps_flag &= ~PS_NOCLDWAIT;
  766                                 else
  767                                         ps->ps_flag |= PS_NOCLDWAIT;
  768                         } else
  769                                 ps->ps_flag &= ~PS_NOCLDWAIT;
  770                         if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
  771                                 ps->ps_flag |= PS_CLDSIGIGN;
  772                         else
  773                                 ps->ps_flag &= ~PS_CLDSIGIGN;
  774                 }
  775                 /*
  776                  * Set bit in ps_sigignore for signals that are set to SIG_IGN,
  777                  * and for signals set to SIG_DFL where the default is to
  778                  * ignore. However, don't put SIGCONT in ps_sigignore, as we
  779                  * have to restart the process.
  780                  */
  781                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  782                     (sigprop(sig) & SIGPROP_IGNORE &&
  783                      ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
  784                         /* never to be seen again */
  785                         sigqueue_delete_proc(p, sig);
  786                         if (sig != SIGCONT)
  787                                 /* easier in psignal */
  788                                 SIGADDSET(ps->ps_sigignore, sig);
  789                         SIGDELSET(ps->ps_sigcatch, sig);
  790                 } else {
  791                         SIGDELSET(ps->ps_sigignore, sig);
  792                         if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
  793                                 SIGDELSET(ps->ps_sigcatch, sig);
  794                         else
  795                                 SIGADDSET(ps->ps_sigcatch, sig);
  796                 }
  797 #ifdef COMPAT_FREEBSD4
  798                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  799                     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
  800                     (flags & KSA_FREEBSD4) == 0)
  801                         SIGDELSET(ps->ps_freebsd4, sig);
  802                 else
  803                         SIGADDSET(ps->ps_freebsd4, sig);
  804 #endif
  805 #ifdef COMPAT_43
  806                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  807                     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
  808                     (flags & KSA_OSIGSET) == 0)
  809                         SIGDELSET(ps->ps_osigset, sig);
  810                 else
  811                         SIGADDSET(ps->ps_osigset, sig);
  812 #endif
  813         }
  814         mtx_unlock(&ps->ps_mtx);
  815         PROC_UNLOCK(p);
  816         return (0);
  817 }
  818 
  819 #ifndef _SYS_SYSPROTO_H_
  820 struct sigaction_args {
  821         int     sig;
  822         struct  sigaction *act;
  823         struct  sigaction *oact;
  824 };
  825 #endif
  826 int
  827 sys_sigaction(struct thread *td, struct sigaction_args *uap)
  828 {
  829         struct sigaction act, oact;
  830         struct sigaction *actp, *oactp;
  831         int error;
  832 
  833         actp = (uap->act != NULL) ? &act : NULL;
  834         oactp = (uap->oact != NULL) ? &oact : NULL;
  835         if (actp) {
  836                 error = copyin(uap->act, actp, sizeof(act));
  837                 if (error)
  838                         return (error);
  839         }
  840         error = kern_sigaction(td, uap->sig, actp, oactp, 0);
  841         if (oactp && !error)
  842                 error = copyout(oactp, uap->oact, sizeof(oact));
  843         return (error);
  844 }
  845 
  846 #ifdef COMPAT_FREEBSD4
  847 #ifndef _SYS_SYSPROTO_H_
  848 struct freebsd4_sigaction_args {
  849         int     sig;
  850         struct  sigaction *act;
  851         struct  sigaction *oact;
  852 };
  853 #endif
  854 int
  855 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
  856 {
  857         struct sigaction act, oact;
  858         struct sigaction *actp, *oactp;
  859         int error;
  860 
  861 
  862         actp = (uap->act != NULL) ? &act : NULL;
  863         oactp = (uap->oact != NULL) ? &oact : NULL;
  864         if (actp) {
  865                 error = copyin(uap->act, actp, sizeof(act));
  866                 if (error)
  867                         return (error);
  868         }
  869         error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
  870         if (oactp && !error)
  871                 error = copyout(oactp, uap->oact, sizeof(oact));
  872         return (error);
  873 }
  874 #endif  /* COMAPT_FREEBSD4 */
  875 
  876 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
  877 #ifndef _SYS_SYSPROTO_H_
  878 struct osigaction_args {
  879         int     signum;
  880         struct  osigaction *nsa;
  881         struct  osigaction *osa;
  882 };
  883 #endif
  884 int
  885 osigaction(struct thread *td, struct osigaction_args *uap)
  886 {
  887         struct osigaction sa;
  888         struct sigaction nsa, osa;
  889         struct sigaction *nsap, *osap;
  890         int error;
  891 
  892         if (uap->signum <= 0 || uap->signum >= ONSIG)
  893                 return (EINVAL);
  894 
  895         nsap = (uap->nsa != NULL) ? &nsa : NULL;
  896         osap = (uap->osa != NULL) ? &osa : NULL;
  897 
  898         if (nsap) {
  899                 error = copyin(uap->nsa, &sa, sizeof(sa));
  900                 if (error)
  901                         return (error);
  902                 nsap->sa_handler = sa.sa_handler;
  903                 nsap->sa_flags = sa.sa_flags;
  904                 OSIG2SIG(sa.sa_mask, nsap->sa_mask);
  905         }
  906         error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
  907         if (osap && !error) {
  908                 sa.sa_handler = osap->sa_handler;
  909                 sa.sa_flags = osap->sa_flags;
  910                 SIG2OSIG(osap->sa_mask, sa.sa_mask);
  911                 error = copyout(&sa, uap->osa, sizeof(sa));
  912         }
  913         return (error);
  914 }
  915 
  916 #if !defined(__i386__)
  917 /* Avoid replicating the same stub everywhere */
  918 int
  919 osigreturn(struct thread *td, struct osigreturn_args *uap)
  920 {
  921 
  922         return (nosys(td, (struct nosys_args *)uap));
  923 }
  924 #endif
  925 #endif /* COMPAT_43 */
  926 
  927 /*
  928  * Initialize signal state for process 0;
  929  * set to ignore signals that are ignored by default.
  930  */
  931 void
  932 siginit(struct proc *p)
  933 {
  934         int i;
  935         struct sigacts *ps;
  936 
  937         PROC_LOCK(p);
  938         ps = p->p_sigacts;
  939         mtx_lock(&ps->ps_mtx);
  940         for (i = 1; i <= NSIG; i++) {
  941                 if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
  942                         SIGADDSET(ps->ps_sigignore, i);
  943                 }
  944         }
  945         mtx_unlock(&ps->ps_mtx);
  946         PROC_UNLOCK(p);
  947 }
  948 
  949 /*
  950  * Reset specified signal to the default disposition.
  951  */
  952 static void
  953 sigdflt(struct sigacts *ps, int sig)
  954 {
  955 
  956         mtx_assert(&ps->ps_mtx, MA_OWNED);
  957         SIGDELSET(ps->ps_sigcatch, sig);
  958         if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
  959                 SIGADDSET(ps->ps_sigignore, sig);
  960         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
  961         SIGDELSET(ps->ps_siginfo, sig);
  962 }
  963 
  964 /*
  965  * Reset signals for an exec of the specified process.
  966  */
  967 void
  968 execsigs(struct proc *p)
  969 {
  970         sigset_t osigignore;
  971         struct sigacts *ps;
  972         int sig;
  973         struct thread *td;
  974 
  975         /*
  976          * Reset caught signals.  Held signals remain held
  977          * through td_sigmask (unless they were caught,
  978          * and are now ignored by default).
  979          */
  980         PROC_LOCK_ASSERT(p, MA_OWNED);
  981         ps = p->p_sigacts;
  982         mtx_lock(&ps->ps_mtx);
  983         while (SIGNOTEMPTY(ps->ps_sigcatch)) {
  984                 sig = sig_ffs(&ps->ps_sigcatch);
  985                 sigdflt(ps, sig);
  986                 if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
  987                         sigqueue_delete_proc(p, sig);
  988         }
  989 
  990         /*
  991          * As CloudABI processes cannot modify signal handlers, fully
  992          * reset all signals to their default behavior. Do ignore
  993          * SIGPIPE, as it would otherwise be impossible to recover from
  994          * writes to broken pipes and sockets.
  995          */
  996         if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
  997                 osigignore = ps->ps_sigignore;
  998                 while (SIGNOTEMPTY(osigignore)) {
  999                         sig = sig_ffs(&osigignore);
 1000                         SIGDELSET(osigignore, sig);
 1001                         if (sig != SIGPIPE)
 1002                                 sigdflt(ps, sig);
 1003                 }
 1004                 SIGADDSET(ps->ps_sigignore, SIGPIPE);
 1005         }
 1006 
 1007         /*
 1008          * Reset stack state to the user stack.
 1009          * Clear set of signals caught on the signal stack.
 1010          */
 1011         td = curthread;
 1012         MPASS(td->td_proc == p);
 1013         td->td_sigstk.ss_flags = SS_DISABLE;
 1014         td->td_sigstk.ss_size = 0;
 1015         td->td_sigstk.ss_sp = 0;
 1016         td->td_pflags &= ~TDP_ALTSTACK;
 1017         /*
 1018          * Reset no zombies if child dies flag as Solaris does.
 1019          */
 1020         ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
 1021         if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
 1022                 ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
 1023         mtx_unlock(&ps->ps_mtx);
 1024 }
 1025 
 1026 /*
 1027  * kern_sigprocmask()
 1028  *
 1029  *      Manipulate signal mask.
 1030  */
 1031 int
 1032 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
 1033     int flags)
 1034 {
 1035         sigset_t new_block, oset1;
 1036         struct proc *p;
 1037         int error;
 1038 
 1039         p = td->td_proc;
 1040         if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
 1041                 PROC_LOCK_ASSERT(p, MA_OWNED);
 1042         else
 1043                 PROC_LOCK(p);
 1044         mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
 1045             ? MA_OWNED : MA_NOTOWNED);
 1046         if (oset != NULL)
 1047                 *oset = td->td_sigmask;
 1048 
 1049         error = 0;
 1050         if (set != NULL) {
 1051                 switch (how) {
 1052                 case SIG_BLOCK:
 1053                         SIG_CANTMASK(*set);
 1054                         oset1 = td->td_sigmask;
 1055                         SIGSETOR(td->td_sigmask, *set);
 1056                         new_block = td->td_sigmask;
 1057                         SIGSETNAND(new_block, oset1);
 1058                         break;
 1059                 case SIG_UNBLOCK:
 1060                         SIGSETNAND(td->td_sigmask, *set);
 1061                         signotify(td);
 1062                         goto out;
 1063                 case SIG_SETMASK:
 1064                         SIG_CANTMASK(*set);
 1065                         oset1 = td->td_sigmask;
 1066                         if (flags & SIGPROCMASK_OLD)
 1067                                 SIGSETLO(td->td_sigmask, *set);
 1068                         else
 1069                                 td->td_sigmask = *set;
 1070                         new_block = td->td_sigmask;
 1071                         SIGSETNAND(new_block, oset1);
 1072                         signotify(td);
 1073                         break;
 1074                 default:
 1075                         error = EINVAL;
 1076                         goto out;
 1077                 }
 1078 
 1079                 /*
 1080                  * The new_block set contains signals that were not previously
 1081                  * blocked, but are blocked now.
 1082                  *
 1083                  * In case we block any signal that was not previously blocked
 1084                  * for td, and process has the signal pending, try to schedule
 1085                  * signal delivery to some thread that does not block the
 1086                  * signal, possibly waking it up.
 1087                  */
 1088                 if (p->p_numthreads != 1)
 1089                         reschedule_signals(p, new_block, flags);
 1090         }
 1091 
 1092 out:
 1093         if (!(flags & SIGPROCMASK_PROC_LOCKED))
 1094                 PROC_UNLOCK(p);
 1095         return (error);
 1096 }
 1097 
 1098 #ifndef _SYS_SYSPROTO_H_
 1099 struct sigprocmask_args {
 1100         int     how;
 1101         const sigset_t *set;
 1102         sigset_t *oset;
 1103 };
 1104 #endif
 1105 int
 1106 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
 1107 {
 1108         sigset_t set, oset;
 1109         sigset_t *setp, *osetp;
 1110         int error;
 1111 
 1112         setp = (uap->set != NULL) ? &set : NULL;
 1113         osetp = (uap->oset != NULL) ? &oset : NULL;
 1114         if (setp) {
 1115                 error = copyin(uap->set, setp, sizeof(set));
 1116                 if (error)
 1117                         return (error);
 1118         }
 1119         error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
 1120         if (osetp && !error) {
 1121                 error = copyout(osetp, uap->oset, sizeof(oset));
 1122         }
 1123         return (error);
 1124 }
 1125 
 1126 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1127 #ifndef _SYS_SYSPROTO_H_
 1128 struct osigprocmask_args {
 1129         int     how;
 1130         osigset_t mask;
 1131 };
 1132 #endif
 1133 int
 1134 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
 1135 {
 1136         sigset_t set, oset;
 1137         int error;
 1138 
 1139         OSIG2SIG(uap->mask, set);
 1140         error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
 1141         SIG2OSIG(oset, td->td_retval[0]);
 1142         return (error);
 1143 }
 1144 #endif /* COMPAT_43 */
 1145 
 1146 int
 1147 sys_sigwait(struct thread *td, struct sigwait_args *uap)
 1148 {
 1149         ksiginfo_t ksi;
 1150         sigset_t set;
 1151         int error;
 1152 
 1153         error = copyin(uap->set, &set, sizeof(set));
 1154         if (error) {
 1155                 td->td_retval[0] = error;
 1156                 return (0);
 1157         }
 1158 
 1159         error = kern_sigtimedwait(td, set, &ksi, NULL);
 1160         if (error) {
 1161                 if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
 1162                         error = ERESTART;
 1163                 if (error == ERESTART)
 1164                         return (error);
 1165                 td->td_retval[0] = error;
 1166                 return (0);
 1167         }
 1168 
 1169         error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
 1170         td->td_retval[0] = error;
 1171         return (0);
 1172 }
 1173 
 1174 int
 1175 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
 1176 {
 1177         struct timespec ts;
 1178         struct timespec *timeout;
 1179         sigset_t set;
 1180         ksiginfo_t ksi;
 1181         int error;
 1182 
 1183         if (uap->timeout) {
 1184                 error = copyin(uap->timeout, &ts, sizeof(ts));
 1185                 if (error)
 1186                         return (error);
 1187 
 1188                 timeout = &ts;
 1189         } else
 1190                 timeout = NULL;
 1191 
 1192         error = copyin(uap->set, &set, sizeof(set));
 1193         if (error)
 1194                 return (error);
 1195 
 1196         error = kern_sigtimedwait(td, set, &ksi, timeout);
 1197         if (error)
 1198                 return (error);
 1199 
 1200         if (uap->info)
 1201                 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
 1202 
 1203         if (error == 0)
 1204                 td->td_retval[0] = ksi.ksi_signo;
 1205         return (error);
 1206 }
 1207 
 1208 int
 1209 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
 1210 {
 1211         ksiginfo_t ksi;
 1212         sigset_t set;
 1213         int error;
 1214 
 1215         error = copyin(uap->set, &set, sizeof(set));
 1216         if (error)
 1217                 return (error);
 1218 
 1219         error = kern_sigtimedwait(td, set, &ksi, NULL);
 1220         if (error)
 1221                 return (error);
 1222 
 1223         if (uap->info)
 1224                 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
 1225 
 1226         if (error == 0)
 1227                 td->td_retval[0] = ksi.ksi_signo;
 1228         return (error);
 1229 }
 1230 
 1231 static void
 1232 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
 1233 {
 1234         struct thread *thr;
 1235 
 1236         FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
 1237                 if (thr == td)
 1238                         thr->td_si = *si;
 1239                 else
 1240                         thr->td_si.si_signo = 0;
 1241         }
 1242 }
 1243 
 1244 int
 1245 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
 1246         struct timespec *timeout)
 1247 {
 1248         struct sigacts *ps;
 1249         sigset_t saved_mask, new_block;
 1250         struct proc *p;
 1251         int error, sig, timo, timevalid = 0;
 1252         struct timespec rts, ets, ts;
 1253         struct timeval tv;
 1254 
 1255         p = td->td_proc;
 1256         error = 0;
 1257         ets.tv_sec = 0;
 1258         ets.tv_nsec = 0;
 1259 
 1260         if (timeout != NULL) {
 1261                 if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
 1262                         timevalid = 1;
 1263                         getnanouptime(&rts);
 1264                         timespecadd(&rts, timeout, &ets);
 1265                 }
 1266         }
 1267         ksiginfo_init(ksi);
 1268         /* Some signals can not be waited for. */
 1269         SIG_CANTMASK(waitset);
 1270         ps = p->p_sigacts;
 1271         PROC_LOCK(p);
 1272         saved_mask = td->td_sigmask;
 1273         SIGSETNAND(td->td_sigmask, waitset);
 1274         for (;;) {
 1275                 mtx_lock(&ps->ps_mtx);
 1276                 sig = cursig(td);
 1277                 mtx_unlock(&ps->ps_mtx);
 1278                 KASSERT(sig >= 0, ("sig %d", sig));
 1279                 if (sig != 0 && SIGISMEMBER(waitset, sig)) {
 1280                         if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
 1281                             sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
 1282                                 error = 0;
 1283                                 break;
 1284                         }
 1285                 }
 1286 
 1287                 if (error != 0)
 1288                         break;
 1289 
 1290                 /*
 1291                  * POSIX says this must be checked after looking for pending
 1292                  * signals.
 1293                  */
 1294                 if (timeout != NULL) {
 1295                         if (!timevalid) {
 1296                                 error = EINVAL;
 1297                                 break;
 1298                         }
 1299                         getnanouptime(&rts);
 1300                         if (timespeccmp(&rts, &ets, >=)) {
 1301                                 error = EAGAIN;
 1302                                 break;
 1303                         }
 1304                         timespecsub(&ets, &rts, &ts);
 1305                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1306                         timo = tvtohz(&tv);
 1307                 } else {
 1308                         timo = 0;
 1309                 }
 1310 
 1311                 error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
 1312 
 1313                 if (timeout != NULL) {
 1314                         if (error == ERESTART) {
 1315                                 /* Timeout can not be restarted. */
 1316                                 error = EINTR;
 1317                         } else if (error == EAGAIN) {
 1318                                 /* We will calculate timeout by ourself. */
 1319                                 error = 0;
 1320                         }
 1321                 }
 1322         }
 1323 
 1324         new_block = saved_mask;
 1325         SIGSETNAND(new_block, td->td_sigmask);
 1326         td->td_sigmask = saved_mask;
 1327         /*
 1328          * Fewer signals can be delivered to us, reschedule signal
 1329          * notification.
 1330          */
 1331         if (p->p_numthreads != 1)
 1332                 reschedule_signals(p, new_block, 0);
 1333 
 1334         if (error == 0) {
 1335                 SDT_PROBE2(proc, , , signal__clear, sig, ksi);
 1336 
 1337                 if (ksi->ksi_code == SI_TIMER)
 1338                         itimer_accept(p, ksi->ksi_timerid, ksi);
 1339 
 1340 #ifdef KTRACE
 1341                 if (KTRPOINT(td, KTR_PSIG)) {
 1342                         sig_t action;
 1343 
 1344                         mtx_lock(&ps->ps_mtx);
 1345                         action = ps->ps_sigact[_SIG_IDX(sig)];
 1346                         mtx_unlock(&ps->ps_mtx);
 1347                         ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
 1348                 }
 1349 #endif
 1350                 if (sig == SIGKILL) {
 1351                         proc_td_siginfo_capture(td, &ksi->ksi_info);
 1352                         sigexit(td, sig);
 1353                 }
 1354         }
 1355         PROC_UNLOCK(p);
 1356         return (error);
 1357 }
 1358 
 1359 #ifndef _SYS_SYSPROTO_H_
 1360 struct sigpending_args {
 1361         sigset_t        *set;
 1362 };
 1363 #endif
 1364 int
 1365 sys_sigpending(struct thread *td, struct sigpending_args *uap)
 1366 {
 1367         struct proc *p = td->td_proc;
 1368         sigset_t pending;
 1369 
 1370         PROC_LOCK(p);
 1371         pending = p->p_sigqueue.sq_signals;
 1372         SIGSETOR(pending, td->td_sigqueue.sq_signals);
 1373         PROC_UNLOCK(p);
 1374         return (copyout(&pending, uap->set, sizeof(sigset_t)));
 1375 }
 1376 
 1377 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1378 #ifndef _SYS_SYSPROTO_H_
 1379 struct osigpending_args {
 1380         int     dummy;
 1381 };
 1382 #endif
 1383 int
 1384 osigpending(struct thread *td, struct osigpending_args *uap)
 1385 {
 1386         struct proc *p = td->td_proc;
 1387         sigset_t pending;
 1388 
 1389         PROC_LOCK(p);
 1390         pending = p->p_sigqueue.sq_signals;
 1391         SIGSETOR(pending, td->td_sigqueue.sq_signals);
 1392         PROC_UNLOCK(p);
 1393         SIG2OSIG(pending, td->td_retval[0]);
 1394         return (0);
 1395 }
 1396 #endif /* COMPAT_43 */
 1397 
 1398 #if defined(COMPAT_43)
 1399 /*
 1400  * Generalized interface signal handler, 4.3-compatible.
 1401  */
 1402 #ifndef _SYS_SYSPROTO_H_
 1403 struct osigvec_args {
 1404         int     signum;
 1405         struct  sigvec *nsv;
 1406         struct  sigvec *osv;
 1407 };
 1408 #endif
 1409 /* ARGSUSED */
 1410 int
 1411 osigvec(struct thread *td, struct osigvec_args *uap)
 1412 {
 1413         struct sigvec vec;
 1414         struct sigaction nsa, osa;
 1415         struct sigaction *nsap, *osap;
 1416         int error;
 1417 
 1418         if (uap->signum <= 0 || uap->signum >= ONSIG)
 1419                 return (EINVAL);
 1420         nsap = (uap->nsv != NULL) ? &nsa : NULL;
 1421         osap = (uap->osv != NULL) ? &osa : NULL;
 1422         if (nsap) {
 1423                 error = copyin(uap->nsv, &vec, sizeof(vec));
 1424                 if (error)
 1425                         return (error);
 1426                 nsap->sa_handler = vec.sv_handler;
 1427                 OSIG2SIG(vec.sv_mask, nsap->sa_mask);
 1428                 nsap->sa_flags = vec.sv_flags;
 1429                 nsap->sa_flags ^= SA_RESTART;   /* opposite of SV_INTERRUPT */
 1430         }
 1431         error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
 1432         if (osap && !error) {
 1433                 vec.sv_handler = osap->sa_handler;
 1434                 SIG2OSIG(osap->sa_mask, vec.sv_mask);
 1435                 vec.sv_flags = osap->sa_flags;
 1436                 vec.sv_flags &= ~SA_NOCLDWAIT;
 1437                 vec.sv_flags ^= SA_RESTART;
 1438                 error = copyout(&vec, uap->osv, sizeof(vec));
 1439         }
 1440         return (error);
 1441 }
 1442 
 1443 #ifndef _SYS_SYSPROTO_H_
 1444 struct osigblock_args {
 1445         int     mask;
 1446 };
 1447 #endif
 1448 int
 1449 osigblock(struct thread *td, struct osigblock_args *uap)
 1450 {
 1451         sigset_t set, oset;
 1452 
 1453         OSIG2SIG(uap->mask, set);
 1454         kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
 1455         SIG2OSIG(oset, td->td_retval[0]);
 1456         return (0);
 1457 }
 1458 
 1459 #ifndef _SYS_SYSPROTO_H_
 1460 struct osigsetmask_args {
 1461         int     mask;
 1462 };
 1463 #endif
 1464 int
 1465 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
 1466 {
 1467         sigset_t set, oset;
 1468 
 1469         OSIG2SIG(uap->mask, set);
 1470         kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
 1471         SIG2OSIG(oset, td->td_retval[0]);
 1472         return (0);
 1473 }
 1474 #endif /* COMPAT_43 */
 1475 
 1476 /*
 1477  * Suspend calling thread until signal, providing mask to be set in the
 1478  * meantime.
 1479  */
 1480 #ifndef _SYS_SYSPROTO_H_
 1481 struct sigsuspend_args {
 1482         const sigset_t *sigmask;
 1483 };
 1484 #endif
 1485 /* ARGSUSED */
 1486 int
 1487 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
 1488 {
 1489         sigset_t mask;
 1490         int error;
 1491 
 1492         error = copyin(uap->sigmask, &mask, sizeof(mask));
 1493         if (error)
 1494                 return (error);
 1495         return (kern_sigsuspend(td, mask));
 1496 }
 1497 
 1498 int
 1499 kern_sigsuspend(struct thread *td, sigset_t mask)
 1500 {
 1501         struct proc *p = td->td_proc;
 1502         int has_sig, sig;
 1503 
 1504         /*
 1505          * When returning from sigsuspend, we want
 1506          * the old mask to be restored after the
 1507          * signal handler has finished.  Thus, we
 1508          * save it here and mark the sigacts structure
 1509          * to indicate this.
 1510          */
 1511         PROC_LOCK(p);
 1512         kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
 1513             SIGPROCMASK_PROC_LOCKED);
 1514         td->td_pflags |= TDP_OLDMASK;
 1515 
 1516         /*
 1517          * Process signals now. Otherwise, we can get spurious wakeup
 1518          * due to signal entered process queue, but delivered to other
 1519          * thread. But sigsuspend should return only on signal
 1520          * delivery.
 1521          */
 1522         (p->p_sysent->sv_set_syscall_retval)(td, EINTR);
 1523         for (has_sig = 0; !has_sig;) {
 1524                 while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
 1525                         0) == 0)
 1526                         /* void */;
 1527                 thread_suspend_check(0);
 1528                 mtx_lock(&p->p_sigacts->ps_mtx);
 1529                 while ((sig = cursig(td)) != 0) {
 1530                         KASSERT(sig >= 0, ("sig %d", sig));
 1531                         has_sig += postsig(sig);
 1532                 }
 1533                 mtx_unlock(&p->p_sigacts->ps_mtx);
 1534         }
 1535         PROC_UNLOCK(p);
 1536         td->td_errno = EINTR;
 1537         td->td_pflags |= TDP_NERRNO;
 1538         return (EJUSTRETURN);
 1539 }
 1540 
 1541 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1542 /*
 1543  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
 1544  * convention: libc stub passes mask, not pointer, to save a copyin.
 1545  */
 1546 #ifndef _SYS_SYSPROTO_H_
 1547 struct osigsuspend_args {
 1548         osigset_t mask;
 1549 };
 1550 #endif
 1551 /* ARGSUSED */
 1552 int
 1553 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
 1554 {
 1555         sigset_t mask;
 1556 
 1557         OSIG2SIG(uap->mask, mask);
 1558         return (kern_sigsuspend(td, mask));
 1559 }
 1560 #endif /* COMPAT_43 */
 1561 
 1562 #if defined(COMPAT_43)
 1563 #ifndef _SYS_SYSPROTO_H_
 1564 struct osigstack_args {
 1565         struct  sigstack *nss;
 1566         struct  sigstack *oss;
 1567 };
 1568 #endif
 1569 /* ARGSUSED */
 1570 int
 1571 osigstack(struct thread *td, struct osigstack_args *uap)
 1572 {
 1573         struct sigstack nss, oss;
 1574         int error = 0;
 1575 
 1576         if (uap->nss != NULL) {
 1577                 error = copyin(uap->nss, &nss, sizeof(nss));
 1578                 if (error)
 1579                         return (error);
 1580         }
 1581         oss.ss_sp = td->td_sigstk.ss_sp;
 1582         oss.ss_onstack = sigonstack(cpu_getstack(td));
 1583         if (uap->nss != NULL) {
 1584                 td->td_sigstk.ss_sp = nss.ss_sp;
 1585                 td->td_sigstk.ss_size = 0;
 1586                 td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
 1587                 td->td_pflags |= TDP_ALTSTACK;
 1588         }
 1589         if (uap->oss != NULL)
 1590                 error = copyout(&oss, uap->oss, sizeof(oss));
 1591 
 1592         return (error);
 1593 }
 1594 #endif /* COMPAT_43 */
 1595 
 1596 #ifndef _SYS_SYSPROTO_H_
 1597 struct sigaltstack_args {
 1598         stack_t *ss;
 1599         stack_t *oss;
 1600 };
 1601 #endif
 1602 /* ARGSUSED */
 1603 int
 1604 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
 1605 {
 1606         stack_t ss, oss;
 1607         int error;
 1608 
 1609         if (uap->ss != NULL) {
 1610                 error = copyin(uap->ss, &ss, sizeof(ss));
 1611                 if (error)
 1612                         return (error);
 1613         }
 1614         error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
 1615             (uap->oss != NULL) ? &oss : NULL);
 1616         if (error)
 1617                 return (error);
 1618         if (uap->oss != NULL)
 1619                 error = copyout(&oss, uap->oss, sizeof(stack_t));
 1620         return (error);
 1621 }
 1622 
 1623 int
 1624 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
 1625 {
 1626         struct proc *p = td->td_proc;
 1627         int oonstack;
 1628 
 1629         oonstack = sigonstack(cpu_getstack(td));
 1630 
 1631         if (oss != NULL) {
 1632                 *oss = td->td_sigstk;
 1633                 oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
 1634                     ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
 1635         }
 1636 
 1637         if (ss != NULL) {
 1638                 if (oonstack)
 1639                         return (EPERM);
 1640                 if ((ss->ss_flags & ~SS_DISABLE) != 0)
 1641                         return (EINVAL);
 1642                 if (!(ss->ss_flags & SS_DISABLE)) {
 1643                         if (ss->ss_size < p->p_sysent->sv_minsigstksz)
 1644                                 return (ENOMEM);
 1645 
 1646                         td->td_sigstk = *ss;
 1647                         td->td_pflags |= TDP_ALTSTACK;
 1648                 } else {
 1649                         td->td_pflags &= ~TDP_ALTSTACK;
 1650                 }
 1651         }
 1652         return (0);
 1653 }
 1654 
 1655 /*
 1656  * Common code for kill process group/broadcast kill.
 1657  * cp is calling process.
 1658  */
 1659 static int
 1660 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
 1661 {
 1662         struct proc *p;
 1663         struct pgrp *pgrp;
 1664         int err;
 1665         int ret;
 1666 
 1667         ret = ESRCH;
 1668         if (all) {
 1669                 /*
 1670                  * broadcast
 1671                  */
 1672                 sx_slock(&allproc_lock);
 1673                 FOREACH_PROC_IN_SYSTEM(p) {
 1674                         if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
 1675                             p == td->td_proc || p->p_state == PRS_NEW) {
 1676                                 continue;
 1677                         }
 1678                         PROC_LOCK(p);
 1679                         err = p_cansignal(td, p, sig);
 1680                         if (err == 0) {
 1681                                 if (sig)
 1682                                         pksignal(p, sig, ksi);
 1683                                 ret = err;
 1684                         }
 1685                         else if (ret == ESRCH)
 1686                                 ret = err;
 1687                         PROC_UNLOCK(p);
 1688                 }
 1689                 sx_sunlock(&allproc_lock);
 1690         } else {
 1691                 sx_slock(&proctree_lock);
 1692                 if (pgid == 0) {
 1693                         /*
 1694                          * zero pgid means send to my process group.
 1695                          */
 1696                         pgrp = td->td_proc->p_pgrp;
 1697                         PGRP_LOCK(pgrp);
 1698                 } else {
 1699                         pgrp = pgfind(pgid);
 1700                         if (pgrp == NULL) {
 1701                                 sx_sunlock(&proctree_lock);
 1702                                 return (ESRCH);
 1703                         }
 1704                 }
 1705                 sx_sunlock(&proctree_lock);
 1706                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
 1707                         PROC_LOCK(p);
 1708                         if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
 1709                             p->p_state == PRS_NEW) {
 1710                                 PROC_UNLOCK(p);
 1711                                 continue;
 1712                         }
 1713                         err = p_cansignal(td, p, sig);
 1714                         if (err == 0) {
 1715                                 if (sig)
 1716                                         pksignal(p, sig, ksi);
 1717                                 ret = err;
 1718                         }
 1719                         else if (ret == ESRCH)
 1720                                 ret = err;
 1721                         PROC_UNLOCK(p);
 1722                 }
 1723                 PGRP_UNLOCK(pgrp);
 1724         }
 1725         return (ret);
 1726 }
 1727 
 1728 #ifndef _SYS_SYSPROTO_H_
 1729 struct kill_args {
 1730         int     pid;
 1731         int     signum;
 1732 };
 1733 #endif
 1734 /* ARGSUSED */
 1735 int
 1736 sys_kill(struct thread *td, struct kill_args *uap)
 1737 {
 1738         ksiginfo_t ksi;
 1739         struct proc *p;
 1740         int error;
 1741 
 1742         /*
 1743          * A process in capability mode can send signals only to himself.
 1744          * The main rationale behind this is that abort(3) is implemented as
 1745          * kill(getpid(), SIGABRT).
 1746          */
 1747         if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
 1748                 return (ECAPMODE);
 1749 
 1750         AUDIT_ARG_SIGNUM(uap->signum);
 1751         AUDIT_ARG_PID(uap->pid);
 1752         if ((u_int)uap->signum > _SIG_MAXSIG)
 1753                 return (EINVAL);
 1754 
 1755         ksiginfo_init(&ksi);
 1756         ksi.ksi_signo = uap->signum;
 1757         ksi.ksi_code = SI_USER;
 1758         ksi.ksi_pid = td->td_proc->p_pid;
 1759         ksi.ksi_uid = td->td_ucred->cr_ruid;
 1760 
 1761         if (uap->pid > 0) {
 1762                 /* kill single process */
 1763                 if ((p = pfind_any(uap->pid)) == NULL)
 1764                         return (ESRCH);
 1765                 AUDIT_ARG_PROCESS(p);
 1766                 error = p_cansignal(td, p, uap->signum);
 1767                 if (error == 0 && uap->signum)
 1768                         pksignal(p, uap->signum, &ksi);
 1769                 PROC_UNLOCK(p);
 1770                 return (error);
 1771         }
 1772         switch (uap->pid) {
 1773         case -1:                /* broadcast signal */
 1774                 return (killpg1(td, uap->signum, 0, 1, &ksi));
 1775         case 0:                 /* signal own process group */
 1776                 return (killpg1(td, uap->signum, 0, 0, &ksi));
 1777         default:                /* negative explicit process group */
 1778                 return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
 1779         }
 1780         /* NOTREACHED */
 1781 }
 1782 
 1783 int
 1784 sys_pdkill(struct thread *td, struct pdkill_args *uap)
 1785 {
 1786         struct proc *p;
 1787         int error;
 1788 
 1789         AUDIT_ARG_SIGNUM(uap->signum);
 1790         AUDIT_ARG_FD(uap->fd);
 1791         if ((u_int)uap->signum > _SIG_MAXSIG)
 1792                 return (EINVAL);
 1793 
 1794         error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
 1795         if (error)
 1796                 return (error);
 1797         AUDIT_ARG_PROCESS(p);
 1798         error = p_cansignal(td, p, uap->signum);
 1799         if (error == 0 && uap->signum)
 1800                 kern_psignal(p, uap->signum);
 1801         PROC_UNLOCK(p);
 1802         return (error);
 1803 }
 1804 
 1805 #if defined(COMPAT_43)
 1806 #ifndef _SYS_SYSPROTO_H_
 1807 struct okillpg_args {
 1808         int     pgid;
 1809         int     signum;
 1810 };
 1811 #endif
 1812 /* ARGSUSED */
 1813 int
 1814 okillpg(struct thread *td, struct okillpg_args *uap)
 1815 {
 1816         ksiginfo_t ksi;
 1817 
 1818         AUDIT_ARG_SIGNUM(uap->signum);
 1819         AUDIT_ARG_PID(uap->pgid);
 1820         if ((u_int)uap->signum > _SIG_MAXSIG)
 1821                 return (EINVAL);
 1822 
 1823         ksiginfo_init(&ksi);
 1824         ksi.ksi_signo = uap->signum;
 1825         ksi.ksi_code = SI_USER;
 1826         ksi.ksi_pid = td->td_proc->p_pid;
 1827         ksi.ksi_uid = td->td_ucred->cr_ruid;
 1828         return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
 1829 }
 1830 #endif /* COMPAT_43 */
 1831 
 1832 #ifndef _SYS_SYSPROTO_H_
 1833 struct sigqueue_args {
 1834         pid_t pid;
 1835         int signum;
 1836         /* union sigval */ void *value;
 1837 };
 1838 #endif
 1839 int
 1840 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
 1841 {
 1842         union sigval sv;
 1843 
 1844         sv.sival_ptr = uap->value;
 1845 
 1846         return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
 1847 }
 1848 
 1849 int
 1850 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
 1851 {
 1852         ksiginfo_t ksi;
 1853         struct proc *p;
 1854         int error;
 1855 
 1856         if ((u_int)signum > _SIG_MAXSIG)
 1857                 return (EINVAL);
 1858 
 1859         /*
 1860          * Specification says sigqueue can only send signal to
 1861          * single process.
 1862          */
 1863         if (pid <= 0)
 1864                 return (EINVAL);
 1865 
 1866         if ((p = pfind_any(pid)) == NULL)
 1867                 return (ESRCH);
 1868         error = p_cansignal(td, p, signum);
 1869         if (error == 0 && signum != 0) {
 1870                 ksiginfo_init(&ksi);
 1871                 ksi.ksi_flags = KSI_SIGQ;
 1872                 ksi.ksi_signo = signum;
 1873                 ksi.ksi_code = SI_QUEUE;
 1874                 ksi.ksi_pid = td->td_proc->p_pid;
 1875                 ksi.ksi_uid = td->td_ucred->cr_ruid;
 1876                 ksi.ksi_value = *value;
 1877                 error = pksignal(p, ksi.ksi_signo, &ksi);
 1878         }
 1879         PROC_UNLOCK(p);
 1880         return (error);
 1881 }
 1882 
 1883 /*
 1884  * Send a signal to a process group.
 1885  */
 1886 void
 1887 gsignal(int pgid, int sig, ksiginfo_t *ksi)
 1888 {
 1889         struct pgrp *pgrp;
 1890 
 1891         if (pgid != 0) {
 1892                 sx_slock(&proctree_lock);
 1893                 pgrp = pgfind(pgid);
 1894                 sx_sunlock(&proctree_lock);
 1895                 if (pgrp != NULL) {
 1896                         pgsignal(pgrp, sig, 0, ksi);
 1897                         PGRP_UNLOCK(pgrp);
 1898                 }
 1899         }
 1900 }
 1901 
 1902 /*
 1903  * Send a signal to a process group.  If checktty is 1,
 1904  * limit to members which have a controlling terminal.
 1905  */
 1906 void
 1907 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
 1908 {
 1909         struct proc *p;
 1910 
 1911         if (pgrp) {
 1912                 PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
 1913                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
 1914                         PROC_LOCK(p);
 1915                         if (p->p_state == PRS_NORMAL &&
 1916                             (checkctty == 0 || p->p_flag & P_CONTROLT))
 1917                                 pksignal(p, sig, ksi);
 1918                         PROC_UNLOCK(p);
 1919                 }
 1920         }
 1921 }
 1922 
 1923 
 1924 /*
 1925  * Recalculate the signal mask and reset the signal disposition after
 1926  * usermode frame for delivery is formed.  Should be called after
 1927  * mach-specific routine, because sysent->sv_sendsig() needs correct
 1928  * ps_siginfo and signal mask.
 1929  */
 1930 static void
 1931 postsig_done(int sig, struct thread *td, struct sigacts *ps)
 1932 {
 1933         sigset_t mask;
 1934 
 1935         mtx_assert(&ps->ps_mtx, MA_OWNED);
 1936         td->td_ru.ru_nsignals++;
 1937         mask = ps->ps_catchmask[_SIG_IDX(sig)];
 1938         if (!SIGISMEMBER(ps->ps_signodefer, sig))
 1939                 SIGADDSET(mask, sig);
 1940         kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
 1941             SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
 1942         if (SIGISMEMBER(ps->ps_sigreset, sig))
 1943                 sigdflt(ps, sig);
 1944 }
 1945 
 1946 
 1947 /*
 1948  * Send a signal caused by a trap to the current thread.  If it will be
 1949  * caught immediately, deliver it with correct code.  Otherwise, post it
 1950  * normally.
 1951  */
 1952 void
 1953 trapsignal(struct thread *td, ksiginfo_t *ksi)
 1954 {
 1955         struct sigacts *ps;
 1956         struct proc *p;
 1957         int sig;
 1958         int code;
 1959 
 1960         p = td->td_proc;
 1961         sig = ksi->ksi_signo;
 1962         code = ksi->ksi_code;
 1963         KASSERT(_SIG_VALID(sig), ("invalid signal"));
 1964 
 1965         PROC_LOCK(p);
 1966         ps = p->p_sigacts;
 1967         mtx_lock(&ps->ps_mtx);
 1968         if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
 1969             !SIGISMEMBER(td->td_sigmask, sig)) {
 1970 #ifdef KTRACE
 1971                 if (KTRPOINT(curthread, KTR_PSIG))
 1972                         ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
 1973                             &td->td_sigmask, code);
 1974 #endif
 1975                 (*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
 1976                                 ksi, &td->td_sigmask);
 1977                 postsig_done(sig, td, ps);
 1978                 mtx_unlock(&ps->ps_mtx);
 1979         } else {
 1980                 /*
 1981                  * Avoid a possible infinite loop if the thread
 1982                  * masking the signal or process is ignoring the
 1983                  * signal.
 1984                  */
 1985                 if (kern_forcesigexit &&
 1986                     (SIGISMEMBER(td->td_sigmask, sig) ||
 1987                      ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
 1988                         SIGDELSET(td->td_sigmask, sig);
 1989                         SIGDELSET(ps->ps_sigcatch, sig);
 1990                         SIGDELSET(ps->ps_sigignore, sig);
 1991                         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
 1992                 }
 1993                 mtx_unlock(&ps->ps_mtx);
 1994                 p->p_code = code;       /* XXX for core dump/debugger */
 1995                 p->p_sig = sig;         /* XXX to verify code */
 1996                 tdsendsignal(p, td, sig, ksi);
 1997         }
 1998         PROC_UNLOCK(p);
 1999 }
 2000 
 2001 static struct thread *
 2002 sigtd(struct proc *p, int sig, int prop)
 2003 {
 2004         struct thread *td, *signal_td;
 2005 
 2006         PROC_LOCK_ASSERT(p, MA_OWNED);
 2007 
 2008         /*
 2009          * Check if current thread can handle the signal without
 2010          * switching context to another thread.
 2011          */
 2012         if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
 2013                 return (curthread);
 2014         signal_td = NULL;
 2015         FOREACH_THREAD_IN_PROC(p, td) {
 2016                 if (!SIGISMEMBER(td->td_sigmask, sig)) {
 2017                         signal_td = td;
 2018                         break;
 2019                 }
 2020         }
 2021         if (signal_td == NULL)
 2022                 signal_td = FIRST_THREAD_IN_PROC(p);
 2023         return (signal_td);
 2024 }
 2025 
 2026 /*
 2027  * Send the signal to the process.  If the signal has an action, the action
 2028  * is usually performed by the target process rather than the caller; we add
 2029  * the signal to the set of pending signals for the process.
 2030  *
 2031  * Exceptions:
 2032  *   o When a stop signal is sent to a sleeping process that takes the
 2033  *     default action, the process is stopped without awakening it.
 2034  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
 2035  *     regardless of the signal action (eg, blocked or ignored).
 2036  *
 2037  * Other ignored signals are discarded immediately.
 2038  *
 2039  * NB: This function may be entered from the debugger via the "kill" DDB
 2040  * command.  There is little that can be done to mitigate the possibly messy
 2041  * side effects of this unwise possibility.
 2042  */
 2043 void
 2044 kern_psignal(struct proc *p, int sig)
 2045 {
 2046         ksiginfo_t ksi;
 2047 
 2048         ksiginfo_init(&ksi);
 2049         ksi.ksi_signo = sig;
 2050         ksi.ksi_code = SI_KERNEL;
 2051         (void) tdsendsignal(p, NULL, sig, &ksi);
 2052 }
 2053 
 2054 int
 2055 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
 2056 {
 2057 
 2058         return (tdsendsignal(p, NULL, sig, ksi));
 2059 }
 2060 
 2061 /* Utility function for finding a thread to send signal event to. */
 2062 int
 2063 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
 2064 {
 2065         struct thread *td;
 2066 
 2067         if (sigev->sigev_notify == SIGEV_THREAD_ID) {
 2068                 td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
 2069                 if (td == NULL)
 2070                         return (ESRCH);
 2071                 *ttd = td;
 2072         } else {
 2073                 *ttd = NULL;
 2074                 PROC_LOCK(p);
 2075         }
 2076         return (0);
 2077 }
 2078 
 2079 void
 2080 tdsignal(struct thread *td, int sig)
 2081 {
 2082         ksiginfo_t ksi;
 2083 
 2084         ksiginfo_init(&ksi);
 2085         ksi.ksi_signo = sig;
 2086         ksi.ksi_code = SI_KERNEL;
 2087         (void) tdsendsignal(td->td_proc, td, sig, &ksi);
 2088 }
 2089 
 2090 void
 2091 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
 2092 {
 2093 
 2094         (void) tdsendsignal(td->td_proc, td, sig, ksi);
 2095 }
 2096 
 2097 int
 2098 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
 2099 {
 2100         sig_t action;
 2101         sigqueue_t *sigqueue;
 2102         int prop;
 2103         struct sigacts *ps;
 2104         int intrval;
 2105         int ret = 0;
 2106         int wakeup_swapper;
 2107 
 2108         MPASS(td == NULL || p == td->td_proc);
 2109         PROC_LOCK_ASSERT(p, MA_OWNED);
 2110 
 2111         if (!_SIG_VALID(sig))
 2112                 panic("%s(): invalid signal %d", __func__, sig);
 2113 
 2114         KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
 2115 
 2116         /*
 2117          * IEEE Std 1003.1-2001: return success when killing a zombie.
 2118          */
 2119         if (p->p_state == PRS_ZOMBIE) {
 2120                 if (ksi && (ksi->ksi_flags & KSI_INS))
 2121                         ksiginfo_tryfree(ksi);
 2122                 return (ret);
 2123         }
 2124 
 2125         ps = p->p_sigacts;
 2126         KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
 2127         prop = sigprop(sig);
 2128 
 2129         if (td == NULL) {
 2130                 td = sigtd(p, sig, prop);
 2131                 sigqueue = &p->p_sigqueue;
 2132         } else
 2133                 sigqueue = &td->td_sigqueue;
 2134 
 2135         SDT_PROBE3(proc, , , signal__send, td, p, sig);
 2136 
 2137         /*
 2138          * If the signal is being ignored,
 2139          * then we forget about it immediately.
 2140          * (Note: we don't set SIGCONT in ps_sigignore,
 2141          * and if it is set to SIG_IGN,
 2142          * action will be SIG_DFL here.)
 2143          */
 2144         mtx_lock(&ps->ps_mtx);
 2145         if (SIGISMEMBER(ps->ps_sigignore, sig)) {
 2146                 SDT_PROBE3(proc, , , signal__discard, td, p, sig);
 2147 
 2148                 mtx_unlock(&ps->ps_mtx);
 2149                 if (ksi && (ksi->ksi_flags & KSI_INS))
 2150                         ksiginfo_tryfree(ksi);
 2151                 return (ret);
 2152         }
 2153         if (SIGISMEMBER(td->td_sigmask, sig))
 2154                 action = SIG_HOLD;
 2155         else if (SIGISMEMBER(ps->ps_sigcatch, sig))
 2156                 action = SIG_CATCH;
 2157         else
 2158                 action = SIG_DFL;
 2159         if (SIGISMEMBER(ps->ps_sigintr, sig))
 2160                 intrval = EINTR;
 2161         else
 2162                 intrval = ERESTART;
 2163         mtx_unlock(&ps->ps_mtx);
 2164 
 2165         if (prop & SIGPROP_CONT)
 2166                 sigqueue_delete_stopmask_proc(p);
 2167         else if (prop & SIGPROP_STOP) {
 2168                 /*
 2169                  * If sending a tty stop signal to a member of an orphaned
 2170                  * process group, discard the signal here if the action
 2171                  * is default; don't stop the process below if sleeping,
 2172                  * and don't clear any pending SIGCONT.
 2173                  */
 2174                 if ((prop & SIGPROP_TTYSTOP) &&
 2175                     (p->p_pgrp->pg_jobc == 0) &&
 2176                     (action == SIG_DFL)) {
 2177                         if (ksi && (ksi->ksi_flags & KSI_INS))
 2178                                 ksiginfo_tryfree(ksi);
 2179                         return (ret);
 2180                 }
 2181                 sigqueue_delete_proc(p, SIGCONT);
 2182                 if (p->p_flag & P_CONTINUED) {
 2183                         p->p_flag &= ~P_CONTINUED;
 2184                         PROC_LOCK(p->p_pptr);
 2185                         sigqueue_take(p->p_ksi);
 2186                         PROC_UNLOCK(p->p_pptr);
 2187                 }
 2188         }
 2189 
 2190         ret = sigqueue_add(sigqueue, sig, ksi);
 2191         if (ret != 0)
 2192                 return (ret);
 2193         signotify(td);
 2194         /*
 2195          * Defer further processing for signals which are held,
 2196          * except that stopped processes must be continued by SIGCONT.
 2197          */
 2198         if (action == SIG_HOLD &&
 2199             !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
 2200                 return (ret);
 2201 
 2202         /* SIGKILL: Remove procfs STOPEVENTs. */
 2203         if (sig == SIGKILL) {
 2204                 /* from procfs_ioctl.c: PIOCBIC */
 2205                 p->p_stops = 0;
 2206                 /* from procfs_ioctl.c: PIOCCONT */
 2207                 p->p_step = 0;
 2208                 wakeup(&p->p_step);
 2209         }
 2210         /*
 2211          * Some signals have a process-wide effect and a per-thread
 2212          * component.  Most processing occurs when the process next
 2213          * tries to cross the user boundary, however there are some
 2214          * times when processing needs to be done immediately, such as
 2215          * waking up threads so that they can cross the user boundary.
 2216          * We try to do the per-process part here.
 2217          */
 2218         if (P_SHOULDSTOP(p)) {
 2219                 KASSERT(!(p->p_flag & P_WEXIT),
 2220                     ("signal to stopped but exiting process"));
 2221                 if (sig == SIGKILL) {
 2222                         /*
 2223                          * If traced process is already stopped,
 2224                          * then no further action is necessary.
 2225                          */
 2226                         if (p->p_flag & P_TRACED)
 2227                                 goto out;
 2228                         /*
 2229                          * SIGKILL sets process running.
 2230                          * It will die elsewhere.
 2231                          * All threads must be restarted.
 2232                          */
 2233                         p->p_flag &= ~P_STOPPED_SIG;
 2234                         goto runfast;
 2235                 }
 2236 
 2237                 if (prop & SIGPROP_CONT) {
 2238                         /*
 2239                          * If traced process is already stopped,
 2240                          * then no further action is necessary.
 2241                          */
 2242                         if (p->p_flag & P_TRACED)
 2243                                 goto out;
 2244                         /*
 2245                          * If SIGCONT is default (or ignored), we continue the
 2246                          * process but don't leave the signal in sigqueue as
 2247                          * it has no further action.  If SIGCONT is held, we
 2248                          * continue the process and leave the signal in
 2249                          * sigqueue.  If the process catches SIGCONT, let it
 2250                          * handle the signal itself.  If it isn't waiting on
 2251                          * an event, it goes back to run state.
 2252                          * Otherwise, process goes back to sleep state.
 2253                          */
 2254                         p->p_flag &= ~P_STOPPED_SIG;
 2255                         PROC_SLOCK(p);
 2256                         if (p->p_numthreads == p->p_suspcount) {
 2257                                 PROC_SUNLOCK(p);
 2258                                 p->p_flag |= P_CONTINUED;
 2259                                 p->p_xsig = SIGCONT;
 2260                                 PROC_LOCK(p->p_pptr);
 2261                                 childproc_continued(p);
 2262                                 PROC_UNLOCK(p->p_pptr);
 2263                                 PROC_SLOCK(p);
 2264                         }
 2265                         if (action == SIG_DFL) {
 2266                                 thread_unsuspend(p);
 2267                                 PROC_SUNLOCK(p);
 2268                                 sigqueue_delete(sigqueue, sig);
 2269                                 goto out;
 2270                         }
 2271                         if (action == SIG_CATCH) {
 2272                                 /*
 2273                                  * The process wants to catch it so it needs
 2274                                  * to run at least one thread, but which one?
 2275                                  */
 2276                                 PROC_SUNLOCK(p);
 2277                                 goto runfast;
 2278                         }
 2279                         /*
 2280                          * The signal is not ignored or caught.
 2281                          */
 2282                         thread_unsuspend(p);
 2283                         PROC_SUNLOCK(p);
 2284                         goto out;
 2285                 }
 2286 
 2287                 if (prop & SIGPROP_STOP) {
 2288                         /*
 2289                          * If traced process is already stopped,
 2290                          * then no further action is necessary.
 2291                          */
 2292                         if (p->p_flag & P_TRACED)
 2293                                 goto out;
 2294                         /*
 2295                          * Already stopped, don't need to stop again
 2296                          * (If we did the shell could get confused).
 2297                          * Just make sure the signal STOP bit set.
 2298                          */
 2299                         p->p_flag |= P_STOPPED_SIG;
 2300                         sigqueue_delete(sigqueue, sig);
 2301                         goto out;
 2302                 }
 2303 
 2304                 /*
 2305                  * All other kinds of signals:
 2306                  * If a thread is sleeping interruptibly, simulate a
 2307                  * wakeup so that when it is continued it will be made
 2308                  * runnable and can look at the signal.  However, don't make
 2309                  * the PROCESS runnable, leave it stopped.
 2310                  * It may run a bit until it hits a thread_suspend_check().
 2311                  */
 2312                 wakeup_swapper = 0;
 2313                 PROC_SLOCK(p);
 2314                 thread_lock(td);
 2315                 if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
 2316                         wakeup_swapper = sleepq_abort(td, intrval);
 2317                 thread_unlock(td);
 2318                 PROC_SUNLOCK(p);
 2319                 if (wakeup_swapper)
 2320                         kick_proc0();
 2321                 goto out;
 2322                 /*
 2323                  * Mutexes are short lived. Threads waiting on them will
 2324                  * hit thread_suspend_check() soon.
 2325                  */
 2326         } else if (p->p_state == PRS_NORMAL) {
 2327                 if (p->p_flag & P_TRACED || action == SIG_CATCH) {
 2328                         tdsigwakeup(td, sig, action, intrval);
 2329                         goto out;
 2330                 }
 2331 
 2332                 MPASS(action == SIG_DFL);
 2333 
 2334                 if (prop & SIGPROP_STOP) {
 2335                         if (p->p_flag & (P_PPWAIT|P_WEXIT))
 2336                                 goto out;
 2337                         p->p_flag |= P_STOPPED_SIG;
 2338                         p->p_xsig = sig;
 2339                         PROC_SLOCK(p);
 2340                         wakeup_swapper = sig_suspend_threads(td, p, 1);
 2341                         if (p->p_numthreads == p->p_suspcount) {
 2342                                 /*
 2343                                  * only thread sending signal to another
 2344                                  * process can reach here, if thread is sending
 2345                                  * signal to its process, because thread does
 2346                                  * not suspend itself here, p_numthreads
 2347                                  * should never be equal to p_suspcount.
 2348                                  */
 2349                                 thread_stopped(p);
 2350                                 PROC_SUNLOCK(p);
 2351                                 sigqueue_delete_proc(p, p->p_xsig);
 2352                         } else
 2353                                 PROC_SUNLOCK(p);
 2354                         if (wakeup_swapper)
 2355                                 kick_proc0();
 2356                         goto out;
 2357                 }
 2358         } else {
 2359                 /* Not in "NORMAL" state. discard the signal. */
 2360                 sigqueue_delete(sigqueue, sig);
 2361                 goto out;
 2362         }
 2363 
 2364         /*
 2365          * The process is not stopped so we need to apply the signal to all the
 2366          * running threads.
 2367          */
 2368 runfast:
 2369         tdsigwakeup(td, sig, action, intrval);
 2370         PROC_SLOCK(p);
 2371         thread_unsuspend(p);
 2372         PROC_SUNLOCK(p);
 2373 out:
 2374         /* If we jump here, proc slock should not be owned. */
 2375         PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
 2376         return (ret);
 2377 }
 2378 
 2379 /*
 2380  * The force of a signal has been directed against a single
 2381  * thread.  We need to see what we can do about knocking it
 2382  * out of any sleep it may be in etc.
 2383  */
 2384 static void
 2385 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
 2386 {
 2387         struct proc *p = td->td_proc;
 2388         int prop;
 2389         int wakeup_swapper;
 2390 
 2391         wakeup_swapper = 0;
 2392         PROC_LOCK_ASSERT(p, MA_OWNED);
 2393         prop = sigprop(sig);
 2394 
 2395         PROC_SLOCK(p);
 2396         thread_lock(td);
 2397         /*
 2398          * Bring the priority of a thread up if we want it to get
 2399          * killed in this lifetime.  Be careful to avoid bumping the
 2400          * priority of the idle thread, since we still allow to signal
 2401          * kernel processes.
 2402          */
 2403         if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
 2404             td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
 2405                 sched_prio(td, PUSER);
 2406         if (TD_ON_SLEEPQ(td)) {
 2407                 /*
 2408                  * If thread is sleeping uninterruptibly
 2409                  * we can't interrupt the sleep... the signal will
 2410                  * be noticed when the process returns through
 2411                  * trap() or syscall().
 2412                  */
 2413                 if ((td->td_flags & TDF_SINTR) == 0)
 2414                         goto out;
 2415                 /*
 2416                  * If SIGCONT is default (or ignored) and process is
 2417                  * asleep, we are finished; the process should not
 2418                  * be awakened.
 2419                  */
 2420                 if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
 2421                         thread_unlock(td);
 2422                         PROC_SUNLOCK(p);
 2423                         sigqueue_delete(&p->p_sigqueue, sig);
 2424                         /*
 2425                          * It may be on either list in this state.
 2426                          * Remove from both for now.
 2427                          */
 2428                         sigqueue_delete(&td->td_sigqueue, sig);
 2429                         return;
 2430                 }
 2431 
 2432                 /*
 2433                  * Don't awaken a sleeping thread for SIGSTOP if the
 2434                  * STOP signal is deferred.
 2435                  */
 2436                 if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
 2437                     TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
 2438                         goto out;
 2439 
 2440                 /*
 2441                  * Give low priority threads a better chance to run.
 2442                  */
 2443                 if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
 2444                         sched_prio(td, PUSER);
 2445 
 2446                 wakeup_swapper = sleepq_abort(td, intrval);
 2447         } else {
 2448                 /*
 2449                  * Other states do nothing with the signal immediately,
 2450                  * other than kicking ourselves if we are running.
 2451                  * It will either never be noticed, or noticed very soon.
 2452                  */
 2453 #ifdef SMP
 2454                 if (TD_IS_RUNNING(td) && td != curthread)
 2455                         forward_signal(td);
 2456 #endif
 2457         }
 2458 out:
 2459         PROC_SUNLOCK(p);
 2460         thread_unlock(td);
 2461         if (wakeup_swapper)
 2462                 kick_proc0();
 2463 }
 2464 
 2465 static int
 2466 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
 2467 {
 2468         struct thread *td2;
 2469         int wakeup_swapper;
 2470 
 2471         PROC_LOCK_ASSERT(p, MA_OWNED);
 2472         PROC_SLOCK_ASSERT(p, MA_OWNED);
 2473         MPASS(sending || td == curthread);
 2474 
 2475         wakeup_swapper = 0;
 2476         FOREACH_THREAD_IN_PROC(p, td2) {
 2477                 thread_lock(td2);
 2478                 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
 2479                 if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
 2480                     (td2->td_flags & TDF_SINTR)) {
 2481                         if (td2->td_flags & TDF_SBDRY) {
 2482                                 /*
 2483                                  * Once a thread is asleep with
 2484                                  * TDF_SBDRY and without TDF_SERESTART
 2485                                  * or TDF_SEINTR set, it should never
 2486                                  * become suspended due to this check.
 2487                                  */
 2488                                 KASSERT(!TD_IS_SUSPENDED(td2),
 2489                                     ("thread with deferred stops suspended"));
 2490                                 if (TD_SBDRY_INTR(td2))
 2491                                         wakeup_swapper |= sleepq_abort(td2,
 2492                                             TD_SBDRY_ERRNO(td2));
 2493                         } else if (!TD_IS_SUSPENDED(td2)) {
 2494                                 thread_suspend_one(td2);
 2495                         }
 2496                 } else if (!TD_IS_SUSPENDED(td2)) {
 2497                         if (sending || td != td2)
 2498                                 td2->td_flags |= TDF_ASTPENDING;
 2499 #ifdef SMP
 2500                         if (TD_IS_RUNNING(td2) && td2 != td)
 2501                                 forward_signal(td2);
 2502 #endif
 2503                 }
 2504                 thread_unlock(td2);
 2505         }
 2506         return (wakeup_swapper);
 2507 }
 2508 
 2509 /*
 2510  * Stop the process for an event deemed interesting to the debugger. If si is
 2511  * non-NULL, this is a signal exchange; the new signal requested by the
 2512  * debugger will be returned for handling. If si is NULL, this is some other
 2513  * type of interesting event. The debugger may request a signal be delivered in
 2514  * that case as well, however it will be deferred until it can be handled.
 2515  */
 2516 int
 2517 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
 2518 {
 2519         struct proc *p = td->td_proc;
 2520         struct thread *td2;
 2521         ksiginfo_t ksi;
 2522         int prop;
 2523 
 2524         PROC_LOCK_ASSERT(p, MA_OWNED);
 2525         KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
 2526         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
 2527             &p->p_mtx.lock_object, "Stopping for traced signal");
 2528 
 2529         td->td_xsig = sig;
 2530 
 2531         if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
 2532                 td->td_dbgflags |= TDB_XSIG;
 2533                 CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
 2534                     td->td_tid, p->p_pid, td->td_dbgflags, sig);
 2535                 PROC_SLOCK(p);
 2536                 while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
 2537                         if (P_KILLED(p)) {
 2538                                 /*
 2539                                  * Ensure that, if we've been PT_KILLed, the
 2540                                  * exit status reflects that. Another thread
 2541                                  * may also be in ptracestop(), having just
 2542                                  * received the SIGKILL, but this thread was
 2543                                  * unsuspended first.
 2544                                  */
 2545                                 td->td_dbgflags &= ~TDB_XSIG;
 2546                                 td->td_xsig = SIGKILL;
 2547                                 p->p_ptevents = 0;
 2548                                 break;
 2549                         }
 2550                         if (p->p_flag & P_SINGLE_EXIT &&
 2551                             !(td->td_dbgflags & TDB_EXIT)) {
 2552                                 /*
 2553                                  * Ignore ptrace stops except for thread exit
 2554                                  * events when the process exits.
 2555                                  */
 2556                                 td->td_dbgflags &= ~TDB_XSIG;
 2557                                 PROC_SUNLOCK(p);
 2558                                 return (0);
 2559                         }
 2560 
 2561                         /*
 2562                          * Make wait(2) work.  Ensure that right after the
 2563                          * attach, the thread which was decided to become the
 2564                          * leader of attach gets reported to the waiter.
 2565                          * Otherwise, just avoid overwriting another thread's
 2566                          * assignment to p_xthread.  If another thread has
 2567                          * already set p_xthread, the current thread will get
 2568                          * a chance to report itself upon the next iteration.
 2569                          */
 2570                         if ((td->td_dbgflags & TDB_FSTP) != 0 ||
 2571                             ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
 2572                             p->p_xthread == NULL)) {
 2573                                 p->p_xsig = sig;
 2574                                 p->p_xthread = td;
 2575                                 td->td_dbgflags &= ~TDB_FSTP;
 2576                                 p->p_flag2 &= ~P2_PTRACE_FSTP;
 2577                                 p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
 2578                                 sig_suspend_threads(td, p, 0);
 2579                         }
 2580                         if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
 2581                                 td->td_dbgflags &= ~TDB_STOPATFORK;
 2582                         }
 2583 stopme:
 2584                         thread_suspend_switch(td, p);
 2585                         if (p->p_xthread == td)
 2586                                 p->p_xthread = NULL;
 2587                         if (!(p->p_flag & P_TRACED))
 2588                                 break;
 2589                         if (td->td_dbgflags & TDB_SUSPEND) {
 2590                                 if (p->p_flag & P_SINGLE_EXIT)
 2591                                         break;
 2592                                 goto stopme;
 2593                         }
 2594                 }
 2595                 PROC_SUNLOCK(p);
 2596         }
 2597 
 2598         if (si != NULL && sig == td->td_xsig) {
 2599                 /* Parent wants us to take the original signal unchanged. */
 2600                 si->ksi_flags |= KSI_HEAD;
 2601                 if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
 2602                         si->ksi_signo = 0;
 2603         } else if (td->td_xsig != 0) {
 2604                 /*
 2605                  * If parent wants us to take a new signal, then it will leave
 2606                  * it in td->td_xsig; otherwise we just look for signals again.
 2607                  */
 2608                 ksiginfo_init(&ksi);
 2609                 ksi.ksi_signo = td->td_xsig;
 2610                 ksi.ksi_flags |= KSI_PTRACE;
 2611                 prop = sigprop(td->td_xsig);
 2612                 td2 = sigtd(p, td->td_xsig, prop);
 2613                 tdsendsignal(p, td2, td->td_xsig, &ksi);
 2614                 if (td != td2)
 2615                         return (0);
 2616         }
 2617 
 2618         return (td->td_xsig);
 2619 }
 2620 
 2621 static void
 2622 reschedule_signals(struct proc *p, sigset_t block, int flags)
 2623 {
 2624         struct sigacts *ps;
 2625         struct thread *td;
 2626         int sig;
 2627 
 2628         PROC_LOCK_ASSERT(p, MA_OWNED);
 2629         ps = p->p_sigacts;
 2630         mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
 2631             MA_OWNED : MA_NOTOWNED);
 2632         if (SIGISEMPTY(p->p_siglist))
 2633                 return;
 2634         SIGSETAND(block, p->p_siglist);
 2635         while ((sig = sig_ffs(&block)) != 0) {
 2636                 SIGDELSET(block, sig);
 2637                 td = sigtd(p, sig, 0);
 2638                 signotify(td);
 2639                 if (!(flags & SIGPROCMASK_PS_LOCKED))
 2640                         mtx_lock(&ps->ps_mtx);
 2641                 if (p->p_flag & P_TRACED ||
 2642                     (SIGISMEMBER(ps->ps_sigcatch, sig) &&
 2643                     !SIGISMEMBER(td->td_sigmask, sig)))
 2644                         tdsigwakeup(td, sig, SIG_CATCH,
 2645                             (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
 2646                              ERESTART));
 2647                 if (!(flags & SIGPROCMASK_PS_LOCKED))
 2648                         mtx_unlock(&ps->ps_mtx);
 2649         }
 2650 }
 2651 
 2652 void
 2653 tdsigcleanup(struct thread *td)
 2654 {
 2655         struct proc *p;
 2656         sigset_t unblocked;
 2657 
 2658         p = td->td_proc;
 2659         PROC_LOCK_ASSERT(p, MA_OWNED);
 2660 
 2661         sigqueue_flush(&td->td_sigqueue);
 2662         if (p->p_numthreads == 1)
 2663                 return;
 2664 
 2665         /*
 2666          * Since we cannot handle signals, notify signal post code
 2667          * about this by filling the sigmask.
 2668          *
 2669          * Also, if needed, wake up thread(s) that do not block the
 2670          * same signals as the exiting thread, since the thread might
 2671          * have been selected for delivery and woken up.
 2672          */
 2673         SIGFILLSET(unblocked);
 2674         SIGSETNAND(unblocked, td->td_sigmask);
 2675         SIGFILLSET(td->td_sigmask);
 2676         reschedule_signals(p, unblocked, 0);
 2677 
 2678 }
 2679 
 2680 static int
 2681 sigdeferstop_curr_flags(int cflags)
 2682 {
 2683 
 2684         MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
 2685             (cflags & TDF_SBDRY) != 0);
 2686         return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
 2687 }
 2688 
 2689 /*
 2690  * Defer the delivery of SIGSTOP for the current thread, according to
 2691  * the requested mode.  Returns previous flags, which must be restored
 2692  * by sigallowstop().
 2693  *
 2694  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
 2695  * cleared by the current thread, which allow the lock-less read-only
 2696  * accesses below.
 2697  */
 2698 int
 2699 sigdeferstop_impl(int mode)
 2700 {
 2701         struct thread *td;
 2702         int cflags, nflags;
 2703 
 2704         td = curthread;
 2705         cflags = sigdeferstop_curr_flags(td->td_flags);
 2706         switch (mode) {
 2707         case SIGDEFERSTOP_NOP:
 2708                 nflags = cflags;
 2709                 break;
 2710         case SIGDEFERSTOP_OFF:
 2711                 nflags = 0;
 2712                 break;
 2713         case SIGDEFERSTOP_SILENT:
 2714                 nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
 2715                 break;
 2716         case SIGDEFERSTOP_EINTR:
 2717                 nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
 2718                 break;
 2719         case SIGDEFERSTOP_ERESTART:
 2720                 nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
 2721                 break;
 2722         default:
 2723                 panic("sigdeferstop: invalid mode %x", mode);
 2724                 break;
 2725         }
 2726         if (cflags == nflags)
 2727                 return (SIGDEFERSTOP_VAL_NCHG);
 2728         thread_lock(td);
 2729         td->td_flags = (td->td_flags & ~cflags) | nflags;
 2730         thread_unlock(td);
 2731         return (cflags);
 2732 }
 2733 
 2734 /*
 2735  * Restores the STOP handling mode, typically permitting the delivery
 2736  * of SIGSTOP for the current thread.  This does not immediately
 2737  * suspend if a stop was posted.  Instead, the thread will suspend
 2738  * either via ast() or a subsequent interruptible sleep.
 2739  */
 2740 void
 2741 sigallowstop_impl(int prev)
 2742 {
 2743         struct thread *td;
 2744         int cflags;
 2745 
 2746         KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
 2747         KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
 2748             ("sigallowstop: incorrect previous mode %x", prev));
 2749         td = curthread;
 2750         cflags = sigdeferstop_curr_flags(td->td_flags);
 2751         if (cflags != prev) {
 2752                 thread_lock(td);
 2753                 td->td_flags = (td->td_flags & ~cflags) | prev;
 2754                 thread_unlock(td);
 2755         }
 2756 }
 2757 
 2758 /*
 2759  * If the current process has received a signal (should be caught or cause
 2760  * termination, should interrupt current syscall), return the signal number.
 2761  * Stop signals with default action are processed immediately, then cleared;
 2762  * they aren't returned.  This is checked after each entry to the system for
 2763  * a syscall or trap (though this can usually be done without calling issignal
 2764  * by checking the pending signal masks in cursig.) The normal call
 2765  * sequence is
 2766  *
 2767  *      while (sig = cursig(curthread))
 2768  *              postsig(sig);
 2769  */
 2770 static int
 2771 issignal(struct thread *td)
 2772 {
 2773         struct proc *p;
 2774         struct sigacts *ps;
 2775         struct sigqueue *queue;
 2776         sigset_t sigpending;
 2777         ksiginfo_t ksi;
 2778         int prop, sig, traced;
 2779 
 2780         p = td->td_proc;
 2781         ps = p->p_sigacts;
 2782         mtx_assert(&ps->ps_mtx, MA_OWNED);
 2783         PROC_LOCK_ASSERT(p, MA_OWNED);
 2784         for (;;) {
 2785                 traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
 2786 
 2787                 sigpending = td->td_sigqueue.sq_signals;
 2788                 SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
 2789                 SIGSETNAND(sigpending, td->td_sigmask);
 2790 
 2791                 if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
 2792                     (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
 2793                         SIG_STOPSIGMASK(sigpending);
 2794                 if (SIGISEMPTY(sigpending))     /* no signal to send */
 2795                         return (0);
 2796                 if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
 2797                     (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
 2798                     SIGISMEMBER(sigpending, SIGSTOP)) {
 2799                         /*
 2800                          * If debugger just attached, always consume
 2801                          * SIGSTOP from ptrace(PT_ATTACH) first, to
 2802                          * execute the debugger attach ritual in
 2803                          * order.
 2804                          */
 2805                         sig = SIGSTOP;
 2806                         td->td_dbgflags |= TDB_FSTP;
 2807                 } else {
 2808                         sig = sig_ffs(&sigpending);
 2809                 }
 2810 
 2811                 if (p->p_stops & S_SIG) {
 2812                         mtx_unlock(&ps->ps_mtx);
 2813                         stopevent(p, S_SIG, sig);
 2814                         mtx_lock(&ps->ps_mtx);
 2815                 }
 2816 
 2817                 /*
 2818                  * We should see pending but ignored signals
 2819                  * only if P_TRACED was on when they were posted.
 2820                  */
 2821                 if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
 2822                         sigqueue_delete(&td->td_sigqueue, sig);
 2823                         sigqueue_delete(&p->p_sigqueue, sig);
 2824                         continue;
 2825                 }
 2826                 if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
 2827                         /*
 2828                          * If traced, always stop.
 2829                          * Remove old signal from queue before the stop.
 2830                          * XXX shrug off debugger, it causes siginfo to
 2831                          * be thrown away.
 2832                          */
 2833                         queue = &td->td_sigqueue;
 2834                         ksiginfo_init(&ksi);
 2835                         if (sigqueue_get(queue, sig, &ksi) == 0) {
 2836                                 queue = &p->p_sigqueue;
 2837                                 sigqueue_get(queue, sig, &ksi);
 2838                         }
 2839                         td->td_si = ksi.ksi_info;
 2840 
 2841                         mtx_unlock(&ps->ps_mtx);
 2842                         sig = ptracestop(td, sig, &ksi);
 2843                         mtx_lock(&ps->ps_mtx);
 2844 
 2845                         /* 
 2846                          * Keep looking if the debugger discarded or
 2847                          * replaced the signal.
 2848                          */
 2849                         if (sig == 0)
 2850                                 continue;
 2851 
 2852                         /*
 2853                          * If the signal became masked, re-queue it.
 2854                          */
 2855                         if (SIGISMEMBER(td->td_sigmask, sig)) {
 2856                                 ksi.ksi_flags |= KSI_HEAD;
 2857                                 sigqueue_add(&p->p_sigqueue, sig, &ksi);
 2858                                 continue;
 2859                         }
 2860 
 2861                         /*
 2862                          * If the traced bit got turned off, requeue
 2863                          * the signal and go back up to the top to
 2864                          * rescan signals.  This ensures that p_sig*
 2865                          * and p_sigact are consistent.
 2866                          */
 2867                         if ((p->p_flag & P_TRACED) == 0) {
 2868                                 ksi.ksi_flags |= KSI_HEAD;
 2869                                 sigqueue_add(queue, sig, &ksi);
 2870                                 continue;
 2871                         }
 2872                 }
 2873 
 2874                 prop = sigprop(sig);
 2875 
 2876                 /*
 2877                  * Decide whether the signal should be returned.
 2878                  * Return the signal's number, or fall through
 2879                  * to clear it from the pending mask.
 2880                  */
 2881                 switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
 2882 
 2883                 case (intptr_t)SIG_DFL:
 2884                         /*
 2885                          * Don't take default actions on system processes.
 2886                          */
 2887                         if (p->p_pid <= 1) {
 2888 #ifdef DIAGNOSTIC
 2889                                 /*
 2890                                  * Are you sure you want to ignore SIGSEGV
 2891                                  * in init? XXX
 2892                                  */
 2893                                 printf("Process (pid %lu) got signal %d\n",
 2894                                         (u_long)p->p_pid, sig);
 2895 #endif
 2896                                 break;          /* == ignore */
 2897                         }
 2898                         /*
 2899                          * If there is a pending stop signal to process with
 2900                          * default action, stop here, then clear the signal.
 2901                          * Traced or exiting processes should ignore stops.
 2902                          * Additionally, a member of an orphaned process group
 2903                          * should ignore tty stops.
 2904                          */
 2905                         if (prop & SIGPROP_STOP) {
 2906                                 if (p->p_flag &
 2907                                     (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
 2908                                     (p->p_pgrp->pg_jobc == 0 &&
 2909                                      prop & SIGPROP_TTYSTOP))
 2910                                         break;  /* == ignore */
 2911                                 if (TD_SBDRY_INTR(td)) {
 2912                                         KASSERT((td->td_flags & TDF_SBDRY) != 0,
 2913                                             ("lost TDF_SBDRY"));
 2914                                         return (-1);
 2915                                 }
 2916                                 mtx_unlock(&ps->ps_mtx);
 2917                                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
 2918                                     &p->p_mtx.lock_object, "Catching SIGSTOP");
 2919                                 sigqueue_delete(&td->td_sigqueue, sig);
 2920                                 sigqueue_delete(&p->p_sigqueue, sig);
 2921                                 p->p_flag |= P_STOPPED_SIG;
 2922                                 p->p_xsig = sig;
 2923                                 PROC_SLOCK(p);
 2924                                 sig_suspend_threads(td, p, 0);
 2925                                 thread_suspend_switch(td, p);
 2926                                 PROC_SUNLOCK(p);
 2927                                 mtx_lock(&ps->ps_mtx);
 2928                                 goto next;
 2929                         } else if (prop & SIGPROP_IGNORE) {
 2930                                 /*
 2931                                  * Except for SIGCONT, shouldn't get here.
 2932                                  * Default action is to ignore; drop it.
 2933                                  */
 2934                                 break;          /* == ignore */
 2935                         } else
 2936                                 return (sig);
 2937                         /*NOTREACHED*/
 2938 
 2939                 case (intptr_t)SIG_IGN:
 2940                         /*
 2941                          * Masking above should prevent us ever trying
 2942                          * to take action on an ignored signal other
 2943                          * than SIGCONT, unless process is traced.
 2944                          */
 2945                         if ((prop & SIGPROP_CONT) == 0 &&
 2946                             (p->p_flag & P_TRACED) == 0)
 2947                                 printf("issignal\n");
 2948                         break;          /* == ignore */
 2949 
 2950                 default:
 2951                         /*
 2952                          * This signal has an action, let
 2953                          * postsig() process it.
 2954                          */
 2955                         return (sig);
 2956                 }
 2957                 sigqueue_delete(&td->td_sigqueue, sig); /* take the signal! */
 2958                 sigqueue_delete(&p->p_sigqueue, sig);
 2959 next:;
 2960         }
 2961         /* NOTREACHED */
 2962 }
 2963 
 2964 void
 2965 thread_stopped(struct proc *p)
 2966 {
 2967         int n;
 2968 
 2969         PROC_LOCK_ASSERT(p, MA_OWNED);
 2970         PROC_SLOCK_ASSERT(p, MA_OWNED);
 2971         n = p->p_suspcount;
 2972         if (p == curproc)
 2973                 n++;
 2974         if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
 2975                 PROC_SUNLOCK(p);
 2976                 p->p_flag &= ~P_WAITED;
 2977                 PROC_LOCK(p->p_pptr);
 2978                 childproc_stopped(p, (p->p_flag & P_TRACED) ?
 2979                         CLD_TRAPPED : CLD_STOPPED);
 2980                 PROC_UNLOCK(p->p_pptr);
 2981                 PROC_SLOCK(p);
 2982         }
 2983 }
 2984 
 2985 /*
 2986  * Take the action for the specified signal
 2987  * from the current set of pending signals.
 2988  */
 2989 int
 2990 postsig(int sig)
 2991 {
 2992         struct thread *td;
 2993         struct proc *p;
 2994         struct sigacts *ps;
 2995         sig_t action;
 2996         ksiginfo_t ksi;
 2997         sigset_t returnmask;
 2998 
 2999         KASSERT(sig != 0, ("postsig"));
 3000 
 3001         td = curthread;
 3002         p = td->td_proc;
 3003         PROC_LOCK_ASSERT(p, MA_OWNED);
 3004         ps = p->p_sigacts;
 3005         mtx_assert(&ps->ps_mtx, MA_OWNED);
 3006         ksiginfo_init(&ksi);
 3007         if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
 3008             sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
 3009                 return (0);
 3010         ksi.ksi_signo = sig;
 3011         if (ksi.ksi_code == SI_TIMER)
 3012                 itimer_accept(p, ksi.ksi_timerid, &ksi);
 3013         action = ps->ps_sigact[_SIG_IDX(sig)];
 3014 #ifdef KTRACE
 3015         if (KTRPOINT(td, KTR_PSIG))
 3016                 ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
 3017                     &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
 3018 #endif
 3019         if ((p->p_stops & S_SIG) != 0) {
 3020                 mtx_unlock(&ps->ps_mtx);
 3021                 stopevent(p, S_SIG, sig);
 3022                 mtx_lock(&ps->ps_mtx);
 3023         }
 3024 
 3025         if (action == SIG_DFL) {
 3026                 /*
 3027                  * Default action, where the default is to kill
 3028                  * the process.  (Other cases were ignored above.)
 3029                  */
 3030                 mtx_unlock(&ps->ps_mtx);
 3031                 proc_td_siginfo_capture(td, &ksi.ksi_info);
 3032                 sigexit(td, sig);
 3033                 /* NOTREACHED */
 3034         } else {
 3035                 /*
 3036                  * If we get here, the signal must be caught.
 3037                  */
 3038                 KASSERT(action != SIG_IGN, ("postsig action %p", action));
 3039                 KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
 3040                     ("postsig action: blocked sig %d", sig));
 3041 
 3042                 /*
 3043                  * Set the new mask value and also defer further
 3044                  * occurrences of this signal.
 3045                  *
 3046                  * Special case: user has done a sigsuspend.  Here the
 3047                  * current mask is not of interest, but rather the
 3048                  * mask from before the sigsuspend is what we want
 3049                  * restored after the signal processing is completed.
 3050                  */
 3051                 if (td->td_pflags & TDP_OLDMASK) {
 3052                         returnmask = td->td_oldsigmask;
 3053                         td->td_pflags &= ~TDP_OLDMASK;
 3054                 } else
 3055                         returnmask = td->td_sigmask;
 3056 
 3057                 if (p->p_sig == sig) {
 3058                         p->p_code = 0;
 3059                         p->p_sig = 0;
 3060                 }
 3061                 (*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
 3062                 postsig_done(sig, td, ps);
 3063         }
 3064         return (1);
 3065 }
 3066 
 3067 void
 3068 proc_wkilled(struct proc *p)
 3069 {
 3070 
 3071         PROC_LOCK_ASSERT(p, MA_OWNED);
 3072         if ((p->p_flag & P_WKILLED) == 0) {
 3073                 p->p_flag |= P_WKILLED;
 3074                 /*
 3075                  * Notify swapper that there is a process to swap in.
 3076                  * The notification is racy, at worst it would take 10
 3077                  * seconds for the swapper process to notice.
 3078                  */
 3079                 if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
 3080                         wakeup(&proc0);
 3081         }
 3082 }
 3083 
 3084 /*
 3085  * Kill the current process for stated reason.
 3086  */
 3087 void
 3088 killproc(struct proc *p, char *why)
 3089 {
 3090 
 3091         PROC_LOCK_ASSERT(p, MA_OWNED);
 3092         CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
 3093             p->p_comm);
 3094         log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
 3095             p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
 3096         proc_wkilled(p);
 3097         kern_psignal(p, SIGKILL);
 3098 }
 3099 
 3100 /*
 3101  * Force the current process to exit with the specified signal, dumping core
 3102  * if appropriate.  We bypass the normal tests for masked and caught signals,
 3103  * allowing unrecoverable failures to terminate the process without changing
 3104  * signal state.  Mark the accounting record with the signal termination.
 3105  * If dumping core, save the signal number for the debugger.  Calls exit and
 3106  * does not return.
 3107  */
 3108 void
 3109 sigexit(struct thread *td, int sig)
 3110 {
 3111         struct proc *p = td->td_proc;
 3112 
 3113         PROC_LOCK_ASSERT(p, MA_OWNED);
 3114         p->p_acflag |= AXSIG;
 3115         /*
 3116          * We must be single-threading to generate a core dump.  This
 3117          * ensures that the registers in the core file are up-to-date.
 3118          * Also, the ELF dump handler assumes that the thread list doesn't
 3119          * change out from under it.
 3120          *
 3121          * XXX If another thread attempts to single-thread before us
 3122          *     (e.g. via fork()), we won't get a dump at all.
 3123          */
 3124         if ((sigprop(sig) & SIGPROP_CORE) &&
 3125             thread_single(p, SINGLE_NO_EXIT) == 0) {
 3126                 p->p_sig = sig;
 3127                 /*
 3128                  * Log signals which would cause core dumps
 3129                  * (Log as LOG_INFO to appease those who don't want
 3130                  * these messages.)
 3131                  * XXX : Todo, as well as euid, write out ruid too
 3132                  * Note that coredump() drops proc lock.
 3133                  */
 3134                 if (coredump(td) == 0)
 3135                         sig |= WCOREFLAG;
 3136                 if (kern_logsigexit)
 3137                         log(LOG_INFO,
 3138                             "pid %d (%s), uid %d: exited on signal %d%s\n",
 3139                             p->p_pid, p->p_comm,
 3140                             td->td_ucred ? td->td_ucred->cr_uid : -1,
 3141                             sig &~ WCOREFLAG,
 3142                             sig & WCOREFLAG ? " (core dumped)" : "");
 3143         } else
 3144                 PROC_UNLOCK(p);
 3145         exit1(td, 0, sig);
 3146         /* NOTREACHED */
 3147 }
 3148 
 3149 /*
 3150  * Send queued SIGCHLD to parent when child process's state
 3151  * is changed.
 3152  */
 3153 static void
 3154 sigparent(struct proc *p, int reason, int status)
 3155 {
 3156         PROC_LOCK_ASSERT(p, MA_OWNED);
 3157         PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
 3158 
 3159         if (p->p_ksi != NULL) {
 3160                 p->p_ksi->ksi_signo  = SIGCHLD;
 3161                 p->p_ksi->ksi_code   = reason;
 3162                 p->p_ksi->ksi_status = status;
 3163                 p->p_ksi->ksi_pid    = p->p_pid;
 3164                 p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
 3165                 if (KSI_ONQ(p->p_ksi))
 3166                         return;
 3167         }
 3168         pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
 3169 }
 3170 
 3171 static void
 3172 childproc_jobstate(struct proc *p, int reason, int sig)
 3173 {
 3174         struct sigacts *ps;
 3175 
 3176         PROC_LOCK_ASSERT(p, MA_OWNED);
 3177         PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
 3178 
 3179         /*
 3180          * Wake up parent sleeping in kern_wait(), also send
 3181          * SIGCHLD to parent, but SIGCHLD does not guarantee
 3182          * that parent will awake, because parent may masked
 3183          * the signal.
 3184          */
 3185         p->p_pptr->p_flag |= P_STATCHILD;
 3186         wakeup(p->p_pptr);
 3187 
 3188         ps = p->p_pptr->p_sigacts;
 3189         mtx_lock(&ps->ps_mtx);
 3190         if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
 3191                 mtx_unlock(&ps->ps_mtx);
 3192                 sigparent(p, reason, sig);
 3193         } else
 3194                 mtx_unlock(&ps->ps_mtx);
 3195 }
 3196 
 3197 void
 3198 childproc_stopped(struct proc *p, int reason)
 3199 {
 3200 
 3201         childproc_jobstate(p, reason, p->p_xsig);
 3202 }
 3203 
 3204 void
 3205 childproc_continued(struct proc *p)
 3206 {
 3207         childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
 3208 }
 3209 
 3210 void
 3211 childproc_exited(struct proc *p)
 3212 {
 3213         int reason, status;
 3214 
 3215         if (WCOREDUMP(p->p_xsig)) {
 3216                 reason = CLD_DUMPED;
 3217                 status = WTERMSIG(p->p_xsig);
 3218         } else if (WIFSIGNALED(p->p_xsig)) {
 3219                 reason = CLD_KILLED;
 3220                 status = WTERMSIG(p->p_xsig);
 3221         } else {
 3222                 reason = CLD_EXITED;
 3223                 status = p->p_xexit;
 3224         }
 3225         /*
 3226          * XXX avoid calling wakeup(p->p_pptr), the work is
 3227          * done in exit1().
 3228          */
 3229         sigparent(p, reason, status);
 3230 }
 3231 
 3232 #define MAX_NUM_CORE_FILES 100000
 3233 #ifndef NUM_CORE_FILES
 3234 #define NUM_CORE_FILES 5
 3235 #endif
 3236 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
 3237 static int num_cores = NUM_CORE_FILES;
 3238 
 3239 static int
 3240 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
 3241 {
 3242         int error;
 3243         int new_val;
 3244 
 3245         new_val = num_cores;
 3246         error = sysctl_handle_int(oidp, &new_val, 0, req);
 3247         if (error != 0 || req->newptr == NULL)
 3248                 return (error);
 3249         if (new_val > MAX_NUM_CORE_FILES)
 3250                 new_val = MAX_NUM_CORE_FILES;
 3251         if (new_val < 0)
 3252                 new_val = 0;
 3253         num_cores = new_val;
 3254         return (0);
 3255 }
 3256 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
 3257             0, sizeof(int), sysctl_debug_num_cores_check, "I",
 3258             "Maximum number of generated process corefiles while using index format");
 3259 
 3260 #define GZIP_SUFFIX     ".gz"
 3261 #define ZSTD_SUFFIX     ".zst"
 3262 
 3263 int compress_user_cores = 0;
 3264 
 3265 static int
 3266 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
 3267 {
 3268         int error, val;
 3269 
 3270         val = compress_user_cores;
 3271         error = sysctl_handle_int(oidp, &val, 0, req);
 3272         if (error != 0 || req->newptr == NULL)
 3273                 return (error);
 3274         if (val != 0 && !compressor_avail(val))
 3275                 return (EINVAL);
 3276         compress_user_cores = val;
 3277         return (error);
 3278 }
 3279 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores, CTLTYPE_INT | CTLFLAG_RWTUN,
 3280     0, sizeof(int), sysctl_compress_user_cores, "I",
 3281     "Enable compression of user corefiles ("
 3282     __XSTRING(COMPRESS_GZIP) " = gzip, "
 3283     __XSTRING(COMPRESS_ZSTD) " = zstd)");
 3284 
 3285 int compress_user_cores_level = 6;
 3286 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
 3287     &compress_user_cores_level, 0,
 3288     "Corefile compression level");
 3289 
 3290 /*
 3291  * Protect the access to corefilename[] by allproc_lock.
 3292  */
 3293 #define corefilename_lock       allproc_lock
 3294 
 3295 static char corefilename[MAXPATHLEN] = {"%N.core"};
 3296 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
 3297 
 3298 static int
 3299 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
 3300 {
 3301         int error;
 3302 
 3303         sx_xlock(&corefilename_lock);
 3304         error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
 3305             req);
 3306         sx_xunlock(&corefilename_lock);
 3307 
 3308         return (error);
 3309 }
 3310 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
 3311     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
 3312     "Process corefile name format string");
 3313 
 3314 static void
 3315 vnode_close_locked(struct thread *td, struct vnode *vp)
 3316 {
 3317 
 3318         VOP_UNLOCK(vp, 0);
 3319         vn_close(vp, FWRITE, td->td_ucred, td);
 3320 }
 3321 
 3322 /*
 3323  * If the core format has a %I in it, then we need to check
 3324  * for existing corefiles before defining a name.
 3325  * To do this we iterate over 0..ncores to find a
 3326  * non-existing core file name to use. If all core files are
 3327  * already used we choose the oldest one.
 3328  */
 3329 static int
 3330 corefile_open_last(struct thread *td, char *name, int indexpos,
 3331     int indexlen, int ncores, struct vnode **vpp)
 3332 {
 3333         struct vnode *oldvp, *nextvp, *vp;
 3334         struct vattr vattr;
 3335         struct nameidata nd;
 3336         int error, i, flags, oflags, cmode;
 3337         char ch;
 3338         struct timespec lasttime;
 3339 
 3340         nextvp = oldvp = NULL;
 3341         cmode = S_IRUSR | S_IWUSR;
 3342         oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
 3343             (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
 3344 
 3345         for (i = 0; i < ncores; i++) {
 3346                 flags = O_CREAT | FWRITE | O_NOFOLLOW;
 3347 
 3348                 ch = name[indexpos + indexlen];
 3349                 (void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
 3350                     i);
 3351                 name[indexpos + indexlen] = ch;
 3352 
 3353                 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
 3354                 error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
 3355                     NULL);
 3356                 if (error != 0)
 3357                         break;
 3358 
 3359                 vp = nd.ni_vp;
 3360                 NDFREE(&nd, NDF_ONLY_PNBUF);
 3361                 if ((flags & O_CREAT) == O_CREAT) {
 3362                         nextvp = vp;
 3363                         break;
 3364                 }
 3365 
 3366                 error = VOP_GETATTR(vp, &vattr, td->td_ucred);
 3367                 if (error != 0) {
 3368                         vnode_close_locked(td, vp);
 3369                         break;
 3370                 }
 3371 
 3372                 if (oldvp == NULL ||
 3373                     lasttime.tv_sec > vattr.va_mtime.tv_sec ||
 3374                     (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
 3375                     lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
 3376                         if (oldvp != NULL)
 3377                                 vnode_close_locked(td, oldvp);
 3378                         oldvp = vp;
 3379                         lasttime = vattr.va_mtime;
 3380                 } else {
 3381                         vnode_close_locked(td, vp);
 3382                 }
 3383         }
 3384 
 3385         if (oldvp != NULL) {
 3386                 if (nextvp == NULL)
 3387                         nextvp = oldvp;
 3388                 else
 3389                         vnode_close_locked(td, oldvp);
 3390         }
 3391         if (error != 0) {
 3392                 if (nextvp != NULL)
 3393                         vnode_close_locked(td, oldvp);
 3394         } else {
 3395                 *vpp = nextvp;
 3396         }
 3397 
 3398         return (error);
 3399 }
 3400 
 3401 /*
 3402  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
 3403  * Expand the name described in corefilename, using name, uid, and pid
 3404  * and open/create core file.
 3405  * corefilename is a printf-like string, with three format specifiers:
 3406  *      %N      name of process ("name")
 3407  *      %P      process id (pid)
 3408  *      %U      user id (uid)
 3409  * For example, "%N.core" is the default; they can be disabled completely
 3410  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
 3411  * This is controlled by the sysctl variable kern.corefile (see above).
 3412  */
 3413 static int
 3414 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
 3415     int compress, struct vnode **vpp, char **namep)
 3416 {
 3417         struct sbuf sb;
 3418         struct nameidata nd;
 3419         const char *format;
 3420         char *hostname, *name;
 3421         int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
 3422 
 3423         hostname = NULL;
 3424         format = corefilename;
 3425         name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
 3426         indexlen = 0;
 3427         indexpos = -1;
 3428         ncores = num_cores;
 3429         (void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
 3430         sx_slock(&corefilename_lock);
 3431         for (i = 0; format[i] != '\0'; i++) {
 3432                 switch (format[i]) {
 3433                 case '%':       /* Format character */
 3434                         i++;
 3435                         switch (format[i]) {
 3436                         case '%':
 3437                                 sbuf_putc(&sb, '%');
 3438                                 break;
 3439                         case 'H':       /* hostname */
 3440                                 if (hostname == NULL) {
 3441                                         hostname = malloc(MAXHOSTNAMELEN,
 3442                                             M_TEMP, M_WAITOK);
 3443                                 }
 3444                                 getcredhostname(td->td_ucred, hostname,
 3445                                     MAXHOSTNAMELEN);
 3446                                 sbuf_printf(&sb, "%s", hostname);
 3447                                 break;
 3448                         case 'I':       /* autoincrementing index */
 3449                                 if (indexpos != -1) {
 3450                                         sbuf_printf(&sb, "%%I");
 3451                                         break;
 3452                                 }
 3453 
 3454                                 indexpos = sbuf_len(&sb);
 3455                                 sbuf_printf(&sb, "%u", ncores - 1);
 3456                                 indexlen = sbuf_len(&sb) - indexpos;
 3457                                 break;
 3458                         case 'N':       /* process name */
 3459                                 sbuf_printf(&sb, "%s", comm);
 3460                                 break;
 3461                         case 'P':       /* process id */
 3462                                 sbuf_printf(&sb, "%u", pid);
 3463                                 break;
 3464                         case 'U':       /* user id */
 3465                                 sbuf_printf(&sb, "%u", uid);
 3466                                 break;
 3467                         default:
 3468                                 log(LOG_ERR,
 3469                                     "Unknown format character %c in "
 3470                                     "corename `%s'\n", format[i], format);
 3471                                 break;
 3472                         }
 3473                         break;
 3474                 default:
 3475                         sbuf_putc(&sb, format[i]);
 3476                         break;
 3477                 }
 3478         }
 3479         sx_sunlock(&corefilename_lock);
 3480         free(hostname, M_TEMP);
 3481         if (compress == COMPRESS_GZIP)
 3482                 sbuf_printf(&sb, GZIP_SUFFIX);
 3483         else if (compress == COMPRESS_ZSTD)
 3484                 sbuf_printf(&sb, ZSTD_SUFFIX);
 3485         if (sbuf_error(&sb) != 0) {
 3486                 log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
 3487                     "long\n", (long)pid, comm, (u_long)uid);
 3488                 sbuf_delete(&sb);
 3489                 free(name, M_TEMP);
 3490                 return (ENOMEM);
 3491         }
 3492         sbuf_finish(&sb);
 3493         sbuf_delete(&sb);
 3494 
 3495         if (indexpos != -1) {
 3496                 error = corefile_open_last(td, name, indexpos, indexlen, ncores,
 3497                     vpp);
 3498                 if (error != 0) {
 3499                         log(LOG_ERR,
 3500                             "pid %d (%s), uid (%u):  Path `%s' failed "
 3501                             "on initial open test, error = %d\n",
 3502                             pid, comm, uid, name, error);
 3503                 }
 3504         } else {
 3505                 cmode = S_IRUSR | S_IWUSR;
 3506                 oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
 3507                     (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
 3508                 flags = O_CREAT | FWRITE | O_NOFOLLOW;
 3509 
 3510                 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
 3511                 error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
 3512                     NULL);
 3513                 if (error == 0) {
 3514                         *vpp = nd.ni_vp;
 3515                         NDFREE(&nd, NDF_ONLY_PNBUF);
 3516                 }
 3517         }
 3518 
 3519         if (error != 0) {
 3520 #ifdef AUDIT
 3521                 audit_proc_coredump(td, name, error);
 3522 #endif
 3523                 free(name, M_TEMP);
 3524                 return (error);
 3525         }
 3526         *namep = name;
 3527         return (0);
 3528 }
 3529 
 3530 /*
 3531  * Dump a process' core.  The main routine does some
 3532  * policy checking, and creates the name of the coredump;
 3533  * then it passes on a vnode and a size limit to the process-specific
 3534  * coredump routine if there is one; if there _is not_ one, it returns
 3535  * ENOSYS; otherwise it returns the error from the process-specific routine.
 3536  */
 3537 
 3538 static int
 3539 coredump(struct thread *td)
 3540 {
 3541         struct proc *p = td->td_proc;
 3542         struct ucred *cred = td->td_ucred;
 3543         struct vnode *vp;
 3544         struct flock lf;
 3545         struct vattr vattr;
 3546         int error, error1, locked;
 3547         char *name;                     /* name of corefile */
 3548         void *rl_cookie;
 3549         off_t limit;
 3550         char *fullpath, *freepath = NULL;
 3551         struct sbuf *sb;
 3552 
 3553         PROC_LOCK_ASSERT(p, MA_OWNED);
 3554         MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
 3555         _STOPEVENT(p, S_CORE, 0);
 3556 
 3557         if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
 3558             (p->p_flag2 & P2_NOTRACE) != 0) {
 3559                 PROC_UNLOCK(p);
 3560                 return (EFAULT);
 3561         }
 3562 
 3563         /*
 3564          * Note that the bulk of limit checking is done after
 3565          * the corefile is created.  The exception is if the limit
 3566          * for corefiles is 0, in which case we don't bother
 3567          * creating the corefile at all.  This layout means that
 3568          * a corefile is truncated instead of not being created,
 3569          * if it is larger than the limit.
 3570          */
 3571         limit = (off_t)lim_cur(td, RLIMIT_CORE);
 3572         if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
 3573                 PROC_UNLOCK(p);
 3574                 return (EFBIG);
 3575         }
 3576         PROC_UNLOCK(p);
 3577 
 3578         error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
 3579             compress_user_cores, &vp, &name);
 3580         if (error != 0)
 3581                 return (error);
 3582 
 3583         /*
 3584          * Don't dump to non-regular files or files with links.
 3585          * Do not dump into system files.
 3586          */
 3587         if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
 3588             vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) {
 3589                 VOP_UNLOCK(vp, 0);
 3590                 error = EFAULT;
 3591                 goto out;
 3592         }
 3593 
 3594         VOP_UNLOCK(vp, 0);
 3595 
 3596         /* Postpone other writers, including core dumps of other processes. */
 3597         rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
 3598 
 3599         lf.l_whence = SEEK_SET;
 3600         lf.l_start = 0;
 3601         lf.l_len = 0;
 3602         lf.l_type = F_WRLCK;
 3603         locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
 3604 
 3605         VATTR_NULL(&vattr);
 3606         vattr.va_size = 0;
 3607         if (set_core_nodump_flag)
 3608                 vattr.va_flags = UF_NODUMP;
 3609         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 3610         VOP_SETATTR(vp, &vattr, cred);
 3611         VOP_UNLOCK(vp, 0);
 3612         PROC_LOCK(p);
 3613         p->p_acflag |= ACORE;
 3614         PROC_UNLOCK(p);
 3615 
 3616         if (p->p_sysent->sv_coredump != NULL) {
 3617                 error = p->p_sysent->sv_coredump(td, vp, limit, 0);
 3618         } else {
 3619                 error = ENOSYS;
 3620         }
 3621 
 3622         if (locked) {
 3623                 lf.l_type = F_UNLCK;
 3624                 VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
 3625         }
 3626         vn_rangelock_unlock(vp, rl_cookie);
 3627 
 3628         /*
 3629          * Notify the userland helper that a process triggered a core dump.
 3630          * This allows the helper to run an automated debugging session.
 3631          */
 3632         if (error != 0 || coredump_devctl == 0)
 3633                 goto out;
 3634         sb = sbuf_new_auto();
 3635         if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
 3636                 goto out2;
 3637         sbuf_printf(sb, "comm=\"");
 3638         devctl_safe_quote_sb(sb, fullpath);
 3639         free(freepath, M_TEMP);
 3640         sbuf_printf(sb, "\" core=\"");
 3641 
 3642         /*
 3643          * We can't lookup core file vp directly. When we're replacing a core, and
 3644          * other random times, we flush the name cache, so it will fail. Instead,
 3645          * if the path of the core is relative, add the current dir in front if it.
 3646          */
 3647         if (name[0] != '/') {
 3648                 fullpath = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
 3649                 if (kern___getcwd(td, fullpath, UIO_SYSSPACE, MAXPATHLEN, MAXPATHLEN) != 0) {
 3650                         free(fullpath, M_TEMP);
 3651                         goto out2;
 3652                 }
 3653                 devctl_safe_quote_sb(sb, fullpath);
 3654                 free(fullpath, M_TEMP);
 3655                 sbuf_putc(sb, '/');
 3656         }
 3657         devctl_safe_quote_sb(sb, name);
 3658         sbuf_printf(sb, "\"");
 3659         if (sbuf_finish(sb) == 0)
 3660                 devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
 3661 out2:
 3662         sbuf_delete(sb);
 3663 out:
 3664         error1 = vn_close(vp, FWRITE, cred, td);
 3665         if (error == 0)
 3666                 error = error1;
 3667 #ifdef AUDIT
 3668         audit_proc_coredump(td, name, error);
 3669 #endif
 3670         free(name, M_TEMP);
 3671         return (error);
 3672 }
 3673 
 3674 /*
 3675  * Nonexistent system call-- signal process (may want to handle it).  Flag
 3676  * error in case process won't see signal immediately (blocked or ignored).
 3677  */
 3678 #ifndef _SYS_SYSPROTO_H_
 3679 struct nosys_args {
 3680         int     dummy;
 3681 };
 3682 #endif
 3683 /* ARGSUSED */
 3684 int
 3685 nosys(struct thread *td, struct nosys_args *args)
 3686 {
 3687         struct proc *p;
 3688 
 3689         p = td->td_proc;
 3690 
 3691         PROC_LOCK(p);
 3692         tdsignal(td, SIGSYS);
 3693         PROC_UNLOCK(p);
 3694         if (kern_lognosys == 1 || kern_lognosys == 3) {
 3695                 uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
 3696                     td->td_sa.code);
 3697         }
 3698         if (kern_lognosys == 2 || kern_lognosys == 3) {
 3699                 printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
 3700                     td->td_sa.code);
 3701         }
 3702         return (ENOSYS);
 3703 }
 3704 
 3705 /*
 3706  * Send a SIGIO or SIGURG signal to a process or process group using stored
 3707  * credentials rather than those of the current process.
 3708  */
 3709 void
 3710 pgsigio(struct sigio **sigiop, int sig, int checkctty)
 3711 {
 3712         ksiginfo_t ksi;
 3713         struct sigio *sigio;
 3714 
 3715         ksiginfo_init(&ksi);
 3716         ksi.ksi_signo = sig;
 3717         ksi.ksi_code = SI_KERNEL;
 3718 
 3719         SIGIO_LOCK();
 3720         sigio = *sigiop;
 3721         if (sigio == NULL) {
 3722                 SIGIO_UNLOCK();
 3723                 return;
 3724         }
 3725         if (sigio->sio_pgid > 0) {
 3726                 PROC_LOCK(sigio->sio_proc);
 3727                 if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
 3728                         kern_psignal(sigio->sio_proc, sig);
 3729                 PROC_UNLOCK(sigio->sio_proc);
 3730         } else if (sigio->sio_pgid < 0) {
 3731                 struct proc *p;
 3732 
 3733                 PGRP_LOCK(sigio->sio_pgrp);
 3734                 LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
 3735                         PROC_LOCK(p);
 3736                         if (p->p_state == PRS_NORMAL &&
 3737                             CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
 3738                             (checkctty == 0 || (p->p_flag & P_CONTROLT)))
 3739                                 kern_psignal(p, sig);
 3740                         PROC_UNLOCK(p);
 3741                 }
 3742                 PGRP_UNLOCK(sigio->sio_pgrp);
 3743         }
 3744         SIGIO_UNLOCK();
 3745 }
 3746 
 3747 static int
 3748 filt_sigattach(struct knote *kn)
 3749 {
 3750         struct proc *p = curproc;
 3751 
 3752         kn->kn_ptr.p_proc = p;
 3753         kn->kn_flags |= EV_CLEAR;               /* automatically set */
 3754 
 3755         knlist_add(p->p_klist, kn, 0);
 3756 
 3757         return (0);
 3758 }
 3759 
 3760 static void
 3761 filt_sigdetach(struct knote *kn)
 3762 {
 3763         struct proc *p = kn->kn_ptr.p_proc;
 3764 
 3765         knlist_remove(p->p_klist, kn, 0);
 3766 }
 3767 
 3768 /*
 3769  * signal knotes are shared with proc knotes, so we apply a mask to
 3770  * the hint in order to differentiate them from process hints.  This
 3771  * could be avoided by using a signal-specific knote list, but probably
 3772  * isn't worth the trouble.
 3773  */
 3774 static int
 3775 filt_signal(struct knote *kn, long hint)
 3776 {
 3777 
 3778         if (hint & NOTE_SIGNAL) {
 3779                 hint &= ~NOTE_SIGNAL;
 3780 
 3781                 if (kn->kn_id == hint)
 3782                         kn->kn_data++;
 3783         }
 3784         return (kn->kn_data != 0);
 3785 }
 3786 
 3787 struct sigacts *
 3788 sigacts_alloc(void)
 3789 {
 3790         struct sigacts *ps;
 3791 
 3792         ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
 3793         refcount_init(&ps->ps_refcnt, 1);
 3794         mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
 3795         return (ps);
 3796 }
 3797 
 3798 void
 3799 sigacts_free(struct sigacts *ps)
 3800 {
 3801 
 3802         if (refcount_release(&ps->ps_refcnt) == 0)
 3803                 return;
 3804         mtx_destroy(&ps->ps_mtx);
 3805         free(ps, M_SUBPROC);
 3806 }
 3807 
 3808 struct sigacts *
 3809 sigacts_hold(struct sigacts *ps)
 3810 {
 3811 
 3812         refcount_acquire(&ps->ps_refcnt);
 3813         return (ps);
 3814 }
 3815 
 3816 void
 3817 sigacts_copy(struct sigacts *dest, struct sigacts *src)
 3818 {
 3819 
 3820         KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
 3821         mtx_lock(&src->ps_mtx);
 3822         bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
 3823         mtx_unlock(&src->ps_mtx);
 3824 }
 3825 
 3826 int
 3827 sigacts_shared(struct sigacts *ps)
 3828 {
 3829 
 3830         return (ps->ps_refcnt > 1);
 3831 }

Cache object: b094bb1bfd149a71bae05f01d05f51e1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.