The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_sig.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_sig.c  8.7 (Berkeley) 4/18/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/9.1/sys/kern/kern_sig.c 234455 2012-04-19 10:36:23Z kib $");
   39 
   40 #include "opt_compat.h"
   41 #include "opt_kdtrace.h"
   42 #include "opt_ktrace.h"
   43 #include "opt_core.h"
   44 #include "opt_procdesc.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/signalvar.h>
   49 #include <sys/vnode.h>
   50 #include <sys/acct.h>
   51 #include <sys/capability.h>
   52 #include <sys/condvar.h>
   53 #include <sys/event.h>
   54 #include <sys/fcntl.h>
   55 #include <sys/imgact.h>
   56 #include <sys/kernel.h>
   57 #include <sys/ktr.h>
   58 #include <sys/ktrace.h>
   59 #include <sys/lock.h>
   60 #include <sys/malloc.h>
   61 #include <sys/mutex.h>
   62 #include <sys/namei.h>
   63 #include <sys/proc.h>
   64 #include <sys/procdesc.h>
   65 #include <sys/posix4.h>
   66 #include <sys/pioctl.h>
   67 #include <sys/racct.h>
   68 #include <sys/resourcevar.h>
   69 #include <sys/sdt.h>
   70 #include <sys/sbuf.h>
   71 #include <sys/sleepqueue.h>
   72 #include <sys/smp.h>
   73 #include <sys/stat.h>
   74 #include <sys/sx.h>
   75 #include <sys/syscallsubr.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/sysent.h>
   78 #include <sys/syslog.h>
   79 #include <sys/sysproto.h>
   80 #include <sys/timers.h>
   81 #include <sys/unistd.h>
   82 #include <sys/wait.h>
   83 #include <vm/vm.h>
   84 #include <vm/vm_extern.h>
   85 #include <vm/uma.h>
   86 
   87 #include <sys/jail.h>
   88 
   89 #include <machine/cpu.h>
   90 
   91 #include <security/audit/audit.h>
   92 
   93 #define ONSIG   32              /* NSIG for osig* syscalls.  XXX. */
   94 
   95 SDT_PROVIDER_DECLARE(proc);
   96 SDT_PROBE_DEFINE(proc, kernel, , signal_send, signal-send);
   97 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 0, "struct thread *");
   98 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 1, "struct proc *");
   99 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 2, "int");
  100 SDT_PROBE_DEFINE(proc, kernel, , signal_clear, signal-clear);
  101 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 0, "int");
  102 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 1, "ksiginfo_t *");
  103 SDT_PROBE_DEFINE(proc, kernel, , signal_discard, signal-discard);
  104 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 0, "struct thread *");
  105 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 1, "struct proc *");
  106 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 2, "int");
  107 
  108 static int      coredump(struct thread *);
  109 static char     *expand_name(const char *, uid_t, pid_t, struct thread *, int);
  110 static int      killpg1(struct thread *td, int sig, int pgid, int all,
  111                     ksiginfo_t *ksi);
  112 static int      issignal(struct thread *td, int stop_allowed);
  113 static int      sigprop(int sig);
  114 static void     tdsigwakeup(struct thread *, int, sig_t, int);
  115 static void     sig_suspend_threads(struct thread *, struct proc *, int);
  116 static int      filt_sigattach(struct knote *kn);
  117 static void     filt_sigdetach(struct knote *kn);
  118 static int      filt_signal(struct knote *kn, long hint);
  119 static struct thread *sigtd(struct proc *p, int sig, int prop);
  120 static void     sigqueue_start(void);
  121 
  122 static uma_zone_t       ksiginfo_zone = NULL;
  123 struct filterops sig_filtops = {
  124         .f_isfd = 0,
  125         .f_attach = filt_sigattach,
  126         .f_detach = filt_sigdetach,
  127         .f_event = filt_signal,
  128 };
  129 
  130 static int      kern_logsigexit = 1;
  131 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW, 
  132     &kern_logsigexit, 0, 
  133     "Log processes quitting on abnormal signals to syslog(3)");
  134 
  135 static int      kern_forcesigexit = 1;
  136 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
  137     &kern_forcesigexit, 0, "Force trap signal to be handled");
  138 
  139 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
  140 
  141 static int      max_pending_per_proc = 128;
  142 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
  143     &max_pending_per_proc, 0, "Max pending signals per proc");
  144 
  145 static int      preallocate_siginfo = 1024;
  146 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
  147 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
  148     &preallocate_siginfo, 0, "Preallocated signal memory size");
  149 
  150 static int      signal_overflow = 0;
  151 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
  152     &signal_overflow, 0, "Number of signals overflew");
  153 
  154 static int      signal_alloc_fail = 0;
  155 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
  156     &signal_alloc_fail, 0, "signals failed to be allocated");
  157 
  158 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
  159 
  160 /*
  161  * Policy -- Can ucred cr1 send SIGIO to process cr2?
  162  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
  163  * in the right situations.
  164  */
  165 #define CANSIGIO(cr1, cr2) \
  166         ((cr1)->cr_uid == 0 || \
  167             (cr1)->cr_ruid == (cr2)->cr_ruid || \
  168             (cr1)->cr_uid == (cr2)->cr_ruid || \
  169             (cr1)->cr_ruid == (cr2)->cr_uid || \
  170             (cr1)->cr_uid == (cr2)->cr_uid)
  171 
  172 static int      sugid_coredump;
  173 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW, 
  174     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
  175 
  176 static int      do_coredump = 1;
  177 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
  178         &do_coredump, 0, "Enable/Disable coredumps");
  179 
  180 static int      set_core_nodump_flag = 0;
  181 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
  182         0, "Enable setting the NODUMP flag on coredump files");
  183 
  184 /*
  185  * Signal properties and actions.
  186  * The array below categorizes the signals and their default actions
  187  * according to the following properties:
  188  */
  189 #define SA_KILL         0x01            /* terminates process by default */
  190 #define SA_CORE         0x02            /* ditto and coredumps */
  191 #define SA_STOP         0x04            /* suspend process */
  192 #define SA_TTYSTOP      0x08            /* ditto, from tty */
  193 #define SA_IGNORE       0x10            /* ignore by default */
  194 #define SA_CONT         0x20            /* continue if suspended */
  195 #define SA_CANTMASK     0x40            /* non-maskable, catchable */
  196 #define SA_PROC         0x80            /* deliverable to any thread */
  197 
  198 static int sigproptbl[NSIG] = {
  199         SA_KILL|SA_PROC,                /* SIGHUP */
  200         SA_KILL|SA_PROC,                /* SIGINT */
  201         SA_KILL|SA_CORE|SA_PROC,        /* SIGQUIT */
  202         SA_KILL|SA_CORE,                /* SIGILL */
  203         SA_KILL|SA_CORE,                /* SIGTRAP */
  204         SA_KILL|SA_CORE,                /* SIGABRT */
  205         SA_KILL|SA_CORE|SA_PROC,        /* SIGEMT */
  206         SA_KILL|SA_CORE,                /* SIGFPE */
  207         SA_KILL|SA_PROC,                /* SIGKILL */
  208         SA_KILL|SA_CORE,                /* SIGBUS */
  209         SA_KILL|SA_CORE,                /* SIGSEGV */
  210         SA_KILL|SA_CORE,                /* SIGSYS */
  211         SA_KILL|SA_PROC,                /* SIGPIPE */
  212         SA_KILL|SA_PROC,                /* SIGALRM */
  213         SA_KILL|SA_PROC,                /* SIGTERM */
  214         SA_IGNORE|SA_PROC,              /* SIGURG */
  215         SA_STOP|SA_PROC,                /* SIGSTOP */
  216         SA_STOP|SA_TTYSTOP|SA_PROC,     /* SIGTSTP */
  217         SA_IGNORE|SA_CONT|SA_PROC,      /* SIGCONT */
  218         SA_IGNORE|SA_PROC,              /* SIGCHLD */
  219         SA_STOP|SA_TTYSTOP|SA_PROC,     /* SIGTTIN */
  220         SA_STOP|SA_TTYSTOP|SA_PROC,     /* SIGTTOU */
  221         SA_IGNORE|SA_PROC,              /* SIGIO */
  222         SA_KILL,                        /* SIGXCPU */
  223         SA_KILL,                        /* SIGXFSZ */
  224         SA_KILL|SA_PROC,                /* SIGVTALRM */
  225         SA_KILL|SA_PROC,                /* SIGPROF */
  226         SA_IGNORE|SA_PROC,              /* SIGWINCH  */
  227         SA_IGNORE|SA_PROC,              /* SIGINFO */
  228         SA_KILL|SA_PROC,                /* SIGUSR1 */
  229         SA_KILL|SA_PROC,                /* SIGUSR2 */
  230 };
  231 
  232 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
  233 
  234 static void
  235 sigqueue_start(void)
  236 {
  237         ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
  238                 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  239         uma_prealloc(ksiginfo_zone, preallocate_siginfo);
  240         p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
  241         p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
  242         p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
  243 }
  244 
  245 ksiginfo_t *
  246 ksiginfo_alloc(int wait)
  247 {
  248         int flags;
  249 
  250         flags = M_ZERO;
  251         if (! wait)
  252                 flags |= M_NOWAIT;
  253         if (ksiginfo_zone != NULL)
  254                 return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
  255         return (NULL);
  256 }
  257 
  258 void
  259 ksiginfo_free(ksiginfo_t *ksi)
  260 {
  261         uma_zfree(ksiginfo_zone, ksi);
  262 }
  263 
  264 static __inline int
  265 ksiginfo_tryfree(ksiginfo_t *ksi)
  266 {
  267         if (!(ksi->ksi_flags & KSI_EXT)) {
  268                 uma_zfree(ksiginfo_zone, ksi);
  269                 return (1);
  270         }
  271         return (0);
  272 }
  273 
  274 void
  275 sigqueue_init(sigqueue_t *list, struct proc *p)
  276 {
  277         SIGEMPTYSET(list->sq_signals);
  278         SIGEMPTYSET(list->sq_kill);
  279         TAILQ_INIT(&list->sq_list);
  280         list->sq_proc = p;
  281         list->sq_flags = SQ_INIT;
  282 }
  283 
  284 /*
  285  * Get a signal's ksiginfo.
  286  * Return:
  287  *      0       -       signal not found
  288  *      others  -       signal number
  289  */ 
  290 static int
  291 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
  292 {
  293         struct proc *p = sq->sq_proc;
  294         struct ksiginfo *ksi, *next;
  295         int count = 0;
  296 
  297         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  298 
  299         if (!SIGISMEMBER(sq->sq_signals, signo))
  300                 return (0);
  301 
  302         if (SIGISMEMBER(sq->sq_kill, signo)) {
  303                 count++;
  304                 SIGDELSET(sq->sq_kill, signo);
  305         }
  306 
  307         TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
  308                 if (ksi->ksi_signo == signo) {
  309                         if (count == 0) {
  310                                 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  311                                 ksi->ksi_sigq = NULL;
  312                                 ksiginfo_copy(ksi, si);
  313                                 if (ksiginfo_tryfree(ksi) && p != NULL)
  314                                         p->p_pendingcnt--;
  315                         }
  316                         if (++count > 1)
  317                                 break;
  318                 }
  319         }
  320 
  321         if (count <= 1)
  322                 SIGDELSET(sq->sq_signals, signo);
  323         si->ksi_signo = signo;
  324         return (signo);
  325 }
  326 
  327 void
  328 sigqueue_take(ksiginfo_t *ksi)
  329 {
  330         struct ksiginfo *kp;
  331         struct proc     *p;
  332         sigqueue_t      *sq;
  333 
  334         if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
  335                 return;
  336 
  337         p = sq->sq_proc;
  338         TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  339         ksi->ksi_sigq = NULL;
  340         if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
  341                 p->p_pendingcnt--;
  342 
  343         for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
  344              kp = TAILQ_NEXT(kp, ksi_link)) {
  345                 if (kp->ksi_signo == ksi->ksi_signo)
  346                         break;
  347         }
  348         if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
  349                 SIGDELSET(sq->sq_signals, ksi->ksi_signo);
  350 }
  351 
  352 static int
  353 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
  354 {
  355         struct proc *p = sq->sq_proc;
  356         struct ksiginfo *ksi;
  357         int ret = 0;
  358 
  359         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  360         
  361         if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
  362                 SIGADDSET(sq->sq_kill, signo);
  363                 goto out_set_bit;
  364         }
  365 
  366         /* directly insert the ksi, don't copy it */
  367         if (si->ksi_flags & KSI_INS) {
  368                 if (si->ksi_flags & KSI_HEAD)
  369                         TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
  370                 else
  371                         TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
  372                 si->ksi_sigq = sq;
  373                 goto out_set_bit;
  374         }
  375 
  376         if (__predict_false(ksiginfo_zone == NULL)) {
  377                 SIGADDSET(sq->sq_kill, signo);
  378                 goto out_set_bit;
  379         }
  380         
  381         if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
  382                 signal_overflow++;
  383                 ret = EAGAIN;
  384         } else if ((ksi = ksiginfo_alloc(0)) == NULL) {
  385                 signal_alloc_fail++;
  386                 ret = EAGAIN;
  387         } else {
  388                 if (p != NULL)
  389                         p->p_pendingcnt++;
  390                 ksiginfo_copy(si, ksi);
  391                 ksi->ksi_signo = signo;
  392                 if (si->ksi_flags & KSI_HEAD)
  393                         TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
  394                 else
  395                         TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
  396                 ksi->ksi_sigq = sq;
  397         }
  398 
  399         if ((si->ksi_flags & KSI_TRAP) != 0 ||
  400             (si->ksi_flags & KSI_SIGQ) == 0) {
  401                 if (ret != 0)
  402                         SIGADDSET(sq->sq_kill, signo);
  403                 ret = 0;
  404                 goto out_set_bit;
  405         }
  406 
  407         if (ret != 0)
  408                 return (ret);
  409         
  410 out_set_bit:
  411         SIGADDSET(sq->sq_signals, signo);
  412         return (ret);
  413 }
  414 
  415 void
  416 sigqueue_flush(sigqueue_t *sq)
  417 {
  418         struct proc *p = sq->sq_proc;
  419         ksiginfo_t *ksi;
  420 
  421         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  422 
  423         if (p != NULL)
  424                 PROC_LOCK_ASSERT(p, MA_OWNED);
  425 
  426         while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
  427                 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  428                 ksi->ksi_sigq = NULL;
  429                 if (ksiginfo_tryfree(ksi) && p != NULL)
  430                         p->p_pendingcnt--;
  431         }
  432 
  433         SIGEMPTYSET(sq->sq_signals);
  434         SIGEMPTYSET(sq->sq_kill);
  435 }
  436 
  437 static void
  438 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
  439 {
  440         sigset_t tmp;
  441         struct proc *p1, *p2;
  442         ksiginfo_t *ksi, *next;
  443 
  444         KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
  445         KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
  446         p1 = src->sq_proc;
  447         p2 = dst->sq_proc;
  448         /* Move siginfo to target list */
  449         TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
  450                 if (SIGISMEMBER(*set, ksi->ksi_signo)) {
  451                         TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
  452                         if (p1 != NULL)
  453                                 p1->p_pendingcnt--;
  454                         TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
  455                         ksi->ksi_sigq = dst;
  456                         if (p2 != NULL)
  457                                 p2->p_pendingcnt++;
  458                 }
  459         }
  460 
  461         /* Move pending bits to target list */
  462         tmp = src->sq_kill;
  463         SIGSETAND(tmp, *set);
  464         SIGSETOR(dst->sq_kill, tmp);
  465         SIGSETNAND(src->sq_kill, tmp);
  466 
  467         tmp = src->sq_signals;
  468         SIGSETAND(tmp, *set);
  469         SIGSETOR(dst->sq_signals, tmp);
  470         SIGSETNAND(src->sq_signals, tmp);
  471 }
  472 
  473 #if 0
  474 static void
  475 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
  476 {
  477         sigset_t set;
  478 
  479         SIGEMPTYSET(set);
  480         SIGADDSET(set, signo);
  481         sigqueue_move_set(src, dst, &set);
  482 }
  483 #endif
  484 
  485 static void
  486 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
  487 {
  488         struct proc *p = sq->sq_proc;
  489         ksiginfo_t *ksi, *next;
  490 
  491         KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
  492 
  493         /* Remove siginfo queue */
  494         TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
  495                 if (SIGISMEMBER(*set, ksi->ksi_signo)) {
  496                         TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  497                         ksi->ksi_sigq = NULL;
  498                         if (ksiginfo_tryfree(ksi) && p != NULL)
  499                                 p->p_pendingcnt--;
  500                 }
  501         }
  502         SIGSETNAND(sq->sq_kill, *set);
  503         SIGSETNAND(sq->sq_signals, *set);
  504 }
  505 
  506 void
  507 sigqueue_delete(sigqueue_t *sq, int signo)
  508 {
  509         sigset_t set;
  510 
  511         SIGEMPTYSET(set);
  512         SIGADDSET(set, signo);
  513         sigqueue_delete_set(sq, &set);
  514 }
  515 
  516 /* Remove a set of signals for a process */
  517 static void
  518 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
  519 {
  520         sigqueue_t worklist;
  521         struct thread *td0;
  522 
  523         PROC_LOCK_ASSERT(p, MA_OWNED);
  524 
  525         sigqueue_init(&worklist, NULL);
  526         sigqueue_move_set(&p->p_sigqueue, &worklist, set);
  527 
  528         FOREACH_THREAD_IN_PROC(p, td0)
  529                 sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
  530 
  531         sigqueue_flush(&worklist);
  532 }
  533 
  534 void
  535 sigqueue_delete_proc(struct proc *p, int signo)
  536 {
  537         sigset_t set;
  538 
  539         SIGEMPTYSET(set);
  540         SIGADDSET(set, signo);
  541         sigqueue_delete_set_proc(p, &set);
  542 }
  543 
  544 static void
  545 sigqueue_delete_stopmask_proc(struct proc *p)
  546 {
  547         sigset_t set;
  548 
  549         SIGEMPTYSET(set);
  550         SIGADDSET(set, SIGSTOP);
  551         SIGADDSET(set, SIGTSTP);
  552         SIGADDSET(set, SIGTTIN);
  553         SIGADDSET(set, SIGTTOU);
  554         sigqueue_delete_set_proc(p, &set);
  555 }
  556 
  557 /*
  558  * Determine signal that should be delivered to process p, the current
  559  * process, 0 if none.  If there is a pending stop signal with default
  560  * action, the process stops in issignal().
  561  */
  562 int
  563 cursig(struct thread *td, int stop_allowed)
  564 {
  565         PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
  566         KASSERT(stop_allowed == SIG_STOP_ALLOWED ||
  567             stop_allowed == SIG_STOP_NOT_ALLOWED, ("cursig: stop_allowed"));
  568         mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
  569         THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
  570         return (SIGPENDING(td) ? issignal(td, stop_allowed) : 0);
  571 }
  572 
  573 /*
  574  * Arrange for ast() to handle unmasked pending signals on return to user
  575  * mode.  This must be called whenever a signal is added to td_sigqueue or
  576  * unmasked in td_sigmask.
  577  */
  578 void
  579 signotify(struct thread *td)
  580 {
  581         struct proc *p;
  582 
  583         p = td->td_proc;
  584 
  585         PROC_LOCK_ASSERT(p, MA_OWNED);
  586 
  587         if (SIGPENDING(td)) {
  588                 thread_lock(td);
  589                 td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
  590                 thread_unlock(td);
  591         }
  592 }
  593 
  594 int
  595 sigonstack(size_t sp)
  596 {
  597         struct thread *td = curthread;
  598 
  599         return ((td->td_pflags & TDP_ALTSTACK) ?
  600 #if defined(COMPAT_43)
  601             ((td->td_sigstk.ss_size == 0) ?
  602                 (td->td_sigstk.ss_flags & SS_ONSTACK) :
  603                 ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
  604 #else
  605             ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
  606 #endif
  607             : 0);
  608 }
  609 
  610 static __inline int
  611 sigprop(int sig)
  612 {
  613 
  614         if (sig > 0 && sig < NSIG)
  615                 return (sigproptbl[_SIG_IDX(sig)]);
  616         return (0);
  617 }
  618 
  619 int
  620 sig_ffs(sigset_t *set)
  621 {
  622         int i;
  623 
  624         for (i = 0; i < _SIG_WORDS; i++)
  625                 if (set->__bits[i])
  626                         return (ffs(set->__bits[i]) + (i * 32));
  627         return (0);
  628 }
  629 
  630 /*
  631  * kern_sigaction
  632  * sigaction
  633  * freebsd4_sigaction
  634  * osigaction
  635  */
  636 int
  637 kern_sigaction(td, sig, act, oact, flags)
  638         struct thread *td;
  639         register int sig;
  640         struct sigaction *act, *oact;
  641         int flags;
  642 {
  643         struct sigacts *ps;
  644         struct proc *p = td->td_proc;
  645 
  646         if (!_SIG_VALID(sig))
  647                 return (EINVAL);
  648 
  649         PROC_LOCK(p);
  650         ps = p->p_sigacts;
  651         mtx_lock(&ps->ps_mtx);
  652         if (oact) {
  653                 oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
  654                 oact->sa_flags = 0;
  655                 if (SIGISMEMBER(ps->ps_sigonstack, sig))
  656                         oact->sa_flags |= SA_ONSTACK;
  657                 if (!SIGISMEMBER(ps->ps_sigintr, sig))
  658                         oact->sa_flags |= SA_RESTART;
  659                 if (SIGISMEMBER(ps->ps_sigreset, sig))
  660                         oact->sa_flags |= SA_RESETHAND;
  661                 if (SIGISMEMBER(ps->ps_signodefer, sig))
  662                         oact->sa_flags |= SA_NODEFER;
  663                 if (SIGISMEMBER(ps->ps_siginfo, sig)) {
  664                         oact->sa_flags |= SA_SIGINFO;
  665                         oact->sa_sigaction =
  666                             (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
  667                 } else
  668                         oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
  669                 if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
  670                         oact->sa_flags |= SA_NOCLDSTOP;
  671                 if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
  672                         oact->sa_flags |= SA_NOCLDWAIT;
  673         }
  674         if (act) {
  675                 if ((sig == SIGKILL || sig == SIGSTOP) &&
  676                     act->sa_handler != SIG_DFL) {
  677                         mtx_unlock(&ps->ps_mtx);
  678                         PROC_UNLOCK(p);
  679                         return (EINVAL);
  680                 }
  681 
  682                 /*
  683                  * Change setting atomically.
  684                  */
  685 
  686                 ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
  687                 SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
  688                 if (act->sa_flags & SA_SIGINFO) {
  689                         ps->ps_sigact[_SIG_IDX(sig)] =
  690                             (__sighandler_t *)act->sa_sigaction;
  691                         SIGADDSET(ps->ps_siginfo, sig);
  692                 } else {
  693                         ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
  694                         SIGDELSET(ps->ps_siginfo, sig);
  695                 }
  696                 if (!(act->sa_flags & SA_RESTART))
  697                         SIGADDSET(ps->ps_sigintr, sig);
  698                 else
  699                         SIGDELSET(ps->ps_sigintr, sig);
  700                 if (act->sa_flags & SA_ONSTACK)
  701                         SIGADDSET(ps->ps_sigonstack, sig);
  702                 else
  703                         SIGDELSET(ps->ps_sigonstack, sig);
  704                 if (act->sa_flags & SA_RESETHAND)
  705                         SIGADDSET(ps->ps_sigreset, sig);
  706                 else
  707                         SIGDELSET(ps->ps_sigreset, sig);
  708                 if (act->sa_flags & SA_NODEFER)
  709                         SIGADDSET(ps->ps_signodefer, sig);
  710                 else
  711                         SIGDELSET(ps->ps_signodefer, sig);
  712                 if (sig == SIGCHLD) {
  713                         if (act->sa_flags & SA_NOCLDSTOP)
  714                                 ps->ps_flag |= PS_NOCLDSTOP;
  715                         else
  716                                 ps->ps_flag &= ~PS_NOCLDSTOP;
  717                         if (act->sa_flags & SA_NOCLDWAIT) {
  718                                 /*
  719                                  * Paranoia: since SA_NOCLDWAIT is implemented
  720                                  * by reparenting the dying child to PID 1 (and
  721                                  * trust it to reap the zombie), PID 1 itself
  722                                  * is forbidden to set SA_NOCLDWAIT.
  723                                  */
  724                                 if (p->p_pid == 1)
  725                                         ps->ps_flag &= ~PS_NOCLDWAIT;
  726                                 else
  727                                         ps->ps_flag |= PS_NOCLDWAIT;
  728                         } else
  729                                 ps->ps_flag &= ~PS_NOCLDWAIT;
  730                         if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
  731                                 ps->ps_flag |= PS_CLDSIGIGN;
  732                         else
  733                                 ps->ps_flag &= ~PS_CLDSIGIGN;
  734                 }
  735                 /*
  736                  * Set bit in ps_sigignore for signals that are set to SIG_IGN,
  737                  * and for signals set to SIG_DFL where the default is to
  738                  * ignore. However, don't put SIGCONT in ps_sigignore, as we
  739                  * have to restart the process.
  740                  */
  741                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  742                     (sigprop(sig) & SA_IGNORE &&
  743                      ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
  744                         /* never to be seen again */
  745                         sigqueue_delete_proc(p, sig);
  746                         if (sig != SIGCONT)
  747                                 /* easier in psignal */
  748                                 SIGADDSET(ps->ps_sigignore, sig);
  749                         SIGDELSET(ps->ps_sigcatch, sig);
  750                 } else {
  751                         SIGDELSET(ps->ps_sigignore, sig);
  752                         if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
  753                                 SIGDELSET(ps->ps_sigcatch, sig);
  754                         else
  755                                 SIGADDSET(ps->ps_sigcatch, sig);
  756                 }
  757 #ifdef COMPAT_FREEBSD4
  758                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  759                     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
  760                     (flags & KSA_FREEBSD4) == 0)
  761                         SIGDELSET(ps->ps_freebsd4, sig);
  762                 else
  763                         SIGADDSET(ps->ps_freebsd4, sig);
  764 #endif
  765 #ifdef COMPAT_43
  766                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  767                     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
  768                     (flags & KSA_OSIGSET) == 0)
  769                         SIGDELSET(ps->ps_osigset, sig);
  770                 else
  771                         SIGADDSET(ps->ps_osigset, sig);
  772 #endif
  773         }
  774         mtx_unlock(&ps->ps_mtx);
  775         PROC_UNLOCK(p);
  776         return (0);
  777 }
  778 
  779 #ifndef _SYS_SYSPROTO_H_
  780 struct sigaction_args {
  781         int     sig;
  782         struct  sigaction *act;
  783         struct  sigaction *oact;
  784 };
  785 #endif
  786 int
  787 sys_sigaction(td, uap)
  788         struct thread *td;
  789         register struct sigaction_args *uap;
  790 {
  791         struct sigaction act, oact;
  792         register struct sigaction *actp, *oactp;
  793         int error;
  794 
  795         actp = (uap->act != NULL) ? &act : NULL;
  796         oactp = (uap->oact != NULL) ? &oact : NULL;
  797         if (actp) {
  798                 error = copyin(uap->act, actp, sizeof(act));
  799                 if (error)
  800                         return (error);
  801         }
  802         error = kern_sigaction(td, uap->sig, actp, oactp, 0);
  803         if (oactp && !error)
  804                 error = copyout(oactp, uap->oact, sizeof(oact));
  805         return (error);
  806 }
  807 
  808 #ifdef COMPAT_FREEBSD4
  809 #ifndef _SYS_SYSPROTO_H_
  810 struct freebsd4_sigaction_args {
  811         int     sig;
  812         struct  sigaction *act;
  813         struct  sigaction *oact;
  814 };
  815 #endif
  816 int
  817 freebsd4_sigaction(td, uap)
  818         struct thread *td;
  819         register struct freebsd4_sigaction_args *uap;
  820 {
  821         struct sigaction act, oact;
  822         register struct sigaction *actp, *oactp;
  823         int error;
  824 
  825 
  826         actp = (uap->act != NULL) ? &act : NULL;
  827         oactp = (uap->oact != NULL) ? &oact : NULL;
  828         if (actp) {
  829                 error = copyin(uap->act, actp, sizeof(act));
  830                 if (error)
  831                         return (error);
  832         }
  833         error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
  834         if (oactp && !error)
  835                 error = copyout(oactp, uap->oact, sizeof(oact));
  836         return (error);
  837 }
  838 #endif  /* COMAPT_FREEBSD4 */
  839 
  840 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
  841 #ifndef _SYS_SYSPROTO_H_
  842 struct osigaction_args {
  843         int     signum;
  844         struct  osigaction *nsa;
  845         struct  osigaction *osa;
  846 };
  847 #endif
  848 int
  849 osigaction(td, uap)
  850         struct thread *td;
  851         register struct osigaction_args *uap;
  852 {
  853         struct osigaction sa;
  854         struct sigaction nsa, osa;
  855         register struct sigaction *nsap, *osap;
  856         int error;
  857 
  858         if (uap->signum <= 0 || uap->signum >= ONSIG)
  859                 return (EINVAL);
  860 
  861         nsap = (uap->nsa != NULL) ? &nsa : NULL;
  862         osap = (uap->osa != NULL) ? &osa : NULL;
  863 
  864         if (nsap) {
  865                 error = copyin(uap->nsa, &sa, sizeof(sa));
  866                 if (error)
  867                         return (error);
  868                 nsap->sa_handler = sa.sa_handler;
  869                 nsap->sa_flags = sa.sa_flags;
  870                 OSIG2SIG(sa.sa_mask, nsap->sa_mask);
  871         }
  872         error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
  873         if (osap && !error) {
  874                 sa.sa_handler = osap->sa_handler;
  875                 sa.sa_flags = osap->sa_flags;
  876                 SIG2OSIG(osap->sa_mask, sa.sa_mask);
  877                 error = copyout(&sa, uap->osa, sizeof(sa));
  878         }
  879         return (error);
  880 }
  881 
  882 #if !defined(__i386__)
  883 /* Avoid replicating the same stub everywhere */
  884 int
  885 osigreturn(td, uap)
  886         struct thread *td;
  887         struct osigreturn_args *uap;
  888 {
  889 
  890         return (nosys(td, (struct nosys_args *)uap));
  891 }
  892 #endif
  893 #endif /* COMPAT_43 */
  894 
  895 /*
  896  * Initialize signal state for process 0;
  897  * set to ignore signals that are ignored by default.
  898  */
  899 void
  900 siginit(p)
  901         struct proc *p;
  902 {
  903         register int i;
  904         struct sigacts *ps;
  905 
  906         PROC_LOCK(p);
  907         ps = p->p_sigacts;
  908         mtx_lock(&ps->ps_mtx);
  909         for (i = 1; i <= NSIG; i++)
  910                 if (sigprop(i) & SA_IGNORE && i != SIGCONT)
  911                         SIGADDSET(ps->ps_sigignore, i);
  912         mtx_unlock(&ps->ps_mtx);
  913         PROC_UNLOCK(p);
  914 }
  915 
  916 /*
  917  * Reset signals for an exec of the specified process.
  918  */
  919 void
  920 execsigs(struct proc *p)
  921 {
  922         struct sigacts *ps;
  923         int sig;
  924         struct thread *td;
  925 
  926         /*
  927          * Reset caught signals.  Held signals remain held
  928          * through td_sigmask (unless they were caught,
  929          * and are now ignored by default).
  930          */
  931         PROC_LOCK_ASSERT(p, MA_OWNED);
  932         td = FIRST_THREAD_IN_PROC(p);
  933         ps = p->p_sigacts;
  934         mtx_lock(&ps->ps_mtx);
  935         while (SIGNOTEMPTY(ps->ps_sigcatch)) {
  936                 sig = sig_ffs(&ps->ps_sigcatch);
  937                 SIGDELSET(ps->ps_sigcatch, sig);
  938                 if (sigprop(sig) & SA_IGNORE) {
  939                         if (sig != SIGCONT)
  940                                 SIGADDSET(ps->ps_sigignore, sig);
  941                         sigqueue_delete_proc(p, sig);
  942                 }
  943                 ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
  944         }
  945         /*
  946          * Reset stack state to the user stack.
  947          * Clear set of signals caught on the signal stack.
  948          */
  949         td->td_sigstk.ss_flags = SS_DISABLE;
  950         td->td_sigstk.ss_size = 0;
  951         td->td_sigstk.ss_sp = 0;
  952         td->td_pflags &= ~TDP_ALTSTACK;
  953         /*
  954          * Reset no zombies if child dies flag as Solaris does.
  955          */
  956         ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
  957         if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
  958                 ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
  959         mtx_unlock(&ps->ps_mtx);
  960 }
  961 
  962 /*
  963  * kern_sigprocmask()
  964  *
  965  *      Manipulate signal mask.
  966  */
  967 int
  968 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
  969     int flags)
  970 {
  971         sigset_t new_block, oset1;
  972         struct proc *p;
  973         int error;
  974 
  975         p = td->td_proc;
  976         if (!(flags & SIGPROCMASK_PROC_LOCKED))
  977                 PROC_LOCK(p);
  978         if (oset != NULL)
  979                 *oset = td->td_sigmask;
  980 
  981         error = 0;
  982         if (set != NULL) {
  983                 switch (how) {
  984                 case SIG_BLOCK:
  985                         SIG_CANTMASK(*set);
  986                         oset1 = td->td_sigmask;
  987                         SIGSETOR(td->td_sigmask, *set);
  988                         new_block = td->td_sigmask;
  989                         SIGSETNAND(new_block, oset1);
  990                         break;
  991                 case SIG_UNBLOCK:
  992                         SIGSETNAND(td->td_sigmask, *set);
  993                         signotify(td);
  994                         goto out;
  995                 case SIG_SETMASK:
  996                         SIG_CANTMASK(*set);
  997                         oset1 = td->td_sigmask;
  998                         if (flags & SIGPROCMASK_OLD)
  999                                 SIGSETLO(td->td_sigmask, *set);
 1000                         else
 1001                                 td->td_sigmask = *set;
 1002                         new_block = td->td_sigmask;
 1003                         SIGSETNAND(new_block, oset1);
 1004                         signotify(td);
 1005                         break;
 1006                 default:
 1007                         error = EINVAL;
 1008                         goto out;
 1009                 }
 1010 
 1011                 /*
 1012                  * The new_block set contains signals that were not previously
 1013                  * blocked, but are blocked now.
 1014                  *
 1015                  * In case we block any signal that was not previously blocked
 1016                  * for td, and process has the signal pending, try to schedule
 1017                  * signal delivery to some thread that does not block the
 1018                  * signal, possibly waking it up.
 1019                  */
 1020                 if (p->p_numthreads != 1)
 1021                         reschedule_signals(p, new_block, flags);
 1022         }
 1023 
 1024 out:
 1025         if (!(flags & SIGPROCMASK_PROC_LOCKED))
 1026                 PROC_UNLOCK(p);
 1027         return (error);
 1028 }
 1029 
 1030 #ifndef _SYS_SYSPROTO_H_
 1031 struct sigprocmask_args {
 1032         int     how;
 1033         const sigset_t *set;
 1034         sigset_t *oset;
 1035 };
 1036 #endif
 1037 int
 1038 sys_sigprocmask(td, uap)
 1039         register struct thread *td;
 1040         struct sigprocmask_args *uap;
 1041 {
 1042         sigset_t set, oset;
 1043         sigset_t *setp, *osetp;
 1044         int error;
 1045 
 1046         setp = (uap->set != NULL) ? &set : NULL;
 1047         osetp = (uap->oset != NULL) ? &oset : NULL;
 1048         if (setp) {
 1049                 error = copyin(uap->set, setp, sizeof(set));
 1050                 if (error)
 1051                         return (error);
 1052         }
 1053         error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
 1054         if (osetp && !error) {
 1055                 error = copyout(osetp, uap->oset, sizeof(oset));
 1056         }
 1057         return (error);
 1058 }
 1059 
 1060 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1061 #ifndef _SYS_SYSPROTO_H_
 1062 struct osigprocmask_args {
 1063         int     how;
 1064         osigset_t mask;
 1065 };
 1066 #endif
 1067 int
 1068 osigprocmask(td, uap)
 1069         register struct thread *td;
 1070         struct osigprocmask_args *uap;
 1071 {
 1072         sigset_t set, oset;
 1073         int error;
 1074 
 1075         OSIG2SIG(uap->mask, set);
 1076         error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
 1077         SIG2OSIG(oset, td->td_retval[0]);
 1078         return (error);
 1079 }
 1080 #endif /* COMPAT_43 */
 1081 
 1082 int
 1083 sys_sigwait(struct thread *td, struct sigwait_args *uap)
 1084 {
 1085         ksiginfo_t ksi;
 1086         sigset_t set;
 1087         int error;
 1088 
 1089         error = copyin(uap->set, &set, sizeof(set));
 1090         if (error) {
 1091                 td->td_retval[0] = error;
 1092                 return (0);
 1093         }
 1094 
 1095         error = kern_sigtimedwait(td, set, &ksi, NULL);
 1096         if (error) {
 1097                 if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
 1098                         error = ERESTART;
 1099                 if (error == ERESTART)
 1100                         return (error);
 1101                 td->td_retval[0] = error;
 1102                 return (0);
 1103         }
 1104 
 1105         error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
 1106         td->td_retval[0] = error;
 1107         return (0);
 1108 }
 1109 
 1110 int
 1111 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
 1112 {
 1113         struct timespec ts;
 1114         struct timespec *timeout;
 1115         sigset_t set;
 1116         ksiginfo_t ksi;
 1117         int error;
 1118 
 1119         if (uap->timeout) {
 1120                 error = copyin(uap->timeout, &ts, sizeof(ts));
 1121                 if (error)
 1122                         return (error);
 1123 
 1124                 timeout = &ts;
 1125         } else
 1126                 timeout = NULL;
 1127 
 1128         error = copyin(uap->set, &set, sizeof(set));
 1129         if (error)
 1130                 return (error);
 1131 
 1132         error = kern_sigtimedwait(td, set, &ksi, timeout);
 1133         if (error)
 1134                 return (error);
 1135 
 1136         if (uap->info)
 1137                 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
 1138 
 1139         if (error == 0)
 1140                 td->td_retval[0] = ksi.ksi_signo;
 1141         return (error);
 1142 }
 1143 
 1144 int
 1145 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
 1146 {
 1147         ksiginfo_t ksi;
 1148         sigset_t set;
 1149         int error;
 1150 
 1151         error = copyin(uap->set, &set, sizeof(set));
 1152         if (error)
 1153                 return (error);
 1154 
 1155         error = kern_sigtimedwait(td, set, &ksi, NULL);
 1156         if (error)
 1157                 return (error);
 1158 
 1159         if (uap->info)
 1160                 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
 1161         
 1162         if (error == 0)
 1163                 td->td_retval[0] = ksi.ksi_signo;
 1164         return (error);
 1165 }
 1166 
 1167 int
 1168 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
 1169         struct timespec *timeout)
 1170 {
 1171         struct sigacts *ps;
 1172         sigset_t saved_mask, new_block;
 1173         struct proc *p;
 1174         int error, sig, timo, timevalid = 0;
 1175         struct timespec rts, ets, ts;
 1176         struct timeval tv;
 1177 
 1178         p = td->td_proc;
 1179         error = 0;
 1180         ets.tv_sec = 0;
 1181         ets.tv_nsec = 0;
 1182 
 1183         if (timeout != NULL) {
 1184                 if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
 1185                         timevalid = 1;
 1186                         getnanouptime(&rts);
 1187                         ets = rts;
 1188                         timespecadd(&ets, timeout);
 1189                 }
 1190         }
 1191         ksiginfo_init(ksi);
 1192         /* Some signals can not be waited for. */
 1193         SIG_CANTMASK(waitset);
 1194         ps = p->p_sigacts;
 1195         PROC_LOCK(p);
 1196         saved_mask = td->td_sigmask;
 1197         SIGSETNAND(td->td_sigmask, waitset);
 1198         for (;;) {
 1199                 mtx_lock(&ps->ps_mtx);
 1200                 sig = cursig(td, SIG_STOP_ALLOWED);
 1201                 mtx_unlock(&ps->ps_mtx);
 1202                 if (sig != 0 && SIGISMEMBER(waitset, sig)) {
 1203                         if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
 1204                             sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
 1205                                 error = 0;
 1206                                 break;
 1207                         }
 1208                 }
 1209 
 1210                 if (error != 0)
 1211                         break;
 1212 
 1213                 /*
 1214                  * POSIX says this must be checked after looking for pending
 1215                  * signals.
 1216                  */
 1217                 if (timeout != NULL) {
 1218                         if (!timevalid) {
 1219                                 error = EINVAL;
 1220                                 break;
 1221                         }
 1222                         getnanouptime(&rts);
 1223                         if (timespeccmp(&rts, &ets, >=)) {
 1224                                 error = EAGAIN;
 1225                                 break;
 1226                         }
 1227                         ts = ets;
 1228                         timespecsub(&ts, &rts);
 1229                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1230                         timo = tvtohz(&tv);
 1231                 } else {
 1232                         timo = 0;
 1233                 }
 1234 
 1235                 error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
 1236 
 1237                 if (timeout != NULL) {
 1238                         if (error == ERESTART) {
 1239                                 /* Timeout can not be restarted. */
 1240                                 error = EINTR;
 1241                         } else if (error == EAGAIN) {
 1242                                 /* We will calculate timeout by ourself. */
 1243                                 error = 0;
 1244                         }
 1245                 }
 1246         }
 1247 
 1248         new_block = saved_mask;
 1249         SIGSETNAND(new_block, td->td_sigmask);
 1250         td->td_sigmask = saved_mask;
 1251         /*
 1252          * Fewer signals can be delivered to us, reschedule signal
 1253          * notification.
 1254          */
 1255         if (p->p_numthreads != 1)
 1256                 reschedule_signals(p, new_block, 0);
 1257 
 1258         if (error == 0) {
 1259                 SDT_PROBE(proc, kernel, , signal_clear, sig, ksi, 0, 0, 0);
 1260                 
 1261                 if (ksi->ksi_code == SI_TIMER)
 1262                         itimer_accept(p, ksi->ksi_timerid, ksi);
 1263 
 1264 #ifdef KTRACE
 1265                 if (KTRPOINT(td, KTR_PSIG)) {
 1266                         sig_t action;
 1267 
 1268                         mtx_lock(&ps->ps_mtx);
 1269                         action = ps->ps_sigact[_SIG_IDX(sig)];
 1270                         mtx_unlock(&ps->ps_mtx);
 1271                         ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
 1272                 }
 1273 #endif
 1274                 if (sig == SIGKILL)
 1275                         sigexit(td, sig);
 1276         }
 1277         PROC_UNLOCK(p);
 1278         return (error);
 1279 }
 1280 
 1281 #ifndef _SYS_SYSPROTO_H_
 1282 struct sigpending_args {
 1283         sigset_t        *set;
 1284 };
 1285 #endif
 1286 int
 1287 sys_sigpending(td, uap)
 1288         struct thread *td;
 1289         struct sigpending_args *uap;
 1290 {
 1291         struct proc *p = td->td_proc;
 1292         sigset_t pending;
 1293 
 1294         PROC_LOCK(p);
 1295         pending = p->p_sigqueue.sq_signals;
 1296         SIGSETOR(pending, td->td_sigqueue.sq_signals);
 1297         PROC_UNLOCK(p);
 1298         return (copyout(&pending, uap->set, sizeof(sigset_t)));
 1299 }
 1300 
 1301 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1302 #ifndef _SYS_SYSPROTO_H_
 1303 struct osigpending_args {
 1304         int     dummy;
 1305 };
 1306 #endif
 1307 int
 1308 osigpending(td, uap)
 1309         struct thread *td;
 1310         struct osigpending_args *uap;
 1311 {
 1312         struct proc *p = td->td_proc;
 1313         sigset_t pending;
 1314 
 1315         PROC_LOCK(p);
 1316         pending = p->p_sigqueue.sq_signals;
 1317         SIGSETOR(pending, td->td_sigqueue.sq_signals);
 1318         PROC_UNLOCK(p);
 1319         SIG2OSIG(pending, td->td_retval[0]);
 1320         return (0);
 1321 }
 1322 #endif /* COMPAT_43 */
 1323 
 1324 #if defined(COMPAT_43)
 1325 /*
 1326  * Generalized interface signal handler, 4.3-compatible.
 1327  */
 1328 #ifndef _SYS_SYSPROTO_H_
 1329 struct osigvec_args {
 1330         int     signum;
 1331         struct  sigvec *nsv;
 1332         struct  sigvec *osv;
 1333 };
 1334 #endif
 1335 /* ARGSUSED */
 1336 int
 1337 osigvec(td, uap)
 1338         struct thread *td;
 1339         register struct osigvec_args *uap;
 1340 {
 1341         struct sigvec vec;
 1342         struct sigaction nsa, osa;
 1343         register struct sigaction *nsap, *osap;
 1344         int error;
 1345 
 1346         if (uap->signum <= 0 || uap->signum >= ONSIG)
 1347                 return (EINVAL);
 1348         nsap = (uap->nsv != NULL) ? &nsa : NULL;
 1349         osap = (uap->osv != NULL) ? &osa : NULL;
 1350         if (nsap) {
 1351                 error = copyin(uap->nsv, &vec, sizeof(vec));
 1352                 if (error)
 1353                         return (error);
 1354                 nsap->sa_handler = vec.sv_handler;
 1355                 OSIG2SIG(vec.sv_mask, nsap->sa_mask);
 1356                 nsap->sa_flags = vec.sv_flags;
 1357                 nsap->sa_flags ^= SA_RESTART;   /* opposite of SV_INTERRUPT */
 1358         }
 1359         error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
 1360         if (osap && !error) {
 1361                 vec.sv_handler = osap->sa_handler;
 1362                 SIG2OSIG(osap->sa_mask, vec.sv_mask);
 1363                 vec.sv_flags = osap->sa_flags;
 1364                 vec.sv_flags &= ~SA_NOCLDWAIT;
 1365                 vec.sv_flags ^= SA_RESTART;
 1366                 error = copyout(&vec, uap->osv, sizeof(vec));
 1367         }
 1368         return (error);
 1369 }
 1370 
 1371 #ifndef _SYS_SYSPROTO_H_
 1372 struct osigblock_args {
 1373         int     mask;
 1374 };
 1375 #endif
 1376 int
 1377 osigblock(td, uap)
 1378         register struct thread *td;
 1379         struct osigblock_args *uap;
 1380 {
 1381         sigset_t set, oset;
 1382 
 1383         OSIG2SIG(uap->mask, set);
 1384         kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
 1385         SIG2OSIG(oset, td->td_retval[0]);
 1386         return (0);
 1387 }
 1388 
 1389 #ifndef _SYS_SYSPROTO_H_
 1390 struct osigsetmask_args {
 1391         int     mask;
 1392 };
 1393 #endif
 1394 int
 1395 osigsetmask(td, uap)
 1396         struct thread *td;
 1397         struct osigsetmask_args *uap;
 1398 {
 1399         sigset_t set, oset;
 1400 
 1401         OSIG2SIG(uap->mask, set);
 1402         kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
 1403         SIG2OSIG(oset, td->td_retval[0]);
 1404         return (0);
 1405 }
 1406 #endif /* COMPAT_43 */
 1407 
 1408 /*
 1409  * Suspend calling thread until signal, providing mask to be set in the
 1410  * meantime. 
 1411  */
 1412 #ifndef _SYS_SYSPROTO_H_
 1413 struct sigsuspend_args {
 1414         const sigset_t *sigmask;
 1415 };
 1416 #endif
 1417 /* ARGSUSED */
 1418 int
 1419 sys_sigsuspend(td, uap)
 1420         struct thread *td;
 1421         struct sigsuspend_args *uap;
 1422 {
 1423         sigset_t mask;
 1424         int error;
 1425 
 1426         error = copyin(uap->sigmask, &mask, sizeof(mask));
 1427         if (error)
 1428                 return (error);
 1429         return (kern_sigsuspend(td, mask));
 1430 }
 1431 
 1432 int
 1433 kern_sigsuspend(struct thread *td, sigset_t mask)
 1434 {
 1435         struct proc *p = td->td_proc;
 1436         int has_sig, sig;
 1437 
 1438         /*
 1439          * When returning from sigsuspend, we want
 1440          * the old mask to be restored after the
 1441          * signal handler has finished.  Thus, we
 1442          * save it here and mark the sigacts structure
 1443          * to indicate this.
 1444          */
 1445         PROC_LOCK(p);
 1446         kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
 1447             SIGPROCMASK_PROC_LOCKED);
 1448         td->td_pflags |= TDP_OLDMASK;
 1449 
 1450         /*
 1451          * Process signals now. Otherwise, we can get spurious wakeup
 1452          * due to signal entered process queue, but delivered to other
 1453          * thread. But sigsuspend should return only on signal
 1454          * delivery.
 1455          */
 1456         (p->p_sysent->sv_set_syscall_retval)(td, EINTR);
 1457         for (has_sig = 0; !has_sig;) {
 1458                 while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
 1459                         0) == 0)
 1460                         /* void */;
 1461                 thread_suspend_check(0);
 1462                 mtx_lock(&p->p_sigacts->ps_mtx);
 1463                 while ((sig = cursig(td, SIG_STOP_ALLOWED)) != 0)
 1464                         has_sig += postsig(sig);
 1465                 mtx_unlock(&p->p_sigacts->ps_mtx);
 1466         }
 1467         PROC_UNLOCK(p);
 1468         td->td_errno = EINTR;
 1469         td->td_pflags |= TDP_NERRNO;
 1470         return (EJUSTRETURN);
 1471 }
 1472 
 1473 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1474 /*
 1475  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
 1476  * convention: libc stub passes mask, not pointer, to save a copyin.
 1477  */
 1478 #ifndef _SYS_SYSPROTO_H_
 1479 struct osigsuspend_args {
 1480         osigset_t mask;
 1481 };
 1482 #endif
 1483 /* ARGSUSED */
 1484 int
 1485 osigsuspend(td, uap)
 1486         struct thread *td;
 1487         struct osigsuspend_args *uap;
 1488 {
 1489         sigset_t mask;
 1490 
 1491         OSIG2SIG(uap->mask, mask);
 1492         return (kern_sigsuspend(td, mask));
 1493 }
 1494 #endif /* COMPAT_43 */
 1495 
 1496 #if defined(COMPAT_43)
 1497 #ifndef _SYS_SYSPROTO_H_
 1498 struct osigstack_args {
 1499         struct  sigstack *nss;
 1500         struct  sigstack *oss;
 1501 };
 1502 #endif
 1503 /* ARGSUSED */
 1504 int
 1505 osigstack(td, uap)
 1506         struct thread *td;
 1507         register struct osigstack_args *uap;
 1508 {
 1509         struct sigstack nss, oss;
 1510         int error = 0;
 1511 
 1512         if (uap->nss != NULL) {
 1513                 error = copyin(uap->nss, &nss, sizeof(nss));
 1514                 if (error)
 1515                         return (error);
 1516         }
 1517         oss.ss_sp = td->td_sigstk.ss_sp;
 1518         oss.ss_onstack = sigonstack(cpu_getstack(td));
 1519         if (uap->nss != NULL) {
 1520                 td->td_sigstk.ss_sp = nss.ss_sp;
 1521                 td->td_sigstk.ss_size = 0;
 1522                 td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
 1523                 td->td_pflags |= TDP_ALTSTACK;
 1524         }
 1525         if (uap->oss != NULL)
 1526                 error = copyout(&oss, uap->oss, sizeof(oss));
 1527 
 1528         return (error);
 1529 }
 1530 #endif /* COMPAT_43 */
 1531 
 1532 #ifndef _SYS_SYSPROTO_H_
 1533 struct sigaltstack_args {
 1534         stack_t *ss;
 1535         stack_t *oss;
 1536 };
 1537 #endif
 1538 /* ARGSUSED */
 1539 int
 1540 sys_sigaltstack(td, uap)
 1541         struct thread *td;
 1542         register struct sigaltstack_args *uap;
 1543 {
 1544         stack_t ss, oss;
 1545         int error;
 1546 
 1547         if (uap->ss != NULL) {
 1548                 error = copyin(uap->ss, &ss, sizeof(ss));
 1549                 if (error)
 1550                         return (error);
 1551         }
 1552         error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
 1553             (uap->oss != NULL) ? &oss : NULL);
 1554         if (error)
 1555                 return (error);
 1556         if (uap->oss != NULL)
 1557                 error = copyout(&oss, uap->oss, sizeof(stack_t));
 1558         return (error);
 1559 }
 1560 
 1561 int
 1562 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
 1563 {
 1564         struct proc *p = td->td_proc;
 1565         int oonstack;
 1566 
 1567         oonstack = sigonstack(cpu_getstack(td));
 1568 
 1569         if (oss != NULL) {
 1570                 *oss = td->td_sigstk;
 1571                 oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
 1572                     ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
 1573         }
 1574 
 1575         if (ss != NULL) {
 1576                 if (oonstack)
 1577                         return (EPERM);
 1578                 if ((ss->ss_flags & ~SS_DISABLE) != 0)
 1579                         return (EINVAL);
 1580                 if (!(ss->ss_flags & SS_DISABLE)) {
 1581                         if (ss->ss_size < p->p_sysent->sv_minsigstksz)
 1582                                 return (ENOMEM);
 1583 
 1584                         td->td_sigstk = *ss;
 1585                         td->td_pflags |= TDP_ALTSTACK;
 1586                 } else {
 1587                         td->td_pflags &= ~TDP_ALTSTACK;
 1588                 }
 1589         }
 1590         return (0);
 1591 }
 1592 
 1593 /*
 1594  * Common code for kill process group/broadcast kill.
 1595  * cp is calling process.
 1596  */
 1597 static int
 1598 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
 1599 {
 1600         struct proc *p;
 1601         struct pgrp *pgrp;
 1602         int nfound = 0;
 1603 
 1604         if (all) {
 1605                 /*
 1606                  * broadcast
 1607                  */
 1608                 sx_slock(&allproc_lock);
 1609                 FOREACH_PROC_IN_SYSTEM(p) {
 1610                         PROC_LOCK(p);
 1611                         if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
 1612                             p == td->td_proc || p->p_state == PRS_NEW) {
 1613                                 PROC_UNLOCK(p);
 1614                                 continue;
 1615                         }
 1616                         if (p_cansignal(td, p, sig) == 0) {
 1617                                 nfound++;
 1618                                 if (sig)
 1619                                         pksignal(p, sig, ksi);
 1620                         }
 1621                         PROC_UNLOCK(p);
 1622                 }
 1623                 sx_sunlock(&allproc_lock);
 1624         } else {
 1625                 sx_slock(&proctree_lock);
 1626                 if (pgid == 0) {
 1627                         /*
 1628                          * zero pgid means send to my process group.
 1629                          */
 1630                         pgrp = td->td_proc->p_pgrp;
 1631                         PGRP_LOCK(pgrp);
 1632                 } else {
 1633                         pgrp = pgfind(pgid);
 1634                         if (pgrp == NULL) {
 1635                                 sx_sunlock(&proctree_lock);
 1636                                 return (ESRCH);
 1637                         }
 1638                 }
 1639                 sx_sunlock(&proctree_lock);
 1640                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
 1641                         PROC_LOCK(p);         
 1642                         if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
 1643                             p->p_state == PRS_NEW) {
 1644                                 PROC_UNLOCK(p);
 1645                                 continue;
 1646                         }
 1647                         if (p_cansignal(td, p, sig) == 0) {
 1648                                 nfound++;
 1649                                 if (sig)
 1650                                         pksignal(p, sig, ksi);
 1651                         }
 1652                         PROC_UNLOCK(p);
 1653                 }
 1654                 PGRP_UNLOCK(pgrp);
 1655         }
 1656         return (nfound ? 0 : ESRCH);
 1657 }
 1658 
 1659 #ifndef _SYS_SYSPROTO_H_
 1660 struct kill_args {
 1661         int     pid;
 1662         int     signum;
 1663 };
 1664 #endif
 1665 /* ARGSUSED */
 1666 int
 1667 sys_kill(struct thread *td, struct kill_args *uap)
 1668 {
 1669         ksiginfo_t ksi;
 1670         struct proc *p;
 1671         int error;
 1672 
 1673         AUDIT_ARG_SIGNUM(uap->signum);
 1674         AUDIT_ARG_PID(uap->pid);
 1675         if ((u_int)uap->signum > _SIG_MAXSIG)
 1676                 return (EINVAL);
 1677 
 1678         ksiginfo_init(&ksi);
 1679         ksi.ksi_signo = uap->signum;
 1680         ksi.ksi_code = SI_USER;
 1681         ksi.ksi_pid = td->td_proc->p_pid;
 1682         ksi.ksi_uid = td->td_ucred->cr_ruid;
 1683 
 1684         if (uap->pid > 0) {
 1685                 /* kill single process */
 1686                 if ((p = pfind(uap->pid)) == NULL) {
 1687                         if ((p = zpfind(uap->pid)) == NULL)
 1688                                 return (ESRCH);
 1689                 }
 1690                 AUDIT_ARG_PROCESS(p);
 1691                 error = p_cansignal(td, p, uap->signum);
 1692                 if (error == 0 && uap->signum)
 1693                         pksignal(p, uap->signum, &ksi);
 1694                 PROC_UNLOCK(p);
 1695                 return (error);
 1696         }
 1697         switch (uap->pid) {
 1698         case -1:                /* broadcast signal */
 1699                 return (killpg1(td, uap->signum, 0, 1, &ksi));
 1700         case 0:                 /* signal own process group */
 1701                 return (killpg1(td, uap->signum, 0, 0, &ksi));
 1702         default:                /* negative explicit process group */
 1703                 return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
 1704         }
 1705         /* NOTREACHED */
 1706 }
 1707 
 1708 int
 1709 sys_pdkill(td, uap)
 1710         struct thread *td;
 1711         struct pdkill_args *uap;
 1712 {
 1713 #ifdef PROCDESC
 1714         struct proc *p;
 1715         int error;
 1716 
 1717         AUDIT_ARG_SIGNUM(uap->signum);
 1718         AUDIT_ARG_FD(uap->fd);
 1719         if ((u_int)uap->signum > _SIG_MAXSIG)
 1720                 return (EINVAL);
 1721 
 1722         error = procdesc_find(td, uap->fd, CAP_PDKILL, &p);
 1723         if (error)
 1724                 return (error);
 1725         AUDIT_ARG_PROCESS(p);
 1726         error = p_cansignal(td, p, uap->signum);
 1727         if (error == 0 && uap->signum)
 1728                 kern_psignal(p, uap->signum);
 1729         PROC_UNLOCK(p);
 1730         return (error);
 1731 #else
 1732         return (ENOSYS);
 1733 #endif
 1734 }
 1735 
 1736 #if defined(COMPAT_43)
 1737 #ifndef _SYS_SYSPROTO_H_
 1738 struct okillpg_args {
 1739         int     pgid;
 1740         int     signum;
 1741 };
 1742 #endif
 1743 /* ARGSUSED */
 1744 int
 1745 okillpg(struct thread *td, struct okillpg_args *uap)
 1746 {
 1747         ksiginfo_t ksi;
 1748 
 1749         AUDIT_ARG_SIGNUM(uap->signum);
 1750         AUDIT_ARG_PID(uap->pgid);
 1751         if ((u_int)uap->signum > _SIG_MAXSIG)
 1752                 return (EINVAL);
 1753 
 1754         ksiginfo_init(&ksi);
 1755         ksi.ksi_signo = uap->signum;
 1756         ksi.ksi_code = SI_USER;
 1757         ksi.ksi_pid = td->td_proc->p_pid;
 1758         ksi.ksi_uid = td->td_ucred->cr_ruid;
 1759         return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
 1760 }
 1761 #endif /* COMPAT_43 */
 1762 
 1763 #ifndef _SYS_SYSPROTO_H_
 1764 struct sigqueue_args {
 1765         pid_t pid;
 1766         int signum;
 1767         /* union sigval */ void *value;
 1768 };
 1769 #endif
 1770 int
 1771 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
 1772 {
 1773         ksiginfo_t ksi;
 1774         struct proc *p;
 1775         int error;
 1776 
 1777         if ((u_int)uap->signum > _SIG_MAXSIG)
 1778                 return (EINVAL);
 1779 
 1780         /*
 1781          * Specification says sigqueue can only send signal to
 1782          * single process.
 1783          */
 1784         if (uap->pid <= 0)
 1785                 return (EINVAL);
 1786 
 1787         if ((p = pfind(uap->pid)) == NULL) {
 1788                 if ((p = zpfind(uap->pid)) == NULL)
 1789                         return (ESRCH);
 1790         }
 1791         error = p_cansignal(td, p, uap->signum);
 1792         if (error == 0 && uap->signum != 0) {
 1793                 ksiginfo_init(&ksi);
 1794                 ksi.ksi_flags = KSI_SIGQ;
 1795                 ksi.ksi_signo = uap->signum;
 1796                 ksi.ksi_code = SI_QUEUE;
 1797                 ksi.ksi_pid = td->td_proc->p_pid;
 1798                 ksi.ksi_uid = td->td_ucred->cr_ruid;
 1799                 ksi.ksi_value.sival_ptr = uap->value;
 1800                 error = pksignal(p, ksi.ksi_signo, &ksi);
 1801         }
 1802         PROC_UNLOCK(p);
 1803         return (error);
 1804 }
 1805 
 1806 /*
 1807  * Send a signal to a process group.
 1808  */
 1809 void
 1810 gsignal(int pgid, int sig, ksiginfo_t *ksi)
 1811 {
 1812         struct pgrp *pgrp;
 1813 
 1814         if (pgid != 0) {
 1815                 sx_slock(&proctree_lock);
 1816                 pgrp = pgfind(pgid);
 1817                 sx_sunlock(&proctree_lock);
 1818                 if (pgrp != NULL) {
 1819                         pgsignal(pgrp, sig, 0, ksi);
 1820                         PGRP_UNLOCK(pgrp);
 1821                 }
 1822         }
 1823 }
 1824 
 1825 /*
 1826  * Send a signal to a process group.  If checktty is 1,
 1827  * limit to members which have a controlling terminal.
 1828  */
 1829 void
 1830 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
 1831 {
 1832         struct proc *p;
 1833 
 1834         if (pgrp) {
 1835                 PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
 1836                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
 1837                         PROC_LOCK(p);
 1838                         if (p->p_state == PRS_NORMAL &&
 1839                             (checkctty == 0 || p->p_flag & P_CONTROLT))
 1840                                 pksignal(p, sig, ksi);
 1841                         PROC_UNLOCK(p);
 1842                 }
 1843         }
 1844 }
 1845 
 1846 /*
 1847  * Send a signal caused by a trap to the current thread.  If it will be
 1848  * caught immediately, deliver it with correct code.  Otherwise, post it
 1849  * normally.
 1850  */
 1851 void
 1852 trapsignal(struct thread *td, ksiginfo_t *ksi)
 1853 {
 1854         struct sigacts *ps;
 1855         sigset_t mask;
 1856         struct proc *p;
 1857         int sig;
 1858         int code;
 1859 
 1860         p = td->td_proc;
 1861         sig = ksi->ksi_signo;
 1862         code = ksi->ksi_code;
 1863         KASSERT(_SIG_VALID(sig), ("invalid signal"));
 1864 
 1865         PROC_LOCK(p);
 1866         ps = p->p_sigacts;
 1867         mtx_lock(&ps->ps_mtx);
 1868         if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
 1869             !SIGISMEMBER(td->td_sigmask, sig)) {
 1870                 td->td_ru.ru_nsignals++;
 1871 #ifdef KTRACE
 1872                 if (KTRPOINT(curthread, KTR_PSIG))
 1873                         ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
 1874                             &td->td_sigmask, code);
 1875 #endif
 1876                 (*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)], 
 1877                                 ksi, &td->td_sigmask);
 1878                 mask = ps->ps_catchmask[_SIG_IDX(sig)];
 1879                 if (!SIGISMEMBER(ps->ps_signodefer, sig))
 1880                         SIGADDSET(mask, sig);
 1881                 kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
 1882                     SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
 1883                 if (SIGISMEMBER(ps->ps_sigreset, sig)) {
 1884                         /*
 1885                          * See kern_sigaction() for origin of this code.
 1886                          */
 1887                         SIGDELSET(ps->ps_sigcatch, sig);
 1888                         if (sig != SIGCONT &&
 1889                             sigprop(sig) & SA_IGNORE)
 1890                                 SIGADDSET(ps->ps_sigignore, sig);
 1891                         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
 1892                 }
 1893                 mtx_unlock(&ps->ps_mtx);
 1894         } else {
 1895                 /*
 1896                  * Avoid a possible infinite loop if the thread
 1897                  * masking the signal or process is ignoring the
 1898                  * signal.
 1899                  */
 1900                 if (kern_forcesigexit &&
 1901                     (SIGISMEMBER(td->td_sigmask, sig) ||
 1902                      ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
 1903                         SIGDELSET(td->td_sigmask, sig);
 1904                         SIGDELSET(ps->ps_sigcatch, sig);
 1905                         SIGDELSET(ps->ps_sigignore, sig);
 1906                         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
 1907                 }
 1908                 mtx_unlock(&ps->ps_mtx);
 1909                 p->p_code = code;       /* XXX for core dump/debugger */
 1910                 p->p_sig = sig;         /* XXX to verify code */
 1911                 tdsendsignal(p, td, sig, ksi);
 1912         }
 1913         PROC_UNLOCK(p);
 1914 }
 1915 
 1916 static struct thread *
 1917 sigtd(struct proc *p, int sig, int prop)
 1918 {
 1919         struct thread *td, *signal_td;
 1920 
 1921         PROC_LOCK_ASSERT(p, MA_OWNED);
 1922 
 1923         /*
 1924          * Check if current thread can handle the signal without
 1925          * switching context to another thread.
 1926          */
 1927         if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
 1928                 return (curthread);
 1929         signal_td = NULL;
 1930         FOREACH_THREAD_IN_PROC(p, td) {
 1931                 if (!SIGISMEMBER(td->td_sigmask, sig)) {
 1932                         signal_td = td;
 1933                         break;
 1934                 }
 1935         }
 1936         if (signal_td == NULL)
 1937                 signal_td = FIRST_THREAD_IN_PROC(p);
 1938         return (signal_td);
 1939 }
 1940 
 1941 /*
 1942  * Send the signal to the process.  If the signal has an action, the action
 1943  * is usually performed by the target process rather than the caller; we add
 1944  * the signal to the set of pending signals for the process.
 1945  *
 1946  * Exceptions:
 1947  *   o When a stop signal is sent to a sleeping process that takes the
 1948  *     default action, the process is stopped without awakening it.
 1949  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
 1950  *     regardless of the signal action (eg, blocked or ignored).
 1951  *
 1952  * Other ignored signals are discarded immediately.
 1953  * 
 1954  * NB: This function may be entered from the debugger via the "kill" DDB
 1955  * command.  There is little that can be done to mitigate the possibly messy
 1956  * side effects of this unwise possibility.
 1957  */
 1958 void
 1959 kern_psignal(struct proc *p, int sig)
 1960 {
 1961         ksiginfo_t ksi;
 1962 
 1963         ksiginfo_init(&ksi);
 1964         ksi.ksi_signo = sig;
 1965         ksi.ksi_code = SI_KERNEL;
 1966         (void) tdsendsignal(p, NULL, sig, &ksi);
 1967 }
 1968 
 1969 int
 1970 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
 1971 {
 1972 
 1973         return (tdsendsignal(p, NULL, sig, ksi));
 1974 }
 1975 
 1976 /* Utility function for finding a thread to send signal event to. */
 1977 int
 1978 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
 1979 {
 1980         struct thread *td;
 1981 
 1982         if (sigev->sigev_notify == SIGEV_THREAD_ID) {
 1983                 td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
 1984                 if (td == NULL)
 1985                         return (ESRCH);
 1986                 *ttd = td;
 1987         } else {
 1988                 *ttd = NULL;
 1989                 PROC_LOCK(p);
 1990         }
 1991         return (0);
 1992 }
 1993 
 1994 void
 1995 tdsignal(struct thread *td, int sig)
 1996 {
 1997         ksiginfo_t ksi;
 1998 
 1999         ksiginfo_init(&ksi);
 2000         ksi.ksi_signo = sig;
 2001         ksi.ksi_code = SI_KERNEL;
 2002         (void) tdsendsignal(td->td_proc, td, sig, &ksi);
 2003 }
 2004 
 2005 void
 2006 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
 2007 {
 2008 
 2009         (void) tdsendsignal(td->td_proc, td, sig, ksi);
 2010 }
 2011 
 2012 int
 2013 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
 2014 {
 2015         sig_t action;
 2016         sigqueue_t *sigqueue;
 2017         int prop;
 2018         struct sigacts *ps;
 2019         int intrval;
 2020         int ret = 0;
 2021         int wakeup_swapper;
 2022 
 2023         MPASS(td == NULL || p == td->td_proc);
 2024         PROC_LOCK_ASSERT(p, MA_OWNED);
 2025 
 2026         if (!_SIG_VALID(sig))
 2027                 panic("%s(): invalid signal %d", __func__, sig);
 2028 
 2029         KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
 2030 
 2031         /*
 2032          * IEEE Std 1003.1-2001: return success when killing a zombie.
 2033          */
 2034         if (p->p_state == PRS_ZOMBIE) {
 2035                 if (ksi && (ksi->ksi_flags & KSI_INS))
 2036                         ksiginfo_tryfree(ksi);
 2037                 return (ret);
 2038         }
 2039 
 2040         ps = p->p_sigacts;
 2041         KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
 2042         prop = sigprop(sig);
 2043 
 2044         if (td == NULL) {
 2045                 td = sigtd(p, sig, prop);
 2046                 sigqueue = &p->p_sigqueue;
 2047         } else {
 2048                 KASSERT(td->td_proc == p, ("invalid thread"));
 2049                 sigqueue = &td->td_sigqueue;
 2050         }
 2051 
 2052         SDT_PROBE(proc, kernel, , signal_send, td, p, sig, 0, 0 );
 2053 
 2054         /*
 2055          * If the signal is being ignored,
 2056          * then we forget about it immediately.
 2057          * (Note: we don't set SIGCONT in ps_sigignore,
 2058          * and if it is set to SIG_IGN,
 2059          * action will be SIG_DFL here.)
 2060          */
 2061         mtx_lock(&ps->ps_mtx);
 2062         if (SIGISMEMBER(ps->ps_sigignore, sig)) {
 2063                 SDT_PROBE(proc, kernel, , signal_discard, td, p, sig, 0, 0 );
 2064 
 2065                 mtx_unlock(&ps->ps_mtx);
 2066                 if (ksi && (ksi->ksi_flags & KSI_INS))
 2067                         ksiginfo_tryfree(ksi);
 2068                 return (ret);
 2069         }
 2070         if (SIGISMEMBER(td->td_sigmask, sig))
 2071                 action = SIG_HOLD;
 2072         else if (SIGISMEMBER(ps->ps_sigcatch, sig))
 2073                 action = SIG_CATCH;
 2074         else
 2075                 action = SIG_DFL;
 2076         if (SIGISMEMBER(ps->ps_sigintr, sig))
 2077                 intrval = EINTR;
 2078         else
 2079                 intrval = ERESTART;
 2080         mtx_unlock(&ps->ps_mtx);
 2081 
 2082         if (prop & SA_CONT)
 2083                 sigqueue_delete_stopmask_proc(p);
 2084         else if (prop & SA_STOP) {
 2085                 /*
 2086                  * If sending a tty stop signal to a member of an orphaned
 2087                  * process group, discard the signal here if the action
 2088                  * is default; don't stop the process below if sleeping,
 2089                  * and don't clear any pending SIGCONT.
 2090                  */
 2091                 if ((prop & SA_TTYSTOP) &&
 2092                     (p->p_pgrp->pg_jobc == 0) &&
 2093                     (action == SIG_DFL)) {
 2094                         if (ksi && (ksi->ksi_flags & KSI_INS))
 2095                                 ksiginfo_tryfree(ksi);
 2096                         return (ret);
 2097                 }
 2098                 sigqueue_delete_proc(p, SIGCONT);
 2099                 if (p->p_flag & P_CONTINUED) {
 2100                         p->p_flag &= ~P_CONTINUED;
 2101                         PROC_LOCK(p->p_pptr);
 2102                         sigqueue_take(p->p_ksi);
 2103                         PROC_UNLOCK(p->p_pptr);
 2104                 }
 2105         }
 2106 
 2107         ret = sigqueue_add(sigqueue, sig, ksi);
 2108         if (ret != 0)
 2109                 return (ret);
 2110         signotify(td);
 2111         /*
 2112          * Defer further processing for signals which are held,
 2113          * except that stopped processes must be continued by SIGCONT.
 2114          */
 2115         if (action == SIG_HOLD &&
 2116             !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
 2117                 return (ret);
 2118         /*
 2119          * SIGKILL: Remove procfs STOPEVENTs.
 2120          */
 2121         if (sig == SIGKILL) {
 2122                 /* from procfs_ioctl.c: PIOCBIC */
 2123                 p->p_stops = 0;
 2124                 /* from procfs_ioctl.c: PIOCCONT */
 2125                 p->p_step = 0;
 2126                 wakeup(&p->p_step);
 2127         }
 2128         /*
 2129          * Some signals have a process-wide effect and a per-thread
 2130          * component.  Most processing occurs when the process next
 2131          * tries to cross the user boundary, however there are some
 2132          * times when processing needs to be done immediatly, such as
 2133          * waking up threads so that they can cross the user boundary.
 2134          * We try do the per-process part here.
 2135          */
 2136         if (P_SHOULDSTOP(p)) {
 2137                 if (sig == SIGKILL) {
 2138                         /*
 2139                          * If traced process is already stopped,
 2140                          * then no further action is necessary.
 2141                          */
 2142                         if (p->p_flag & P_TRACED)
 2143                                 goto out;
 2144                         /*
 2145                          * SIGKILL sets process running.
 2146                          * It will die elsewhere.
 2147                          * All threads must be restarted.
 2148                          */
 2149                         p->p_flag &= ~P_STOPPED_SIG;
 2150                         goto runfast;
 2151                 }
 2152 
 2153                 if (prop & SA_CONT) {
 2154                         /*
 2155                          * If traced process is already stopped,
 2156                          * then no further action is necessary.
 2157                          */
 2158                         if (p->p_flag & P_TRACED)
 2159                                 goto out;
 2160                         /*
 2161                          * If SIGCONT is default (or ignored), we continue the
 2162                          * process but don't leave the signal in sigqueue as
 2163                          * it has no further action.  If SIGCONT is held, we
 2164                          * continue the process and leave the signal in
 2165                          * sigqueue.  If the process catches SIGCONT, let it
 2166                          * handle the signal itself.  If it isn't waiting on
 2167                          * an event, it goes back to run state.
 2168                          * Otherwise, process goes back to sleep state.
 2169                          */
 2170                         p->p_flag &= ~P_STOPPED_SIG;
 2171                         PROC_SLOCK(p);
 2172                         if (p->p_numthreads == p->p_suspcount) {
 2173                                 PROC_SUNLOCK(p);
 2174                                 p->p_flag |= P_CONTINUED;
 2175                                 p->p_xstat = SIGCONT;
 2176                                 PROC_LOCK(p->p_pptr);
 2177                                 childproc_continued(p);
 2178                                 PROC_UNLOCK(p->p_pptr);
 2179                                 PROC_SLOCK(p);
 2180                         }
 2181                         if (action == SIG_DFL) {
 2182                                 thread_unsuspend(p);
 2183                                 PROC_SUNLOCK(p);
 2184                                 sigqueue_delete(sigqueue, sig);
 2185                                 goto out;
 2186                         }
 2187                         if (action == SIG_CATCH) {
 2188                                 /*
 2189                                  * The process wants to catch it so it needs
 2190                                  * to run at least one thread, but which one?
 2191                                  */
 2192                                 PROC_SUNLOCK(p);
 2193                                 goto runfast;
 2194                         }
 2195                         /*
 2196                          * The signal is not ignored or caught.
 2197                          */
 2198                         thread_unsuspend(p);
 2199                         PROC_SUNLOCK(p);
 2200                         goto out;
 2201                 }
 2202 
 2203                 if (prop & SA_STOP) {
 2204                         /*
 2205                          * If traced process is already stopped,
 2206                          * then no further action is necessary.
 2207                          */
 2208                         if (p->p_flag & P_TRACED)
 2209                                 goto out;
 2210                         /*
 2211                          * Already stopped, don't need to stop again
 2212                          * (If we did the shell could get confused).
 2213                          * Just make sure the signal STOP bit set.
 2214                          */
 2215                         p->p_flag |= P_STOPPED_SIG;
 2216                         sigqueue_delete(sigqueue, sig);
 2217                         goto out;
 2218                 }
 2219 
 2220                 /*
 2221                  * All other kinds of signals:
 2222                  * If a thread is sleeping interruptibly, simulate a
 2223                  * wakeup so that when it is continued it will be made
 2224                  * runnable and can look at the signal.  However, don't make
 2225                  * the PROCESS runnable, leave it stopped.
 2226                  * It may run a bit until it hits a thread_suspend_check().
 2227                  */
 2228                 wakeup_swapper = 0;
 2229                 PROC_SLOCK(p);
 2230                 thread_lock(td);
 2231                 if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
 2232                         wakeup_swapper = sleepq_abort(td, intrval);
 2233                 thread_unlock(td);
 2234                 PROC_SUNLOCK(p);
 2235                 if (wakeup_swapper)
 2236                         kick_proc0();
 2237                 goto out;
 2238                 /*
 2239                  * Mutexes are short lived. Threads waiting on them will
 2240                  * hit thread_suspend_check() soon.
 2241                  */
 2242         } else if (p->p_state == PRS_NORMAL) {
 2243                 if (p->p_flag & P_TRACED || action == SIG_CATCH) {
 2244                         tdsigwakeup(td, sig, action, intrval);
 2245                         goto out;
 2246                 }
 2247 
 2248                 MPASS(action == SIG_DFL);
 2249 
 2250                 if (prop & SA_STOP) {
 2251                         if (p->p_flag & P_PPWAIT)
 2252                                 goto out;
 2253                         p->p_flag |= P_STOPPED_SIG;
 2254                         p->p_xstat = sig;
 2255                         PROC_SLOCK(p);
 2256                         sig_suspend_threads(td, p, 1);
 2257                         if (p->p_numthreads == p->p_suspcount) {
 2258                                 /*
 2259                                  * only thread sending signal to another
 2260                                  * process can reach here, if thread is sending
 2261                                  * signal to its process, because thread does
 2262                                  * not suspend itself here, p_numthreads
 2263                                  * should never be equal to p_suspcount.
 2264                                  */
 2265                                 thread_stopped(p);
 2266                                 PROC_SUNLOCK(p);
 2267                                 sigqueue_delete_proc(p, p->p_xstat);
 2268                         } else
 2269                                 PROC_SUNLOCK(p);
 2270                         goto out;
 2271                 }
 2272         } else {
 2273                 /* Not in "NORMAL" state. discard the signal. */
 2274                 sigqueue_delete(sigqueue, sig);
 2275                 goto out;
 2276         }
 2277 
 2278         /*
 2279          * The process is not stopped so we need to apply the signal to all the
 2280          * running threads.
 2281          */
 2282 runfast:
 2283         tdsigwakeup(td, sig, action, intrval);
 2284         PROC_SLOCK(p);
 2285         thread_unsuspend(p);
 2286         PROC_SUNLOCK(p);
 2287 out:
 2288         /* If we jump here, proc slock should not be owned. */
 2289         PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
 2290         return (ret);
 2291 }
 2292 
 2293 /*
 2294  * The force of a signal has been directed against a single
 2295  * thread.  We need to see what we can do about knocking it
 2296  * out of any sleep it may be in etc.
 2297  */
 2298 static void
 2299 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
 2300 {
 2301         struct proc *p = td->td_proc;
 2302         register int prop;
 2303         int wakeup_swapper;
 2304 
 2305         wakeup_swapper = 0;
 2306         PROC_LOCK_ASSERT(p, MA_OWNED);
 2307         prop = sigprop(sig);
 2308 
 2309         PROC_SLOCK(p);
 2310         thread_lock(td);
 2311         /*
 2312          * Bring the priority of a thread up if we want it to get
 2313          * killed in this lifetime.
 2314          */
 2315         if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
 2316                 sched_prio(td, PUSER);
 2317         if (TD_ON_SLEEPQ(td)) {
 2318                 /*
 2319                  * If thread is sleeping uninterruptibly
 2320                  * we can't interrupt the sleep... the signal will
 2321                  * be noticed when the process returns through
 2322                  * trap() or syscall().
 2323                  */
 2324                 if ((td->td_flags & TDF_SINTR) == 0)
 2325                         goto out;
 2326                 /*
 2327                  * If SIGCONT is default (or ignored) and process is
 2328                  * asleep, we are finished; the process should not
 2329                  * be awakened.
 2330                  */
 2331                 if ((prop & SA_CONT) && action == SIG_DFL) {
 2332                         thread_unlock(td);
 2333                         PROC_SUNLOCK(p);
 2334                         sigqueue_delete(&p->p_sigqueue, sig);
 2335                         /*
 2336                          * It may be on either list in this state.
 2337                          * Remove from both for now.
 2338                          */
 2339                         sigqueue_delete(&td->td_sigqueue, sig);
 2340                         return;
 2341                 }
 2342 
 2343                 /*
 2344                  * Give low priority threads a better chance to run.
 2345                  */
 2346                 if (td->td_priority > PUSER)
 2347                         sched_prio(td, PUSER);
 2348 
 2349                 wakeup_swapper = sleepq_abort(td, intrval);
 2350         } else {
 2351                 /*
 2352                  * Other states do nothing with the signal immediately,
 2353                  * other than kicking ourselves if we are running.
 2354                  * It will either never be noticed, or noticed very soon.
 2355                  */
 2356 #ifdef SMP
 2357                 if (TD_IS_RUNNING(td) && td != curthread)
 2358                         forward_signal(td);
 2359 #endif
 2360         }
 2361 out:
 2362         PROC_SUNLOCK(p);
 2363         thread_unlock(td);
 2364         if (wakeup_swapper)
 2365                 kick_proc0();
 2366 }
 2367 
 2368 static void
 2369 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
 2370 {
 2371         struct thread *td2;
 2372         int wakeup_swapper;
 2373 
 2374         PROC_LOCK_ASSERT(p, MA_OWNED);
 2375         PROC_SLOCK_ASSERT(p, MA_OWNED);
 2376 
 2377         wakeup_swapper = 0;
 2378         FOREACH_THREAD_IN_PROC(p, td2) {
 2379                 thread_lock(td2);
 2380                 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
 2381                 if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
 2382                     (td2->td_flags & TDF_SINTR)) {
 2383                         if (td2->td_flags & TDF_SBDRY) {
 2384                                 if (TD_IS_SUSPENDED(td2))
 2385                                         wakeup_swapper |=
 2386                                             thread_unsuspend_one(td2);
 2387                                 if (TD_ON_SLEEPQ(td2))
 2388                                         wakeup_swapper |=
 2389                                             sleepq_abort(td2, ERESTART);
 2390                         } else if (!TD_IS_SUSPENDED(td2)) {
 2391                                 thread_suspend_one(td2);
 2392                         }
 2393                 } else if (!TD_IS_SUSPENDED(td2)) {
 2394                         if (sending || td != td2)
 2395                                 td2->td_flags |= TDF_ASTPENDING;
 2396 #ifdef SMP
 2397                         if (TD_IS_RUNNING(td2) && td2 != td)
 2398                                 forward_signal(td2);
 2399 #endif
 2400                 }
 2401                 thread_unlock(td2);
 2402         }
 2403         if (wakeup_swapper)
 2404                 kick_proc0();
 2405 }
 2406 
 2407 int
 2408 ptracestop(struct thread *td, int sig)
 2409 {
 2410         struct proc *p = td->td_proc;
 2411 
 2412         PROC_LOCK_ASSERT(p, MA_OWNED);
 2413         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
 2414             &p->p_mtx.lock_object, "Stopping for traced signal");
 2415 
 2416         td->td_dbgflags |= TDB_XSIG;
 2417         td->td_xsig = sig;
 2418         PROC_SLOCK(p);
 2419         while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
 2420                 if (p->p_flag & P_SINGLE_EXIT) {
 2421                         td->td_dbgflags &= ~TDB_XSIG;
 2422                         PROC_SUNLOCK(p);
 2423                         return (sig);
 2424                 }
 2425                 /*
 2426                  * Just make wait() to work, the last stopped thread
 2427                  * will win.
 2428                  */
 2429                 p->p_xstat = sig;
 2430                 p->p_xthread = td;
 2431                 p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
 2432                 sig_suspend_threads(td, p, 0);
 2433                 if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
 2434                         td->td_dbgflags &= ~TDB_STOPATFORK;
 2435                         cv_broadcast(&p->p_dbgwait);
 2436                 }
 2437 stopme:
 2438                 thread_suspend_switch(td);
 2439                 if (!(p->p_flag & P_TRACED)) {
 2440                         break;
 2441                 }
 2442                 if (td->td_dbgflags & TDB_SUSPEND) {
 2443                         if (p->p_flag & P_SINGLE_EXIT)
 2444                                 break;
 2445                         goto stopme;
 2446                 }
 2447         }
 2448         PROC_SUNLOCK(p);
 2449         return (td->td_xsig);
 2450 }
 2451 
 2452 static void
 2453 reschedule_signals(struct proc *p, sigset_t block, int flags)
 2454 {
 2455         struct sigacts *ps;
 2456         struct thread *td;
 2457         int sig;
 2458 
 2459         PROC_LOCK_ASSERT(p, MA_OWNED);
 2460         if (SIGISEMPTY(p->p_siglist))
 2461                 return;
 2462         ps = p->p_sigacts;
 2463         SIGSETAND(block, p->p_siglist);
 2464         while ((sig = sig_ffs(&block)) != 0) {
 2465                 SIGDELSET(block, sig);
 2466                 td = sigtd(p, sig, 0);
 2467                 signotify(td);
 2468                 if (!(flags & SIGPROCMASK_PS_LOCKED))
 2469                         mtx_lock(&ps->ps_mtx);
 2470                 if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
 2471                         tdsigwakeup(td, sig, SIG_CATCH,
 2472                             (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
 2473                              ERESTART));
 2474                 if (!(flags & SIGPROCMASK_PS_LOCKED))
 2475                         mtx_unlock(&ps->ps_mtx);
 2476         }
 2477 }
 2478 
 2479 void
 2480 tdsigcleanup(struct thread *td)
 2481 {
 2482         struct proc *p;
 2483         sigset_t unblocked;
 2484 
 2485         p = td->td_proc;
 2486         PROC_LOCK_ASSERT(p, MA_OWNED);
 2487 
 2488         sigqueue_flush(&td->td_sigqueue);
 2489         if (p->p_numthreads == 1)
 2490                 return;
 2491 
 2492         /*
 2493          * Since we cannot handle signals, notify signal post code
 2494          * about this by filling the sigmask.
 2495          *
 2496          * Also, if needed, wake up thread(s) that do not block the
 2497          * same signals as the exiting thread, since the thread might
 2498          * have been selected for delivery and woken up.
 2499          */
 2500         SIGFILLSET(unblocked);
 2501         SIGSETNAND(unblocked, td->td_sigmask);
 2502         SIGFILLSET(td->td_sigmask);
 2503         reschedule_signals(p, unblocked, 0);
 2504 
 2505 }
 2506 
 2507 /*
 2508  * If the current process has received a signal (should be caught or cause
 2509  * termination, should interrupt current syscall), return the signal number.
 2510  * Stop signals with default action are processed immediately, then cleared;
 2511  * they aren't returned.  This is checked after each entry to the system for
 2512  * a syscall or trap (though this can usually be done without calling issignal
 2513  * by checking the pending signal masks in cursig.) The normal call
 2514  * sequence is
 2515  *
 2516  *      while (sig = cursig(curthread))
 2517  *              postsig(sig);
 2518  */
 2519 static int
 2520 issignal(struct thread *td, int stop_allowed)
 2521 {
 2522         struct proc *p;
 2523         struct sigacts *ps;
 2524         struct sigqueue *queue;
 2525         sigset_t sigpending;
 2526         int sig, prop, newsig;
 2527 
 2528         p = td->td_proc;
 2529         ps = p->p_sigacts;
 2530         mtx_assert(&ps->ps_mtx, MA_OWNED);
 2531         PROC_LOCK_ASSERT(p, MA_OWNED);
 2532         for (;;) {
 2533                 int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
 2534 
 2535                 sigpending = td->td_sigqueue.sq_signals;
 2536                 SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
 2537                 SIGSETNAND(sigpending, td->td_sigmask);
 2538 
 2539                 if (p->p_flag & P_PPWAIT)
 2540                         SIG_STOPSIGMASK(sigpending);
 2541                 if (SIGISEMPTY(sigpending))     /* no signal to send */
 2542                         return (0);
 2543                 sig = sig_ffs(&sigpending);
 2544 
 2545                 if (p->p_stops & S_SIG) {
 2546                         mtx_unlock(&ps->ps_mtx);
 2547                         stopevent(p, S_SIG, sig);
 2548                         mtx_lock(&ps->ps_mtx);
 2549                 }
 2550 
 2551                 /*
 2552                  * We should see pending but ignored signals
 2553                  * only if P_TRACED was on when they were posted.
 2554                  */
 2555                 if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
 2556                         sigqueue_delete(&td->td_sigqueue, sig);
 2557                         sigqueue_delete(&p->p_sigqueue, sig);
 2558                         continue;
 2559                 }
 2560                 if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
 2561                         /*
 2562                          * If traced, always stop.
 2563                          * Remove old signal from queue before the stop.
 2564                          * XXX shrug off debugger, it causes siginfo to
 2565                          * be thrown away.
 2566                          */
 2567                         queue = &td->td_sigqueue;
 2568                         td->td_dbgksi.ksi_signo = 0;
 2569                         if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
 2570                                 queue = &p->p_sigqueue;
 2571                                 sigqueue_get(queue, sig, &td->td_dbgksi);
 2572                         }
 2573 
 2574                         mtx_unlock(&ps->ps_mtx);
 2575                         newsig = ptracestop(td, sig);
 2576                         mtx_lock(&ps->ps_mtx);
 2577 
 2578                         if (sig != newsig) {
 2579 
 2580                                 /*
 2581                                  * If parent wants us to take the signal,
 2582                                  * then it will leave it in p->p_xstat;
 2583                                  * otherwise we just look for signals again.
 2584                                 */
 2585                                 if (newsig == 0)
 2586                                         continue;
 2587                                 sig = newsig;
 2588 
 2589                                 /*
 2590                                  * Put the new signal into td_sigqueue. If the
 2591                                  * signal is being masked, look for other signals.
 2592                                  */
 2593                                 sigqueue_add(queue, sig, NULL);
 2594                                 if (SIGISMEMBER(td->td_sigmask, sig))
 2595                                         continue;
 2596                                 signotify(td);
 2597                         } else {
 2598                                 if (td->td_dbgksi.ksi_signo != 0) {
 2599                                         td->td_dbgksi.ksi_flags |= KSI_HEAD;
 2600                                         if (sigqueue_add(&td->td_sigqueue, sig,
 2601                                             &td->td_dbgksi) != 0)
 2602                                                 td->td_dbgksi.ksi_signo = 0;
 2603                                 }
 2604                                 if (td->td_dbgksi.ksi_signo == 0)
 2605                                         sigqueue_add(&td->td_sigqueue, sig,
 2606                                             NULL);
 2607                         }
 2608 
 2609                         /*
 2610                          * If the traced bit got turned off, go back up
 2611                          * to the top to rescan signals.  This ensures
 2612                          * that p_sig* and p_sigact are consistent.
 2613                          */
 2614                         if ((p->p_flag & P_TRACED) == 0)
 2615                                 continue;
 2616                 }
 2617 
 2618                 prop = sigprop(sig);
 2619 
 2620                 /*
 2621                  * Decide whether the signal should be returned.
 2622                  * Return the signal's number, or fall through
 2623                  * to clear it from the pending mask.
 2624                  */
 2625                 switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
 2626 
 2627                 case (intptr_t)SIG_DFL:
 2628                         /*
 2629                          * Don't take default actions on system processes.
 2630                          */
 2631                         if (p->p_pid <= 1) {
 2632 #ifdef DIAGNOSTIC
 2633                                 /*
 2634                                  * Are you sure you want to ignore SIGSEGV
 2635                                  * in init? XXX
 2636                                  */
 2637                                 printf("Process (pid %lu) got signal %d\n",
 2638                                         (u_long)p->p_pid, sig);
 2639 #endif
 2640                                 break;          /* == ignore */
 2641                         }
 2642                         /*
 2643                          * If there is a pending stop signal to process
 2644                          * with default action, stop here,
 2645                          * then clear the signal.  However,
 2646                          * if process is member of an orphaned
 2647                          * process group, ignore tty stop signals.
 2648                          */
 2649                         if (prop & SA_STOP) {
 2650                                 if (p->p_flag & P_TRACED ||
 2651                                     (p->p_pgrp->pg_jobc == 0 &&
 2652                                      prop & SA_TTYSTOP))
 2653                                         break;  /* == ignore */
 2654 
 2655                                 /* Ignore, but do not drop the stop signal. */
 2656                                 if (stop_allowed != SIG_STOP_ALLOWED)
 2657                                         return (sig);
 2658                                 mtx_unlock(&ps->ps_mtx);
 2659                                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
 2660                                     &p->p_mtx.lock_object, "Catching SIGSTOP");
 2661                                 p->p_flag |= P_STOPPED_SIG;
 2662                                 p->p_xstat = sig;
 2663                                 PROC_SLOCK(p);
 2664                                 sig_suspend_threads(td, p, 0);
 2665                                 thread_suspend_switch(td);
 2666                                 PROC_SUNLOCK(p);
 2667                                 mtx_lock(&ps->ps_mtx);
 2668                                 break;
 2669                         } else if (prop & SA_IGNORE) {
 2670                                 /*
 2671                                  * Except for SIGCONT, shouldn't get here.
 2672                                  * Default action is to ignore; drop it.
 2673                                  */
 2674                                 break;          /* == ignore */
 2675                         } else
 2676                                 return (sig);
 2677                         /*NOTREACHED*/
 2678 
 2679                 case (intptr_t)SIG_IGN:
 2680                         /*
 2681                          * Masking above should prevent us ever trying
 2682                          * to take action on an ignored signal other
 2683                          * than SIGCONT, unless process is traced.
 2684                          */
 2685                         if ((prop & SA_CONT) == 0 &&
 2686                             (p->p_flag & P_TRACED) == 0)
 2687                                 printf("issignal\n");
 2688                         break;          /* == ignore */
 2689 
 2690                 default:
 2691                         /*
 2692                          * This signal has an action, let
 2693                          * postsig() process it.
 2694                          */
 2695                         return (sig);
 2696                 }
 2697                 sigqueue_delete(&td->td_sigqueue, sig);         /* take the signal! */
 2698                 sigqueue_delete(&p->p_sigqueue, sig);
 2699         }
 2700         /* NOTREACHED */
 2701 }
 2702 
 2703 void
 2704 thread_stopped(struct proc *p)
 2705 {
 2706         int n;
 2707 
 2708         PROC_LOCK_ASSERT(p, MA_OWNED);
 2709         PROC_SLOCK_ASSERT(p, MA_OWNED);
 2710         n = p->p_suspcount;
 2711         if (p == curproc)
 2712                 n++;
 2713         if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
 2714                 PROC_SUNLOCK(p);
 2715                 p->p_flag &= ~P_WAITED;
 2716                 PROC_LOCK(p->p_pptr);
 2717                 childproc_stopped(p, (p->p_flag & P_TRACED) ?
 2718                         CLD_TRAPPED : CLD_STOPPED);
 2719                 PROC_UNLOCK(p->p_pptr);
 2720                 PROC_SLOCK(p);
 2721         }
 2722 }
 2723  
 2724 /*
 2725  * Take the action for the specified signal
 2726  * from the current set of pending signals.
 2727  */
 2728 int
 2729 postsig(sig)
 2730         register int sig;
 2731 {
 2732         struct thread *td = curthread;
 2733         register struct proc *p = td->td_proc;
 2734         struct sigacts *ps;
 2735         sig_t action;
 2736         ksiginfo_t ksi;
 2737         sigset_t returnmask, mask;
 2738 
 2739         KASSERT(sig != 0, ("postsig"));
 2740 
 2741         PROC_LOCK_ASSERT(p, MA_OWNED);
 2742         ps = p->p_sigacts;
 2743         mtx_assert(&ps->ps_mtx, MA_OWNED);
 2744         ksiginfo_init(&ksi);
 2745         if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
 2746             sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
 2747                 return (0);
 2748         ksi.ksi_signo = sig;
 2749         if (ksi.ksi_code == SI_TIMER)
 2750                 itimer_accept(p, ksi.ksi_timerid, &ksi);
 2751         action = ps->ps_sigact[_SIG_IDX(sig)];
 2752 #ifdef KTRACE
 2753         if (KTRPOINT(td, KTR_PSIG))
 2754                 ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
 2755                     &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
 2756 #endif
 2757         if (p->p_stops & S_SIG) {
 2758                 mtx_unlock(&ps->ps_mtx);
 2759                 stopevent(p, S_SIG, sig);
 2760                 mtx_lock(&ps->ps_mtx);
 2761         }
 2762 
 2763         if (action == SIG_DFL) {
 2764                 /*
 2765                  * Default action, where the default is to kill
 2766                  * the process.  (Other cases were ignored above.)
 2767                  */
 2768                 mtx_unlock(&ps->ps_mtx);
 2769                 sigexit(td, sig);
 2770                 /* NOTREACHED */
 2771         } else {
 2772                 /*
 2773                  * If we get here, the signal must be caught.
 2774                  */
 2775                 KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
 2776                     ("postsig action"));
 2777                 /*
 2778                  * Set the new mask value and also defer further
 2779                  * occurrences of this signal.
 2780                  *
 2781                  * Special case: user has done a sigsuspend.  Here the
 2782                  * current mask is not of interest, but rather the
 2783                  * mask from before the sigsuspend is what we want
 2784                  * restored after the signal processing is completed.
 2785                  */
 2786                 if (td->td_pflags & TDP_OLDMASK) {
 2787                         returnmask = td->td_oldsigmask;
 2788                         td->td_pflags &= ~TDP_OLDMASK;
 2789                 } else
 2790                         returnmask = td->td_sigmask;
 2791 
 2792                 mask = ps->ps_catchmask[_SIG_IDX(sig)];
 2793                 if (!SIGISMEMBER(ps->ps_signodefer, sig))
 2794                         SIGADDSET(mask, sig);
 2795                 kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
 2796                     SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
 2797 
 2798                 if (SIGISMEMBER(ps->ps_sigreset, sig)) {
 2799                         /*
 2800                          * See kern_sigaction() for origin of this code.
 2801                          */
 2802                         SIGDELSET(ps->ps_sigcatch, sig);
 2803                         if (sig != SIGCONT &&
 2804                             sigprop(sig) & SA_IGNORE)
 2805                                 SIGADDSET(ps->ps_sigignore, sig);
 2806                         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
 2807                 }
 2808                 td->td_ru.ru_nsignals++;
 2809                 if (p->p_sig == sig) {
 2810                         p->p_code = 0;
 2811                         p->p_sig = 0;
 2812                 }
 2813                 (*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
 2814         }
 2815         return (1);
 2816 }
 2817 
 2818 /*
 2819  * Kill the current process for stated reason.
 2820  */
 2821 void
 2822 killproc(p, why)
 2823         struct proc *p;
 2824         char *why;
 2825 {
 2826 
 2827         PROC_LOCK_ASSERT(p, MA_OWNED);
 2828         CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
 2829                 p, p->p_pid, p->p_comm);
 2830         log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
 2831                 p->p_ucred ? p->p_ucred->cr_uid : -1, why);
 2832         p->p_flag |= P_WKILLED;
 2833         kern_psignal(p, SIGKILL);
 2834 }
 2835 
 2836 /*
 2837  * Force the current process to exit with the specified signal, dumping core
 2838  * if appropriate.  We bypass the normal tests for masked and caught signals,
 2839  * allowing unrecoverable failures to terminate the process without changing
 2840  * signal state.  Mark the accounting record with the signal termination.
 2841  * If dumping core, save the signal number for the debugger.  Calls exit and
 2842  * does not return.
 2843  */
 2844 void
 2845 sigexit(td, sig)
 2846         struct thread *td;
 2847         int sig;
 2848 {
 2849         struct proc *p = td->td_proc;
 2850 
 2851         PROC_LOCK_ASSERT(p, MA_OWNED);
 2852         p->p_acflag |= AXSIG;
 2853         /*
 2854          * We must be single-threading to generate a core dump.  This
 2855          * ensures that the registers in the core file are up-to-date.
 2856          * Also, the ELF dump handler assumes that the thread list doesn't
 2857          * change out from under it.
 2858          *
 2859          * XXX If another thread attempts to single-thread before us
 2860          *     (e.g. via fork()), we won't get a dump at all.
 2861          */
 2862         if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
 2863                 p->p_sig = sig;
 2864                 /*
 2865                  * Log signals which would cause core dumps
 2866                  * (Log as LOG_INFO to appease those who don't want
 2867                  * these messages.)
 2868                  * XXX : Todo, as well as euid, write out ruid too
 2869                  * Note that coredump() drops proc lock.
 2870                  */
 2871                 if (coredump(td) == 0)
 2872                         sig |= WCOREFLAG;
 2873                 if (kern_logsigexit)
 2874                         log(LOG_INFO,
 2875                             "pid %d (%s), uid %d: exited on signal %d%s\n",
 2876                             p->p_pid, p->p_comm,
 2877                             td->td_ucred ? td->td_ucred->cr_uid : -1,
 2878                             sig &~ WCOREFLAG,
 2879                             sig & WCOREFLAG ? " (core dumped)" : "");
 2880         } else
 2881                 PROC_UNLOCK(p);
 2882         exit1(td, W_EXITCODE(0, sig));
 2883         /* NOTREACHED */
 2884 }
 2885 
 2886 /*
 2887  * Send queued SIGCHLD to parent when child process's state
 2888  * is changed.
 2889  */
 2890 static void
 2891 sigparent(struct proc *p, int reason, int status)
 2892 {
 2893         PROC_LOCK_ASSERT(p, MA_OWNED);
 2894         PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
 2895 
 2896         if (p->p_ksi != NULL) {
 2897                 p->p_ksi->ksi_signo  = SIGCHLD;
 2898                 p->p_ksi->ksi_code   = reason;
 2899                 p->p_ksi->ksi_status = status;
 2900                 p->p_ksi->ksi_pid    = p->p_pid;
 2901                 p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
 2902                 if (KSI_ONQ(p->p_ksi))
 2903                         return;
 2904         }
 2905         pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
 2906 }
 2907 
 2908 static void
 2909 childproc_jobstate(struct proc *p, int reason, int status)
 2910 {
 2911         struct sigacts *ps;
 2912 
 2913         PROC_LOCK_ASSERT(p, MA_OWNED);
 2914         PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
 2915 
 2916         /*
 2917          * Wake up parent sleeping in kern_wait(), also send
 2918          * SIGCHLD to parent, but SIGCHLD does not guarantee
 2919          * that parent will awake, because parent may masked
 2920          * the signal.
 2921          */
 2922         p->p_pptr->p_flag |= P_STATCHILD;
 2923         wakeup(p->p_pptr);
 2924 
 2925         ps = p->p_pptr->p_sigacts;
 2926         mtx_lock(&ps->ps_mtx);
 2927         if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
 2928                 mtx_unlock(&ps->ps_mtx);
 2929                 sigparent(p, reason, status);
 2930         } else
 2931                 mtx_unlock(&ps->ps_mtx);
 2932 }
 2933 
 2934 void
 2935 childproc_stopped(struct proc *p, int reason)
 2936 {
 2937         childproc_jobstate(p, reason, p->p_xstat);
 2938 }
 2939 
 2940 void
 2941 childproc_continued(struct proc *p)
 2942 {
 2943         childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
 2944 }
 2945 
 2946 void
 2947 childproc_exited(struct proc *p)
 2948 {
 2949         int reason;
 2950         int status = p->p_xstat; /* convert to int */
 2951 
 2952         reason = CLD_EXITED;
 2953         if (WCOREDUMP(status))
 2954                 reason = CLD_DUMPED;
 2955         else if (WIFSIGNALED(status))
 2956                 reason = CLD_KILLED;
 2957         /*
 2958          * XXX avoid calling wakeup(p->p_pptr), the work is
 2959          * done in exit1().
 2960          */
 2961         sigparent(p, reason, status);
 2962 }
 2963 
 2964 /*
 2965  * We only have 1 character for the core count in the format
 2966  * string, so the range will be 0-9
 2967  */
 2968 #define MAX_NUM_CORES 10
 2969 static int num_cores = 5;
 2970 
 2971 static int
 2972 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
 2973 {
 2974         int error;
 2975         int new_val;
 2976 
 2977         new_val = num_cores;
 2978         error = sysctl_handle_int(oidp, &new_val, 0, req);
 2979         if (error != 0 || req->newptr == NULL)
 2980                 return (error);
 2981         if (new_val > MAX_NUM_CORES)
 2982                 new_val = MAX_NUM_CORES;
 2983         if (new_val < 0)
 2984                 new_val = 0;
 2985         num_cores = new_val;
 2986         return (0);
 2987 }
 2988 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW, 
 2989             0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
 2990 
 2991 #if defined(COMPRESS_USER_CORES)
 2992 int compress_user_cores = 1;
 2993 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
 2994         &compress_user_cores, 0, "");
 2995 
 2996 int compress_user_cores_gzlevel = -1; /* default level */
 2997 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
 2998     &compress_user_cores_gzlevel, -1, "user core gz compression level");
 2999 
 3000 #define GZ_SUFFIX       ".gz"   
 3001 #define GZ_SUFFIX_LEN   3       
 3002 #endif
 3003 
 3004 static char corefilename[MAXPATHLEN] = {"%N.core"};
 3005 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
 3006               sizeof(corefilename), "process corefile name format string");
 3007 
 3008 /*
 3009  * expand_name(name, uid, pid, td, compress)
 3010  * Expand the name described in corefilename, using name, uid, and pid.
 3011  * corefilename is a printf-like string, with three format specifiers:
 3012  *      %N      name of process ("name")
 3013  *      %P      process id (pid)
 3014  *      %U      user id (uid)
 3015  * For example, "%N.core" is the default; they can be disabled completely
 3016  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
 3017  * This is controlled by the sysctl variable kern.corefile (see above).
 3018  */
 3019 static char *
 3020 expand_name(const char *name, uid_t uid, pid_t pid, struct thread *td,
 3021     int compress)
 3022 {
 3023         struct sbuf sb;
 3024         const char *format;
 3025         char *temp;
 3026         size_t i;
 3027         int indexpos;
 3028         char *hostname;
 3029         
 3030         hostname = NULL;
 3031         format = corefilename;
 3032         temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
 3033         if (temp == NULL)
 3034                 return (NULL);
 3035         indexpos = -1;
 3036         (void)sbuf_new(&sb, temp, MAXPATHLEN, SBUF_FIXEDLEN);
 3037         for (i = 0; format[i]; i++) {
 3038                 switch (format[i]) {
 3039                 case '%':       /* Format character */
 3040                         i++;
 3041                         switch (format[i]) {
 3042                         case '%':
 3043                                 sbuf_putc(&sb, '%');
 3044                                 break;
 3045                         case 'H':       /* hostname */
 3046                                 if (hostname == NULL) {
 3047                                         hostname = malloc(MAXHOSTNAMELEN,
 3048                                             M_TEMP, M_NOWAIT);
 3049                                         if (hostname == NULL) {
 3050                                                 log(LOG_ERR,
 3051                                                     "pid %ld (%s), uid (%lu): "
 3052                                                     "unable to alloc memory "
 3053                                                     "for corefile hostname\n",
 3054                                                     (long)pid, name,
 3055                                                     (u_long)uid);
 3056                                                 goto nomem;
 3057                                         }
 3058                                 }
 3059                                 getcredhostname(td->td_ucred, hostname,
 3060                                     MAXHOSTNAMELEN);
 3061                                 sbuf_printf(&sb, "%s", hostname);
 3062                                 break;
 3063                         case 'I':       /* autoincrementing index */
 3064                                 sbuf_printf(&sb, "");
 3065                                 indexpos = sbuf_len(&sb) - 1;
 3066                                 break;
 3067                         case 'N':       /* process name */
 3068                                 sbuf_printf(&sb, "%s", name);
 3069                                 break;
 3070                         case 'P':       /* process id */
 3071                                 sbuf_printf(&sb, "%u", pid);
 3072                                 break;
 3073                         case 'U':       /* user id */
 3074                                 sbuf_printf(&sb, "%u", uid);
 3075                                 break;
 3076                         default:
 3077                                 log(LOG_ERR,
 3078                                     "Unknown format character %c in "
 3079                                     "corename `%s'\n", format[i], format);
 3080                         }
 3081                         break;
 3082                 default:
 3083                         sbuf_putc(&sb, format[i]);
 3084                 }
 3085         }
 3086         free(hostname, M_TEMP);
 3087 #ifdef COMPRESS_USER_CORES
 3088         if (compress) {
 3089                 sbuf_printf(&sb, GZ_SUFFIX);
 3090         }
 3091 #endif
 3092         if (sbuf_error(&sb) != 0) {
 3093                 log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
 3094                     "long\n", (long)pid, name, (u_long)uid);
 3095 nomem:
 3096                 sbuf_delete(&sb);
 3097                 free(temp, M_TEMP);
 3098                 return (NULL);
 3099         }
 3100         sbuf_finish(&sb);
 3101         sbuf_delete(&sb);
 3102 
 3103         /*
 3104          * If the core format has a %I in it, then we need to check
 3105          * for existing corefiles before returning a name.
 3106          * To do this we iterate over 0..num_cores to find a
 3107          * non-existing core file name to use.
 3108          */
 3109         if (indexpos != -1) {
 3110                 struct nameidata nd;
 3111                 int error, n;
 3112                 int flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
 3113                 int cmode = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
 3114                 int vfslocked;
 3115 
 3116                 for (n = 0; n < num_cores; n++) {
 3117                         temp[indexpos] = '' + n;
 3118                         NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE,
 3119                             temp, td); 
 3120                         error = vn_open(&nd, &flags, cmode, NULL);
 3121                         if (error) {
 3122                                 if (error == EEXIST) {
 3123                                         continue;
 3124                                 }
 3125                                 log(LOG_ERR,
 3126                                     "pid %d (%s), uid (%u):  Path `%s' failed "
 3127                                     "on initial open test, error = %d\n",
 3128                                     pid, name, uid, temp, error);
 3129                                 free(temp, M_TEMP);
 3130                                 return (NULL);
 3131                         }
 3132                         vfslocked = NDHASGIANT(&nd);
 3133                         NDFREE(&nd, NDF_ONLY_PNBUF);
 3134                         VOP_UNLOCK(nd.ni_vp, 0);
 3135                         error = vn_close(nd.ni_vp, FWRITE, td->td_ucred, td);
 3136                         VFS_UNLOCK_GIANT(vfslocked);
 3137                         if (error) {
 3138                                 log(LOG_ERR,
 3139                                     "pid %d (%s), uid (%u):  Path `%s' failed "
 3140                                     "on close after initial open test, "
 3141                                     "error = %d\n",
 3142                                     pid, name, uid, temp, error);
 3143                                 free(temp, M_TEMP);
 3144                                 return (NULL);
 3145                         }
 3146                         break;
 3147                 }
 3148         }
 3149         return (temp);
 3150 }
 3151 
 3152 /*
 3153  * Dump a process' core.  The main routine does some
 3154  * policy checking, and creates the name of the coredump;
 3155  * then it passes on a vnode and a size limit to the process-specific
 3156  * coredump routine if there is one; if there _is not_ one, it returns
 3157  * ENOSYS; otherwise it returns the error from the process-specific routine.
 3158  */
 3159 
 3160 static int
 3161 coredump(struct thread *td)
 3162 {
 3163         struct proc *p = td->td_proc;
 3164         register struct vnode *vp;
 3165         register struct ucred *cred = td->td_ucred;
 3166         struct flock lf;
 3167         struct nameidata nd;
 3168         struct vattr vattr;
 3169         int error, error1, flags, locked;
 3170         struct mount *mp;
 3171         char *name;                     /* name of corefile */
 3172         off_t limit;
 3173         int vfslocked;
 3174         int compress;
 3175 
 3176 #ifdef COMPRESS_USER_CORES
 3177         compress = compress_user_cores;
 3178 #else
 3179         compress = 0;
 3180 #endif
 3181         PROC_LOCK_ASSERT(p, MA_OWNED);
 3182         MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
 3183         _STOPEVENT(p, S_CORE, 0);
 3184 
 3185         name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid, td,
 3186             compress);
 3187         if (name == NULL) {
 3188                 PROC_UNLOCK(p);
 3189 #ifdef AUDIT
 3190                 audit_proc_coredump(td, NULL, EINVAL);
 3191 #endif
 3192                 return (EINVAL);
 3193         }
 3194         if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
 3195                 PROC_UNLOCK(p);
 3196 #ifdef AUDIT
 3197                 audit_proc_coredump(td, name, EFAULT);
 3198 #endif
 3199                 free(name, M_TEMP);
 3200                 return (EFAULT);
 3201         }
 3202         
 3203         /*
 3204          * Note that the bulk of limit checking is done after
 3205          * the corefile is created.  The exception is if the limit
 3206          * for corefiles is 0, in which case we don't bother
 3207          * creating the corefile at all.  This layout means that
 3208          * a corefile is truncated instead of not being created,
 3209          * if it is larger than the limit.
 3210          */
 3211         limit = (off_t)lim_cur(p, RLIMIT_CORE);
 3212         if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
 3213                 PROC_UNLOCK(p);
 3214 #ifdef AUDIT
 3215                 audit_proc_coredump(td, name, EFBIG);
 3216 #endif
 3217                 free(name, M_TEMP);
 3218                 return (EFBIG);
 3219         }
 3220         PROC_UNLOCK(p);
 3221 
 3222 restart:
 3223         NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
 3224         flags = O_CREAT | FWRITE | O_NOFOLLOW;
 3225         error = vn_open_cred(&nd, &flags, S_IRUSR | S_IWUSR, VN_OPEN_NOAUDIT,
 3226             cred, NULL);
 3227         if (error) {
 3228 #ifdef AUDIT
 3229                 audit_proc_coredump(td, name, error);
 3230 #endif
 3231                 free(name, M_TEMP);
 3232                 return (error);
 3233         }
 3234         vfslocked = NDHASGIANT(&nd);
 3235         NDFREE(&nd, NDF_ONLY_PNBUF);
 3236         vp = nd.ni_vp;
 3237 
 3238         /* Don't dump to non-regular files or files with links. */
 3239         if (vp->v_type != VREG ||
 3240             VOP_GETATTR(vp, &vattr, cred) || vattr.va_nlink != 1) {
 3241                 VOP_UNLOCK(vp, 0);
 3242                 error = EFAULT;
 3243                 goto close;
 3244         }
 3245 
 3246         VOP_UNLOCK(vp, 0);
 3247         lf.l_whence = SEEK_SET;
 3248         lf.l_start = 0;
 3249         lf.l_len = 0;
 3250         lf.l_type = F_WRLCK;
 3251         locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
 3252 
 3253         if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 3254                 lf.l_type = F_UNLCK;
 3255                 if (locked)
 3256                         VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
 3257                 if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
 3258                         goto out;
 3259                 if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
 3260                         goto out;
 3261                 VFS_UNLOCK_GIANT(vfslocked);
 3262                 goto restart;
 3263         }
 3264 
 3265         VATTR_NULL(&vattr);
 3266         vattr.va_size = 0;
 3267         if (set_core_nodump_flag)
 3268                 vattr.va_flags = UF_NODUMP;
 3269         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 3270         VOP_SETATTR(vp, &vattr, cred);
 3271         VOP_UNLOCK(vp, 0);
 3272         vn_finished_write(mp);
 3273         PROC_LOCK(p);
 3274         p->p_acflag |= ACORE;
 3275         PROC_UNLOCK(p);
 3276 
 3277         error = p->p_sysent->sv_coredump ?
 3278           p->p_sysent->sv_coredump(td, vp, limit, compress ? IMGACT_CORE_COMPRESS : 0) :
 3279           ENOSYS;
 3280 
 3281         if (locked) {
 3282                 lf.l_type = F_UNLCK;
 3283                 VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
 3284         }
 3285 close:
 3286         error1 = vn_close(vp, FWRITE, cred, td);
 3287         if (error == 0)
 3288                 error = error1;
 3289 out:
 3290 #ifdef AUDIT
 3291         audit_proc_coredump(td, name, error);
 3292 #endif
 3293         free(name, M_TEMP);
 3294         VFS_UNLOCK_GIANT(vfslocked);
 3295         return (error);
 3296 }
 3297 
 3298 /*
 3299  * Nonexistent system call-- signal process (may want to handle it).  Flag
 3300  * error in case process won't see signal immediately (blocked or ignored).
 3301  */
 3302 #ifndef _SYS_SYSPROTO_H_
 3303 struct nosys_args {
 3304         int     dummy;
 3305 };
 3306 #endif
 3307 /* ARGSUSED */
 3308 int
 3309 nosys(td, args)
 3310         struct thread *td;
 3311         struct nosys_args *args;
 3312 {
 3313         struct proc *p = td->td_proc;
 3314 
 3315         PROC_LOCK(p);
 3316         kern_psignal(p, SIGSYS);
 3317         PROC_UNLOCK(p);
 3318         return (ENOSYS);
 3319 }
 3320 
 3321 /*
 3322  * Send a SIGIO or SIGURG signal to a process or process group using stored
 3323  * credentials rather than those of the current process.
 3324  */
 3325 void
 3326 pgsigio(sigiop, sig, checkctty)
 3327         struct sigio **sigiop;
 3328         int sig, checkctty;
 3329 {
 3330         ksiginfo_t ksi;
 3331         struct sigio *sigio;
 3332 
 3333         ksiginfo_init(&ksi);
 3334         ksi.ksi_signo = sig;
 3335         ksi.ksi_code = SI_KERNEL;
 3336 
 3337         SIGIO_LOCK();
 3338         sigio = *sigiop;
 3339         if (sigio == NULL) {
 3340                 SIGIO_UNLOCK();
 3341                 return;
 3342         }
 3343         if (sigio->sio_pgid > 0) {
 3344                 PROC_LOCK(sigio->sio_proc);
 3345                 if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
 3346                         kern_psignal(sigio->sio_proc, sig);
 3347                 PROC_UNLOCK(sigio->sio_proc);
 3348         } else if (sigio->sio_pgid < 0) {
 3349                 struct proc *p;
 3350 
 3351                 PGRP_LOCK(sigio->sio_pgrp);
 3352                 LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
 3353                         PROC_LOCK(p);
 3354                         if (p->p_state == PRS_NORMAL &&
 3355                             CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
 3356                             (checkctty == 0 || (p->p_flag & P_CONTROLT)))
 3357                                 kern_psignal(p, sig);
 3358                         PROC_UNLOCK(p);
 3359                 }
 3360                 PGRP_UNLOCK(sigio->sio_pgrp);
 3361         }
 3362         SIGIO_UNLOCK();
 3363 }
 3364 
 3365 static int
 3366 filt_sigattach(struct knote *kn)
 3367 {
 3368         struct proc *p = curproc;
 3369 
 3370         kn->kn_ptr.p_proc = p;
 3371         kn->kn_flags |= EV_CLEAR;               /* automatically set */
 3372 
 3373         knlist_add(&p->p_klist, kn, 0);
 3374 
 3375         return (0);
 3376 }
 3377 
 3378 static void
 3379 filt_sigdetach(struct knote *kn)
 3380 {
 3381         struct proc *p = kn->kn_ptr.p_proc;
 3382 
 3383         knlist_remove(&p->p_klist, kn, 0);
 3384 }
 3385 
 3386 /*
 3387  * signal knotes are shared with proc knotes, so we apply a mask to 
 3388  * the hint in order to differentiate them from process hints.  This
 3389  * could be avoided by using a signal-specific knote list, but probably
 3390  * isn't worth the trouble.
 3391  */
 3392 static int
 3393 filt_signal(struct knote *kn, long hint)
 3394 {
 3395 
 3396         if (hint & NOTE_SIGNAL) {
 3397                 hint &= ~NOTE_SIGNAL;
 3398 
 3399                 if (kn->kn_id == hint)
 3400                         kn->kn_data++;
 3401         }
 3402         return (kn->kn_data != 0);
 3403 }
 3404 
 3405 struct sigacts *
 3406 sigacts_alloc(void)
 3407 {
 3408         struct sigacts *ps;
 3409 
 3410         ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
 3411         ps->ps_refcnt = 1;
 3412         mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
 3413         return (ps);
 3414 }
 3415 
 3416 void
 3417 sigacts_free(struct sigacts *ps)
 3418 {
 3419 
 3420         mtx_lock(&ps->ps_mtx);
 3421         ps->ps_refcnt--;
 3422         if (ps->ps_refcnt == 0) {
 3423                 mtx_destroy(&ps->ps_mtx);
 3424                 free(ps, M_SUBPROC);
 3425         } else
 3426                 mtx_unlock(&ps->ps_mtx);
 3427 }
 3428 
 3429 struct sigacts *
 3430 sigacts_hold(struct sigacts *ps)
 3431 {
 3432         mtx_lock(&ps->ps_mtx);
 3433         ps->ps_refcnt++;
 3434         mtx_unlock(&ps->ps_mtx);
 3435         return (ps);
 3436 }
 3437 
 3438 void
 3439 sigacts_copy(struct sigacts *dest, struct sigacts *src)
 3440 {
 3441 
 3442         KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
 3443         mtx_lock(&src->ps_mtx);
 3444         bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
 3445         mtx_unlock(&src->ps_mtx);
 3446 }
 3447 
 3448 int
 3449 sigacts_shared(struct sigacts *ps)
 3450 {
 3451         int shared;
 3452 
 3453         mtx_lock(&ps->ps_mtx);
 3454         shared = ps->ps_refcnt > 1;
 3455         mtx_unlock(&ps->ps_mtx);
 3456         return (shared);
 3457 }

Cache object: 3dc5531badda24d2ea17134c485985ff


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.