The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_sig.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_sig.c  8.7 (Berkeley) 4/18/94
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/9.2/sys/kern/kern_sig.c 253373 2013-07-15 23:12:42Z gavin $");
   39 
   40 #include "opt_compat.h"
   41 #include "opt_kdtrace.h"
   42 #include "opt_ktrace.h"
   43 #include "opt_core.h"
   44 #include "opt_procdesc.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/signalvar.h>
   49 #include <sys/vnode.h>
   50 #include <sys/acct.h>
   51 #include <sys/capability.h>
   52 #include <sys/condvar.h>
   53 #include <sys/event.h>
   54 #include <sys/fcntl.h>
   55 #include <sys/imgact.h>
   56 #include <sys/kernel.h>
   57 #include <sys/ktr.h>
   58 #include <sys/ktrace.h>
   59 #include <sys/lock.h>
   60 #include <sys/malloc.h>
   61 #include <sys/mutex.h>
   62 #include <sys/namei.h>
   63 #include <sys/proc.h>
   64 #include <sys/procdesc.h>
   65 #include <sys/posix4.h>
   66 #include <sys/pioctl.h>
   67 #include <sys/racct.h>
   68 #include <sys/resourcevar.h>
   69 #include <sys/sdt.h>
   70 #include <sys/sbuf.h>
   71 #include <sys/sleepqueue.h>
   72 #include <sys/smp.h>
   73 #include <sys/stat.h>
   74 #include <sys/sx.h>
   75 #include <sys/syscallsubr.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/sysent.h>
   78 #include <sys/syslog.h>
   79 #include <sys/sysproto.h>
   80 #include <sys/timers.h>
   81 #include <sys/unistd.h>
   82 #include <sys/wait.h>
   83 #include <vm/vm.h>
   84 #include <vm/vm_extern.h>
   85 #include <vm/uma.h>
   86 
   87 #include <sys/jail.h>
   88 
   89 #include <machine/cpu.h>
   90 
   91 #include <security/audit/audit.h>
   92 
   93 #define ONSIG   32              /* NSIG for osig* syscalls.  XXX. */
   94 
   95 SDT_PROVIDER_DECLARE(proc);
   96 SDT_PROBE_DEFINE(proc, kernel, , signal_send, signal-send);
   97 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 0, "struct thread *");
   98 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 1, "struct proc *");
   99 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 2, "int");
  100 SDT_PROBE_DEFINE(proc, kernel, , signal_clear, signal-clear);
  101 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 0, "int");
  102 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 1, "ksiginfo_t *");
  103 SDT_PROBE_DEFINE(proc, kernel, , signal_discard, signal-discard);
  104 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 0, "struct thread *");
  105 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 1, "struct proc *");
  106 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 2, "int");
  107 
  108 static int      coredump(struct thread *);
  109 static char     *expand_name(const char *, uid_t, pid_t, struct thread *, int);
  110 static int      killpg1(struct thread *td, int sig, int pgid, int all,
  111                     ksiginfo_t *ksi);
  112 static int      issignal(struct thread *td, int stop_allowed);
  113 static int      sigprop(int sig);
  114 static void     tdsigwakeup(struct thread *, int, sig_t, int);
  115 static void     sig_suspend_threads(struct thread *, struct proc *, int);
  116 static int      filt_sigattach(struct knote *kn);
  117 static void     filt_sigdetach(struct knote *kn);
  118 static int      filt_signal(struct knote *kn, long hint);
  119 static struct thread *sigtd(struct proc *p, int sig, int prop);
  120 static void     sigqueue_start(void);
  121 
  122 static uma_zone_t       ksiginfo_zone = NULL;
  123 struct filterops sig_filtops = {
  124         .f_isfd = 0,
  125         .f_attach = filt_sigattach,
  126         .f_detach = filt_sigdetach,
  127         .f_event = filt_signal,
  128 };
  129 
  130 static int      kern_logsigexit = 1;
  131 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW, 
  132     &kern_logsigexit, 0, 
  133     "Log processes quitting on abnormal signals to syslog(3)");
  134 
  135 static int      kern_forcesigexit = 1;
  136 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
  137     &kern_forcesigexit, 0, "Force trap signal to be handled");
  138 
  139 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
  140     "POSIX real time signal");
  141 
  142 static int      max_pending_per_proc = 128;
  143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
  144     &max_pending_per_proc, 0, "Max pending signals per proc");
  145 
  146 static int      preallocate_siginfo = 1024;
  147 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
  148 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
  149     &preallocate_siginfo, 0, "Preallocated signal memory size");
  150 
  151 static int      signal_overflow = 0;
  152 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
  153     &signal_overflow, 0, "Number of signals overflew");
  154 
  155 static int      signal_alloc_fail = 0;
  156 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
  157     &signal_alloc_fail, 0, "signals failed to be allocated");
  158 
  159 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
  160 
  161 /*
  162  * Policy -- Can ucred cr1 send SIGIO to process cr2?
  163  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
  164  * in the right situations.
  165  */
  166 #define CANSIGIO(cr1, cr2) \
  167         ((cr1)->cr_uid == 0 || \
  168             (cr1)->cr_ruid == (cr2)->cr_ruid || \
  169             (cr1)->cr_uid == (cr2)->cr_ruid || \
  170             (cr1)->cr_ruid == (cr2)->cr_uid || \
  171             (cr1)->cr_uid == (cr2)->cr_uid)
  172 
  173 static int      sugid_coredump;
  174 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW, 
  175     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
  176 
  177 static int      do_coredump = 1;
  178 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
  179         &do_coredump, 0, "Enable/Disable coredumps");
  180 
  181 static int      set_core_nodump_flag = 0;
  182 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
  183         0, "Enable setting the NODUMP flag on coredump files");
  184 
  185 /*
  186  * Signal properties and actions.
  187  * The array below categorizes the signals and their default actions
  188  * according to the following properties:
  189  */
  190 #define SA_KILL         0x01            /* terminates process by default */
  191 #define SA_CORE         0x02            /* ditto and coredumps */
  192 #define SA_STOP         0x04            /* suspend process */
  193 #define SA_TTYSTOP      0x08            /* ditto, from tty */
  194 #define SA_IGNORE       0x10            /* ignore by default */
  195 #define SA_CONT         0x20            /* continue if suspended */
  196 #define SA_CANTMASK     0x40            /* non-maskable, catchable */
  197 #define SA_PROC         0x80            /* deliverable to any thread */
  198 
  199 static int sigproptbl[NSIG] = {
  200         SA_KILL|SA_PROC,                /* SIGHUP */
  201         SA_KILL|SA_PROC,                /* SIGINT */
  202         SA_KILL|SA_CORE|SA_PROC,        /* SIGQUIT */
  203         SA_KILL|SA_CORE,                /* SIGILL */
  204         SA_KILL|SA_CORE,                /* SIGTRAP */
  205         SA_KILL|SA_CORE,                /* SIGABRT */
  206         SA_KILL|SA_CORE|SA_PROC,        /* SIGEMT */
  207         SA_KILL|SA_CORE,                /* SIGFPE */
  208         SA_KILL|SA_PROC,                /* SIGKILL */
  209         SA_KILL|SA_CORE,                /* SIGBUS */
  210         SA_KILL|SA_CORE,                /* SIGSEGV */
  211         SA_KILL|SA_CORE,                /* SIGSYS */
  212         SA_KILL|SA_PROC,                /* SIGPIPE */
  213         SA_KILL|SA_PROC,                /* SIGALRM */
  214         SA_KILL|SA_PROC,                /* SIGTERM */
  215         SA_IGNORE|SA_PROC,              /* SIGURG */
  216         SA_STOP|SA_PROC,                /* SIGSTOP */
  217         SA_STOP|SA_TTYSTOP|SA_PROC,     /* SIGTSTP */
  218         SA_IGNORE|SA_CONT|SA_PROC,      /* SIGCONT */
  219         SA_IGNORE|SA_PROC,              /* SIGCHLD */
  220         SA_STOP|SA_TTYSTOP|SA_PROC,     /* SIGTTIN */
  221         SA_STOP|SA_TTYSTOP|SA_PROC,     /* SIGTTOU */
  222         SA_IGNORE|SA_PROC,              /* SIGIO */
  223         SA_KILL,                        /* SIGXCPU */
  224         SA_KILL,                        /* SIGXFSZ */
  225         SA_KILL|SA_PROC,                /* SIGVTALRM */
  226         SA_KILL|SA_PROC,                /* SIGPROF */
  227         SA_IGNORE|SA_PROC,              /* SIGWINCH  */
  228         SA_IGNORE|SA_PROC,              /* SIGINFO */
  229         SA_KILL|SA_PROC,                /* SIGUSR1 */
  230         SA_KILL|SA_PROC,                /* SIGUSR2 */
  231 };
  232 
  233 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
  234 
  235 static void
  236 sigqueue_start(void)
  237 {
  238         ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
  239                 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  240         uma_prealloc(ksiginfo_zone, preallocate_siginfo);
  241         p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
  242         p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
  243         p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
  244 }
  245 
  246 ksiginfo_t *
  247 ksiginfo_alloc(int wait)
  248 {
  249         int flags;
  250 
  251         flags = M_ZERO;
  252         if (! wait)
  253                 flags |= M_NOWAIT;
  254         if (ksiginfo_zone != NULL)
  255                 return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
  256         return (NULL);
  257 }
  258 
  259 void
  260 ksiginfo_free(ksiginfo_t *ksi)
  261 {
  262         uma_zfree(ksiginfo_zone, ksi);
  263 }
  264 
  265 static __inline int
  266 ksiginfo_tryfree(ksiginfo_t *ksi)
  267 {
  268         if (!(ksi->ksi_flags & KSI_EXT)) {
  269                 uma_zfree(ksiginfo_zone, ksi);
  270                 return (1);
  271         }
  272         return (0);
  273 }
  274 
  275 void
  276 sigqueue_init(sigqueue_t *list, struct proc *p)
  277 {
  278         SIGEMPTYSET(list->sq_signals);
  279         SIGEMPTYSET(list->sq_kill);
  280         TAILQ_INIT(&list->sq_list);
  281         list->sq_proc = p;
  282         list->sq_flags = SQ_INIT;
  283 }
  284 
  285 /*
  286  * Get a signal's ksiginfo.
  287  * Return:
  288  *      0       -       signal not found
  289  *      others  -       signal number
  290  */ 
  291 static int
  292 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
  293 {
  294         struct proc *p = sq->sq_proc;
  295         struct ksiginfo *ksi, *next;
  296         int count = 0;
  297 
  298         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  299 
  300         if (!SIGISMEMBER(sq->sq_signals, signo))
  301                 return (0);
  302 
  303         if (SIGISMEMBER(sq->sq_kill, signo)) {
  304                 count++;
  305                 SIGDELSET(sq->sq_kill, signo);
  306         }
  307 
  308         TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
  309                 if (ksi->ksi_signo == signo) {
  310                         if (count == 0) {
  311                                 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  312                                 ksi->ksi_sigq = NULL;
  313                                 ksiginfo_copy(ksi, si);
  314                                 if (ksiginfo_tryfree(ksi) && p != NULL)
  315                                         p->p_pendingcnt--;
  316                         }
  317                         if (++count > 1)
  318                                 break;
  319                 }
  320         }
  321 
  322         if (count <= 1)
  323                 SIGDELSET(sq->sq_signals, signo);
  324         si->ksi_signo = signo;
  325         return (signo);
  326 }
  327 
  328 void
  329 sigqueue_take(ksiginfo_t *ksi)
  330 {
  331         struct ksiginfo *kp;
  332         struct proc     *p;
  333         sigqueue_t      *sq;
  334 
  335         if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
  336                 return;
  337 
  338         p = sq->sq_proc;
  339         TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  340         ksi->ksi_sigq = NULL;
  341         if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
  342                 p->p_pendingcnt--;
  343 
  344         for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
  345              kp = TAILQ_NEXT(kp, ksi_link)) {
  346                 if (kp->ksi_signo == ksi->ksi_signo)
  347                         break;
  348         }
  349         if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
  350                 SIGDELSET(sq->sq_signals, ksi->ksi_signo);
  351 }
  352 
  353 static int
  354 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
  355 {
  356         struct proc *p = sq->sq_proc;
  357         struct ksiginfo *ksi;
  358         int ret = 0;
  359 
  360         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  361         
  362         if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
  363                 SIGADDSET(sq->sq_kill, signo);
  364                 goto out_set_bit;
  365         }
  366 
  367         /* directly insert the ksi, don't copy it */
  368         if (si->ksi_flags & KSI_INS) {
  369                 if (si->ksi_flags & KSI_HEAD)
  370                         TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
  371                 else
  372                         TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
  373                 si->ksi_sigq = sq;
  374                 goto out_set_bit;
  375         }
  376 
  377         if (__predict_false(ksiginfo_zone == NULL)) {
  378                 SIGADDSET(sq->sq_kill, signo);
  379                 goto out_set_bit;
  380         }
  381         
  382         if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
  383                 signal_overflow++;
  384                 ret = EAGAIN;
  385         } else if ((ksi = ksiginfo_alloc(0)) == NULL) {
  386                 signal_alloc_fail++;
  387                 ret = EAGAIN;
  388         } else {
  389                 if (p != NULL)
  390                         p->p_pendingcnt++;
  391                 ksiginfo_copy(si, ksi);
  392                 ksi->ksi_signo = signo;
  393                 if (si->ksi_flags & KSI_HEAD)
  394                         TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
  395                 else
  396                         TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
  397                 ksi->ksi_sigq = sq;
  398         }
  399 
  400         if ((si->ksi_flags & KSI_TRAP) != 0 ||
  401             (si->ksi_flags & KSI_SIGQ) == 0) {
  402                 if (ret != 0)
  403                         SIGADDSET(sq->sq_kill, signo);
  404                 ret = 0;
  405                 goto out_set_bit;
  406         }
  407 
  408         if (ret != 0)
  409                 return (ret);
  410         
  411 out_set_bit:
  412         SIGADDSET(sq->sq_signals, signo);
  413         return (ret);
  414 }
  415 
  416 void
  417 sigqueue_flush(sigqueue_t *sq)
  418 {
  419         struct proc *p = sq->sq_proc;
  420         ksiginfo_t *ksi;
  421 
  422         KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
  423 
  424         if (p != NULL)
  425                 PROC_LOCK_ASSERT(p, MA_OWNED);
  426 
  427         while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
  428                 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  429                 ksi->ksi_sigq = NULL;
  430                 if (ksiginfo_tryfree(ksi) && p != NULL)
  431                         p->p_pendingcnt--;
  432         }
  433 
  434         SIGEMPTYSET(sq->sq_signals);
  435         SIGEMPTYSET(sq->sq_kill);
  436 }
  437 
  438 static void
  439 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
  440 {
  441         sigset_t tmp;
  442         struct proc *p1, *p2;
  443         ksiginfo_t *ksi, *next;
  444 
  445         KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
  446         KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
  447         p1 = src->sq_proc;
  448         p2 = dst->sq_proc;
  449         /* Move siginfo to target list */
  450         TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
  451                 if (SIGISMEMBER(*set, ksi->ksi_signo)) {
  452                         TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
  453                         if (p1 != NULL)
  454                                 p1->p_pendingcnt--;
  455                         TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
  456                         ksi->ksi_sigq = dst;
  457                         if (p2 != NULL)
  458                                 p2->p_pendingcnt++;
  459                 }
  460         }
  461 
  462         /* Move pending bits to target list */
  463         tmp = src->sq_kill;
  464         SIGSETAND(tmp, *set);
  465         SIGSETOR(dst->sq_kill, tmp);
  466         SIGSETNAND(src->sq_kill, tmp);
  467 
  468         tmp = src->sq_signals;
  469         SIGSETAND(tmp, *set);
  470         SIGSETOR(dst->sq_signals, tmp);
  471         SIGSETNAND(src->sq_signals, tmp);
  472 }
  473 
  474 #if 0
  475 static void
  476 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
  477 {
  478         sigset_t set;
  479 
  480         SIGEMPTYSET(set);
  481         SIGADDSET(set, signo);
  482         sigqueue_move_set(src, dst, &set);
  483 }
  484 #endif
  485 
  486 static void
  487 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
  488 {
  489         struct proc *p = sq->sq_proc;
  490         ksiginfo_t *ksi, *next;
  491 
  492         KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
  493 
  494         /* Remove siginfo queue */
  495         TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
  496                 if (SIGISMEMBER(*set, ksi->ksi_signo)) {
  497                         TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
  498                         ksi->ksi_sigq = NULL;
  499                         if (ksiginfo_tryfree(ksi) && p != NULL)
  500                                 p->p_pendingcnt--;
  501                 }
  502         }
  503         SIGSETNAND(sq->sq_kill, *set);
  504         SIGSETNAND(sq->sq_signals, *set);
  505 }
  506 
  507 void
  508 sigqueue_delete(sigqueue_t *sq, int signo)
  509 {
  510         sigset_t set;
  511 
  512         SIGEMPTYSET(set);
  513         SIGADDSET(set, signo);
  514         sigqueue_delete_set(sq, &set);
  515 }
  516 
  517 /* Remove a set of signals for a process */
  518 static void
  519 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
  520 {
  521         sigqueue_t worklist;
  522         struct thread *td0;
  523 
  524         PROC_LOCK_ASSERT(p, MA_OWNED);
  525 
  526         sigqueue_init(&worklist, NULL);
  527         sigqueue_move_set(&p->p_sigqueue, &worklist, set);
  528 
  529         FOREACH_THREAD_IN_PROC(p, td0)
  530                 sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
  531 
  532         sigqueue_flush(&worklist);
  533 }
  534 
  535 void
  536 sigqueue_delete_proc(struct proc *p, int signo)
  537 {
  538         sigset_t set;
  539 
  540         SIGEMPTYSET(set);
  541         SIGADDSET(set, signo);
  542         sigqueue_delete_set_proc(p, &set);
  543 }
  544 
  545 static void
  546 sigqueue_delete_stopmask_proc(struct proc *p)
  547 {
  548         sigset_t set;
  549 
  550         SIGEMPTYSET(set);
  551         SIGADDSET(set, SIGSTOP);
  552         SIGADDSET(set, SIGTSTP);
  553         SIGADDSET(set, SIGTTIN);
  554         SIGADDSET(set, SIGTTOU);
  555         sigqueue_delete_set_proc(p, &set);
  556 }
  557 
  558 /*
  559  * Determine signal that should be delivered to process p, the current
  560  * process, 0 if none.  If there is a pending stop signal with default
  561  * action, the process stops in issignal().
  562  */
  563 int
  564 cursig(struct thread *td, int stop_allowed)
  565 {
  566         PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
  567         KASSERT(stop_allowed == SIG_STOP_ALLOWED ||
  568             stop_allowed == SIG_STOP_NOT_ALLOWED, ("cursig: stop_allowed"));
  569         mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
  570         THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
  571         return (SIGPENDING(td) ? issignal(td, stop_allowed) : 0);
  572 }
  573 
  574 /*
  575  * Arrange for ast() to handle unmasked pending signals on return to user
  576  * mode.  This must be called whenever a signal is added to td_sigqueue or
  577  * unmasked in td_sigmask.
  578  */
  579 void
  580 signotify(struct thread *td)
  581 {
  582         struct proc *p;
  583 
  584         p = td->td_proc;
  585 
  586         PROC_LOCK_ASSERT(p, MA_OWNED);
  587 
  588         if (SIGPENDING(td)) {
  589                 thread_lock(td);
  590                 td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
  591                 thread_unlock(td);
  592         }
  593 }
  594 
  595 int
  596 sigonstack(size_t sp)
  597 {
  598         struct thread *td = curthread;
  599 
  600         return ((td->td_pflags & TDP_ALTSTACK) ?
  601 #if defined(COMPAT_43)
  602             ((td->td_sigstk.ss_size == 0) ?
  603                 (td->td_sigstk.ss_flags & SS_ONSTACK) :
  604                 ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
  605 #else
  606             ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
  607 #endif
  608             : 0);
  609 }
  610 
  611 static __inline int
  612 sigprop(int sig)
  613 {
  614 
  615         if (sig > 0 && sig < NSIG)
  616                 return (sigproptbl[_SIG_IDX(sig)]);
  617         return (0);
  618 }
  619 
  620 int
  621 sig_ffs(sigset_t *set)
  622 {
  623         int i;
  624 
  625         for (i = 0; i < _SIG_WORDS; i++)
  626                 if (set->__bits[i])
  627                         return (ffs(set->__bits[i]) + (i * 32));
  628         return (0);
  629 }
  630 
  631 /*
  632  * kern_sigaction
  633  * sigaction
  634  * freebsd4_sigaction
  635  * osigaction
  636  */
  637 int
  638 kern_sigaction(td, sig, act, oact, flags)
  639         struct thread *td;
  640         register int sig;
  641         struct sigaction *act, *oact;
  642         int flags;
  643 {
  644         struct sigacts *ps;
  645         struct proc *p = td->td_proc;
  646 
  647         if (!_SIG_VALID(sig))
  648                 return (EINVAL);
  649 
  650         PROC_LOCK(p);
  651         ps = p->p_sigacts;
  652         mtx_lock(&ps->ps_mtx);
  653         if (oact) {
  654                 oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
  655                 oact->sa_flags = 0;
  656                 if (SIGISMEMBER(ps->ps_sigonstack, sig))
  657                         oact->sa_flags |= SA_ONSTACK;
  658                 if (!SIGISMEMBER(ps->ps_sigintr, sig))
  659                         oact->sa_flags |= SA_RESTART;
  660                 if (SIGISMEMBER(ps->ps_sigreset, sig))
  661                         oact->sa_flags |= SA_RESETHAND;
  662                 if (SIGISMEMBER(ps->ps_signodefer, sig))
  663                         oact->sa_flags |= SA_NODEFER;
  664                 if (SIGISMEMBER(ps->ps_siginfo, sig)) {
  665                         oact->sa_flags |= SA_SIGINFO;
  666                         oact->sa_sigaction =
  667                             (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
  668                 } else
  669                         oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
  670                 if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
  671                         oact->sa_flags |= SA_NOCLDSTOP;
  672                 if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
  673                         oact->sa_flags |= SA_NOCLDWAIT;
  674         }
  675         if (act) {
  676                 if ((sig == SIGKILL || sig == SIGSTOP) &&
  677                     act->sa_handler != SIG_DFL) {
  678                         mtx_unlock(&ps->ps_mtx);
  679                         PROC_UNLOCK(p);
  680                         return (EINVAL);
  681                 }
  682 
  683                 /*
  684                  * Change setting atomically.
  685                  */
  686 
  687                 ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
  688                 SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
  689                 if (act->sa_flags & SA_SIGINFO) {
  690                         ps->ps_sigact[_SIG_IDX(sig)] =
  691                             (__sighandler_t *)act->sa_sigaction;
  692                         SIGADDSET(ps->ps_siginfo, sig);
  693                 } else {
  694                         ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
  695                         SIGDELSET(ps->ps_siginfo, sig);
  696                 }
  697                 if (!(act->sa_flags & SA_RESTART))
  698                         SIGADDSET(ps->ps_sigintr, sig);
  699                 else
  700                         SIGDELSET(ps->ps_sigintr, sig);
  701                 if (act->sa_flags & SA_ONSTACK)
  702                         SIGADDSET(ps->ps_sigonstack, sig);
  703                 else
  704                         SIGDELSET(ps->ps_sigonstack, sig);
  705                 if (act->sa_flags & SA_RESETHAND)
  706                         SIGADDSET(ps->ps_sigreset, sig);
  707                 else
  708                         SIGDELSET(ps->ps_sigreset, sig);
  709                 if (act->sa_flags & SA_NODEFER)
  710                         SIGADDSET(ps->ps_signodefer, sig);
  711                 else
  712                         SIGDELSET(ps->ps_signodefer, sig);
  713                 if (sig == SIGCHLD) {
  714                         if (act->sa_flags & SA_NOCLDSTOP)
  715                                 ps->ps_flag |= PS_NOCLDSTOP;
  716                         else
  717                                 ps->ps_flag &= ~PS_NOCLDSTOP;
  718                         if (act->sa_flags & SA_NOCLDWAIT) {
  719                                 /*
  720                                  * Paranoia: since SA_NOCLDWAIT is implemented
  721                                  * by reparenting the dying child to PID 1 (and
  722                                  * trust it to reap the zombie), PID 1 itself
  723                                  * is forbidden to set SA_NOCLDWAIT.
  724                                  */
  725                                 if (p->p_pid == 1)
  726                                         ps->ps_flag &= ~PS_NOCLDWAIT;
  727                                 else
  728                                         ps->ps_flag |= PS_NOCLDWAIT;
  729                         } else
  730                                 ps->ps_flag &= ~PS_NOCLDWAIT;
  731                         if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
  732                                 ps->ps_flag |= PS_CLDSIGIGN;
  733                         else
  734                                 ps->ps_flag &= ~PS_CLDSIGIGN;
  735                 }
  736                 /*
  737                  * Set bit in ps_sigignore for signals that are set to SIG_IGN,
  738                  * and for signals set to SIG_DFL where the default is to
  739                  * ignore. However, don't put SIGCONT in ps_sigignore, as we
  740                  * have to restart the process.
  741                  */
  742                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  743                     (sigprop(sig) & SA_IGNORE &&
  744                      ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
  745                         /* never to be seen again */
  746                         sigqueue_delete_proc(p, sig);
  747                         if (sig != SIGCONT)
  748                                 /* easier in psignal */
  749                                 SIGADDSET(ps->ps_sigignore, sig);
  750                         SIGDELSET(ps->ps_sigcatch, sig);
  751                 } else {
  752                         SIGDELSET(ps->ps_sigignore, sig);
  753                         if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
  754                                 SIGDELSET(ps->ps_sigcatch, sig);
  755                         else
  756                                 SIGADDSET(ps->ps_sigcatch, sig);
  757                 }
  758 #ifdef COMPAT_FREEBSD4
  759                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  760                     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
  761                     (flags & KSA_FREEBSD4) == 0)
  762                         SIGDELSET(ps->ps_freebsd4, sig);
  763                 else
  764                         SIGADDSET(ps->ps_freebsd4, sig);
  765 #endif
  766 #ifdef COMPAT_43
  767                 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
  768                     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
  769                     (flags & KSA_OSIGSET) == 0)
  770                         SIGDELSET(ps->ps_osigset, sig);
  771                 else
  772                         SIGADDSET(ps->ps_osigset, sig);
  773 #endif
  774         }
  775         mtx_unlock(&ps->ps_mtx);
  776         PROC_UNLOCK(p);
  777         return (0);
  778 }
  779 
  780 #ifndef _SYS_SYSPROTO_H_
  781 struct sigaction_args {
  782         int     sig;
  783         struct  sigaction *act;
  784         struct  sigaction *oact;
  785 };
  786 #endif
  787 int
  788 sys_sigaction(td, uap)
  789         struct thread *td;
  790         register struct sigaction_args *uap;
  791 {
  792         struct sigaction act, oact;
  793         register struct sigaction *actp, *oactp;
  794         int error;
  795 
  796         actp = (uap->act != NULL) ? &act : NULL;
  797         oactp = (uap->oact != NULL) ? &oact : NULL;
  798         if (actp) {
  799                 error = copyin(uap->act, actp, sizeof(act));
  800                 if (error)
  801                         return (error);
  802         }
  803         error = kern_sigaction(td, uap->sig, actp, oactp, 0);
  804         if (oactp && !error)
  805                 error = copyout(oactp, uap->oact, sizeof(oact));
  806         return (error);
  807 }
  808 
  809 #ifdef COMPAT_FREEBSD4
  810 #ifndef _SYS_SYSPROTO_H_
  811 struct freebsd4_sigaction_args {
  812         int     sig;
  813         struct  sigaction *act;
  814         struct  sigaction *oact;
  815 };
  816 #endif
  817 int
  818 freebsd4_sigaction(td, uap)
  819         struct thread *td;
  820         register struct freebsd4_sigaction_args *uap;
  821 {
  822         struct sigaction act, oact;
  823         register struct sigaction *actp, *oactp;
  824         int error;
  825 
  826 
  827         actp = (uap->act != NULL) ? &act : NULL;
  828         oactp = (uap->oact != NULL) ? &oact : NULL;
  829         if (actp) {
  830                 error = copyin(uap->act, actp, sizeof(act));
  831                 if (error)
  832                         return (error);
  833         }
  834         error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
  835         if (oactp && !error)
  836                 error = copyout(oactp, uap->oact, sizeof(oact));
  837         return (error);
  838 }
  839 #endif  /* COMAPT_FREEBSD4 */
  840 
  841 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
  842 #ifndef _SYS_SYSPROTO_H_
  843 struct osigaction_args {
  844         int     signum;
  845         struct  osigaction *nsa;
  846         struct  osigaction *osa;
  847 };
  848 #endif
  849 int
  850 osigaction(td, uap)
  851         struct thread *td;
  852         register struct osigaction_args *uap;
  853 {
  854         struct osigaction sa;
  855         struct sigaction nsa, osa;
  856         register struct sigaction *nsap, *osap;
  857         int error;
  858 
  859         if (uap->signum <= 0 || uap->signum >= ONSIG)
  860                 return (EINVAL);
  861 
  862         nsap = (uap->nsa != NULL) ? &nsa : NULL;
  863         osap = (uap->osa != NULL) ? &osa : NULL;
  864 
  865         if (nsap) {
  866                 error = copyin(uap->nsa, &sa, sizeof(sa));
  867                 if (error)
  868                         return (error);
  869                 nsap->sa_handler = sa.sa_handler;
  870                 nsap->sa_flags = sa.sa_flags;
  871                 OSIG2SIG(sa.sa_mask, nsap->sa_mask);
  872         }
  873         error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
  874         if (osap && !error) {
  875                 sa.sa_handler = osap->sa_handler;
  876                 sa.sa_flags = osap->sa_flags;
  877                 SIG2OSIG(osap->sa_mask, sa.sa_mask);
  878                 error = copyout(&sa, uap->osa, sizeof(sa));
  879         }
  880         return (error);
  881 }
  882 
  883 #if !defined(__i386__)
  884 /* Avoid replicating the same stub everywhere */
  885 int
  886 osigreturn(td, uap)
  887         struct thread *td;
  888         struct osigreturn_args *uap;
  889 {
  890 
  891         return (nosys(td, (struct nosys_args *)uap));
  892 }
  893 #endif
  894 #endif /* COMPAT_43 */
  895 
  896 /*
  897  * Initialize signal state for process 0;
  898  * set to ignore signals that are ignored by default.
  899  */
  900 void
  901 siginit(p)
  902         struct proc *p;
  903 {
  904         register int i;
  905         struct sigacts *ps;
  906 
  907         PROC_LOCK(p);
  908         ps = p->p_sigacts;
  909         mtx_lock(&ps->ps_mtx);
  910         for (i = 1; i <= NSIG; i++)
  911                 if (sigprop(i) & SA_IGNORE && i != SIGCONT)
  912                         SIGADDSET(ps->ps_sigignore, i);
  913         mtx_unlock(&ps->ps_mtx);
  914         PROC_UNLOCK(p);
  915 }
  916 
  917 /*
  918  * Reset signals for an exec of the specified process.
  919  */
  920 void
  921 execsigs(struct proc *p)
  922 {
  923         struct sigacts *ps;
  924         int sig;
  925         struct thread *td;
  926 
  927         /*
  928          * Reset caught signals.  Held signals remain held
  929          * through td_sigmask (unless they were caught,
  930          * and are now ignored by default).
  931          */
  932         PROC_LOCK_ASSERT(p, MA_OWNED);
  933         td = FIRST_THREAD_IN_PROC(p);
  934         ps = p->p_sigacts;
  935         mtx_lock(&ps->ps_mtx);
  936         while (SIGNOTEMPTY(ps->ps_sigcatch)) {
  937                 sig = sig_ffs(&ps->ps_sigcatch);
  938                 SIGDELSET(ps->ps_sigcatch, sig);
  939                 if (sigprop(sig) & SA_IGNORE) {
  940                         if (sig != SIGCONT)
  941                                 SIGADDSET(ps->ps_sigignore, sig);
  942                         sigqueue_delete_proc(p, sig);
  943                 }
  944                 ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
  945         }
  946         /*
  947          * Reset stack state to the user stack.
  948          * Clear set of signals caught on the signal stack.
  949          */
  950         td->td_sigstk.ss_flags = SS_DISABLE;
  951         td->td_sigstk.ss_size = 0;
  952         td->td_sigstk.ss_sp = 0;
  953         td->td_pflags &= ~TDP_ALTSTACK;
  954         /*
  955          * Reset no zombies if child dies flag as Solaris does.
  956          */
  957         ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
  958         if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
  959                 ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
  960         mtx_unlock(&ps->ps_mtx);
  961 }
  962 
  963 /*
  964  * kern_sigprocmask()
  965  *
  966  *      Manipulate signal mask.
  967  */
  968 int
  969 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
  970     int flags)
  971 {
  972         sigset_t new_block, oset1;
  973         struct proc *p;
  974         int error;
  975 
  976         p = td->td_proc;
  977         if (!(flags & SIGPROCMASK_PROC_LOCKED))
  978                 PROC_LOCK(p);
  979         if (oset != NULL)
  980                 *oset = td->td_sigmask;
  981 
  982         error = 0;
  983         if (set != NULL) {
  984                 switch (how) {
  985                 case SIG_BLOCK:
  986                         SIG_CANTMASK(*set);
  987                         oset1 = td->td_sigmask;
  988                         SIGSETOR(td->td_sigmask, *set);
  989                         new_block = td->td_sigmask;
  990                         SIGSETNAND(new_block, oset1);
  991                         break;
  992                 case SIG_UNBLOCK:
  993                         SIGSETNAND(td->td_sigmask, *set);
  994                         signotify(td);
  995                         goto out;
  996                 case SIG_SETMASK:
  997                         SIG_CANTMASK(*set);
  998                         oset1 = td->td_sigmask;
  999                         if (flags & SIGPROCMASK_OLD)
 1000                                 SIGSETLO(td->td_sigmask, *set);
 1001                         else
 1002                                 td->td_sigmask = *set;
 1003                         new_block = td->td_sigmask;
 1004                         SIGSETNAND(new_block, oset1);
 1005                         signotify(td);
 1006                         break;
 1007                 default:
 1008                         error = EINVAL;
 1009                         goto out;
 1010                 }
 1011 
 1012                 /*
 1013                  * The new_block set contains signals that were not previously
 1014                  * blocked, but are blocked now.
 1015                  *
 1016                  * In case we block any signal that was not previously blocked
 1017                  * for td, and process has the signal pending, try to schedule
 1018                  * signal delivery to some thread that does not block the
 1019                  * signal, possibly waking it up.
 1020                  */
 1021                 if (p->p_numthreads != 1)
 1022                         reschedule_signals(p, new_block, flags);
 1023         }
 1024 
 1025 out:
 1026         if (!(flags & SIGPROCMASK_PROC_LOCKED))
 1027                 PROC_UNLOCK(p);
 1028         return (error);
 1029 }
 1030 
 1031 #ifndef _SYS_SYSPROTO_H_
 1032 struct sigprocmask_args {
 1033         int     how;
 1034         const sigset_t *set;
 1035         sigset_t *oset;
 1036 };
 1037 #endif
 1038 int
 1039 sys_sigprocmask(td, uap)
 1040         register struct thread *td;
 1041         struct sigprocmask_args *uap;
 1042 {
 1043         sigset_t set, oset;
 1044         sigset_t *setp, *osetp;
 1045         int error;
 1046 
 1047         setp = (uap->set != NULL) ? &set : NULL;
 1048         osetp = (uap->oset != NULL) ? &oset : NULL;
 1049         if (setp) {
 1050                 error = copyin(uap->set, setp, sizeof(set));
 1051                 if (error)
 1052                         return (error);
 1053         }
 1054         error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
 1055         if (osetp && !error) {
 1056                 error = copyout(osetp, uap->oset, sizeof(oset));
 1057         }
 1058         return (error);
 1059 }
 1060 
 1061 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1062 #ifndef _SYS_SYSPROTO_H_
 1063 struct osigprocmask_args {
 1064         int     how;
 1065         osigset_t mask;
 1066 };
 1067 #endif
 1068 int
 1069 osigprocmask(td, uap)
 1070         register struct thread *td;
 1071         struct osigprocmask_args *uap;
 1072 {
 1073         sigset_t set, oset;
 1074         int error;
 1075 
 1076         OSIG2SIG(uap->mask, set);
 1077         error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
 1078         SIG2OSIG(oset, td->td_retval[0]);
 1079         return (error);
 1080 }
 1081 #endif /* COMPAT_43 */
 1082 
 1083 int
 1084 sys_sigwait(struct thread *td, struct sigwait_args *uap)
 1085 {
 1086         ksiginfo_t ksi;
 1087         sigset_t set;
 1088         int error;
 1089 
 1090         error = copyin(uap->set, &set, sizeof(set));
 1091         if (error) {
 1092                 td->td_retval[0] = error;
 1093                 return (0);
 1094         }
 1095 
 1096         error = kern_sigtimedwait(td, set, &ksi, NULL);
 1097         if (error) {
 1098                 if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
 1099                         error = ERESTART;
 1100                 if (error == ERESTART)
 1101                         return (error);
 1102                 td->td_retval[0] = error;
 1103                 return (0);
 1104         }
 1105 
 1106         error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
 1107         td->td_retval[0] = error;
 1108         return (0);
 1109 }
 1110 
 1111 int
 1112 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
 1113 {
 1114         struct timespec ts;
 1115         struct timespec *timeout;
 1116         sigset_t set;
 1117         ksiginfo_t ksi;
 1118         int error;
 1119 
 1120         if (uap->timeout) {
 1121                 error = copyin(uap->timeout, &ts, sizeof(ts));
 1122                 if (error)
 1123                         return (error);
 1124 
 1125                 timeout = &ts;
 1126         } else
 1127                 timeout = NULL;
 1128 
 1129         error = copyin(uap->set, &set, sizeof(set));
 1130         if (error)
 1131                 return (error);
 1132 
 1133         error = kern_sigtimedwait(td, set, &ksi, timeout);
 1134         if (error)
 1135                 return (error);
 1136 
 1137         if (uap->info)
 1138                 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
 1139 
 1140         if (error == 0)
 1141                 td->td_retval[0] = ksi.ksi_signo;
 1142         return (error);
 1143 }
 1144 
 1145 int
 1146 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
 1147 {
 1148         ksiginfo_t ksi;
 1149         sigset_t set;
 1150         int error;
 1151 
 1152         error = copyin(uap->set, &set, sizeof(set));
 1153         if (error)
 1154                 return (error);
 1155 
 1156         error = kern_sigtimedwait(td, set, &ksi, NULL);
 1157         if (error)
 1158                 return (error);
 1159 
 1160         if (uap->info)
 1161                 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
 1162         
 1163         if (error == 0)
 1164                 td->td_retval[0] = ksi.ksi_signo;
 1165         return (error);
 1166 }
 1167 
 1168 int
 1169 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
 1170         struct timespec *timeout)
 1171 {
 1172         struct sigacts *ps;
 1173         sigset_t saved_mask, new_block;
 1174         struct proc *p;
 1175         int error, sig, timo, timevalid = 0;
 1176         struct timespec rts, ets, ts;
 1177         struct timeval tv;
 1178 
 1179         p = td->td_proc;
 1180         error = 0;
 1181         ets.tv_sec = 0;
 1182         ets.tv_nsec = 0;
 1183 
 1184         if (timeout != NULL) {
 1185                 if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
 1186                         timevalid = 1;
 1187                         getnanouptime(&rts);
 1188                         ets = rts;
 1189                         timespecadd(&ets, timeout);
 1190                 }
 1191         }
 1192         ksiginfo_init(ksi);
 1193         /* Some signals can not be waited for. */
 1194         SIG_CANTMASK(waitset);
 1195         ps = p->p_sigacts;
 1196         PROC_LOCK(p);
 1197         saved_mask = td->td_sigmask;
 1198         SIGSETNAND(td->td_sigmask, waitset);
 1199         for (;;) {
 1200                 mtx_lock(&ps->ps_mtx);
 1201                 sig = cursig(td, SIG_STOP_ALLOWED);
 1202                 mtx_unlock(&ps->ps_mtx);
 1203                 if (sig != 0 && SIGISMEMBER(waitset, sig)) {
 1204                         if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
 1205                             sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
 1206                                 error = 0;
 1207                                 break;
 1208                         }
 1209                 }
 1210 
 1211                 if (error != 0)
 1212                         break;
 1213 
 1214                 /*
 1215                  * POSIX says this must be checked after looking for pending
 1216                  * signals.
 1217                  */
 1218                 if (timeout != NULL) {
 1219                         if (!timevalid) {
 1220                                 error = EINVAL;
 1221                                 break;
 1222                         }
 1223                         getnanouptime(&rts);
 1224                         if (timespeccmp(&rts, &ets, >=)) {
 1225                                 error = EAGAIN;
 1226                                 break;
 1227                         }
 1228                         ts = ets;
 1229                         timespecsub(&ts, &rts);
 1230                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1231                         timo = tvtohz(&tv);
 1232                 } else {
 1233                         timo = 0;
 1234                 }
 1235 
 1236                 error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
 1237 
 1238                 if (timeout != NULL) {
 1239                         if (error == ERESTART) {
 1240                                 /* Timeout can not be restarted. */
 1241                                 error = EINTR;
 1242                         } else if (error == EAGAIN) {
 1243                                 /* We will calculate timeout by ourself. */
 1244                                 error = 0;
 1245                         }
 1246                 }
 1247         }
 1248 
 1249         new_block = saved_mask;
 1250         SIGSETNAND(new_block, td->td_sigmask);
 1251         td->td_sigmask = saved_mask;
 1252         /*
 1253          * Fewer signals can be delivered to us, reschedule signal
 1254          * notification.
 1255          */
 1256         if (p->p_numthreads != 1)
 1257                 reschedule_signals(p, new_block, 0);
 1258 
 1259         if (error == 0) {
 1260                 SDT_PROBE(proc, kernel, , signal_clear, sig, ksi, 0, 0, 0);
 1261                 
 1262                 if (ksi->ksi_code == SI_TIMER)
 1263                         itimer_accept(p, ksi->ksi_timerid, ksi);
 1264 
 1265 #ifdef KTRACE
 1266                 if (KTRPOINT(td, KTR_PSIG)) {
 1267                         sig_t action;
 1268 
 1269                         mtx_lock(&ps->ps_mtx);
 1270                         action = ps->ps_sigact[_SIG_IDX(sig)];
 1271                         mtx_unlock(&ps->ps_mtx);
 1272                         ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
 1273                 }
 1274 #endif
 1275                 if (sig == SIGKILL)
 1276                         sigexit(td, sig);
 1277         }
 1278         PROC_UNLOCK(p);
 1279         return (error);
 1280 }
 1281 
 1282 #ifndef _SYS_SYSPROTO_H_
 1283 struct sigpending_args {
 1284         sigset_t        *set;
 1285 };
 1286 #endif
 1287 int
 1288 sys_sigpending(td, uap)
 1289         struct thread *td;
 1290         struct sigpending_args *uap;
 1291 {
 1292         struct proc *p = td->td_proc;
 1293         sigset_t pending;
 1294 
 1295         PROC_LOCK(p);
 1296         pending = p->p_sigqueue.sq_signals;
 1297         SIGSETOR(pending, td->td_sigqueue.sq_signals);
 1298         PROC_UNLOCK(p);
 1299         return (copyout(&pending, uap->set, sizeof(sigset_t)));
 1300 }
 1301 
 1302 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1303 #ifndef _SYS_SYSPROTO_H_
 1304 struct osigpending_args {
 1305         int     dummy;
 1306 };
 1307 #endif
 1308 int
 1309 osigpending(td, uap)
 1310         struct thread *td;
 1311         struct osigpending_args *uap;
 1312 {
 1313         struct proc *p = td->td_proc;
 1314         sigset_t pending;
 1315 
 1316         PROC_LOCK(p);
 1317         pending = p->p_sigqueue.sq_signals;
 1318         SIGSETOR(pending, td->td_sigqueue.sq_signals);
 1319         PROC_UNLOCK(p);
 1320         SIG2OSIG(pending, td->td_retval[0]);
 1321         return (0);
 1322 }
 1323 #endif /* COMPAT_43 */
 1324 
 1325 #if defined(COMPAT_43)
 1326 /*
 1327  * Generalized interface signal handler, 4.3-compatible.
 1328  */
 1329 #ifndef _SYS_SYSPROTO_H_
 1330 struct osigvec_args {
 1331         int     signum;
 1332         struct  sigvec *nsv;
 1333         struct  sigvec *osv;
 1334 };
 1335 #endif
 1336 /* ARGSUSED */
 1337 int
 1338 osigvec(td, uap)
 1339         struct thread *td;
 1340         register struct osigvec_args *uap;
 1341 {
 1342         struct sigvec vec;
 1343         struct sigaction nsa, osa;
 1344         register struct sigaction *nsap, *osap;
 1345         int error;
 1346 
 1347         if (uap->signum <= 0 || uap->signum >= ONSIG)
 1348                 return (EINVAL);
 1349         nsap = (uap->nsv != NULL) ? &nsa : NULL;
 1350         osap = (uap->osv != NULL) ? &osa : NULL;
 1351         if (nsap) {
 1352                 error = copyin(uap->nsv, &vec, sizeof(vec));
 1353                 if (error)
 1354                         return (error);
 1355                 nsap->sa_handler = vec.sv_handler;
 1356                 OSIG2SIG(vec.sv_mask, nsap->sa_mask);
 1357                 nsap->sa_flags = vec.sv_flags;
 1358                 nsap->sa_flags ^= SA_RESTART;   /* opposite of SV_INTERRUPT */
 1359         }
 1360         error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
 1361         if (osap && !error) {
 1362                 vec.sv_handler = osap->sa_handler;
 1363                 SIG2OSIG(osap->sa_mask, vec.sv_mask);
 1364                 vec.sv_flags = osap->sa_flags;
 1365                 vec.sv_flags &= ~SA_NOCLDWAIT;
 1366                 vec.sv_flags ^= SA_RESTART;
 1367                 error = copyout(&vec, uap->osv, sizeof(vec));
 1368         }
 1369         return (error);
 1370 }
 1371 
 1372 #ifndef _SYS_SYSPROTO_H_
 1373 struct osigblock_args {
 1374         int     mask;
 1375 };
 1376 #endif
 1377 int
 1378 osigblock(td, uap)
 1379         register struct thread *td;
 1380         struct osigblock_args *uap;
 1381 {
 1382         sigset_t set, oset;
 1383 
 1384         OSIG2SIG(uap->mask, set);
 1385         kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
 1386         SIG2OSIG(oset, td->td_retval[0]);
 1387         return (0);
 1388 }
 1389 
 1390 #ifndef _SYS_SYSPROTO_H_
 1391 struct osigsetmask_args {
 1392         int     mask;
 1393 };
 1394 #endif
 1395 int
 1396 osigsetmask(td, uap)
 1397         struct thread *td;
 1398         struct osigsetmask_args *uap;
 1399 {
 1400         sigset_t set, oset;
 1401 
 1402         OSIG2SIG(uap->mask, set);
 1403         kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
 1404         SIG2OSIG(oset, td->td_retval[0]);
 1405         return (0);
 1406 }
 1407 #endif /* COMPAT_43 */
 1408 
 1409 /*
 1410  * Suspend calling thread until signal, providing mask to be set in the
 1411  * meantime. 
 1412  */
 1413 #ifndef _SYS_SYSPROTO_H_
 1414 struct sigsuspend_args {
 1415         const sigset_t *sigmask;
 1416 };
 1417 #endif
 1418 /* ARGSUSED */
 1419 int
 1420 sys_sigsuspend(td, uap)
 1421         struct thread *td;
 1422         struct sigsuspend_args *uap;
 1423 {
 1424         sigset_t mask;
 1425         int error;
 1426 
 1427         error = copyin(uap->sigmask, &mask, sizeof(mask));
 1428         if (error)
 1429                 return (error);
 1430         return (kern_sigsuspend(td, mask));
 1431 }
 1432 
 1433 int
 1434 kern_sigsuspend(struct thread *td, sigset_t mask)
 1435 {
 1436         struct proc *p = td->td_proc;
 1437         int has_sig, sig;
 1438 
 1439         /*
 1440          * When returning from sigsuspend, we want
 1441          * the old mask to be restored after the
 1442          * signal handler has finished.  Thus, we
 1443          * save it here and mark the sigacts structure
 1444          * to indicate this.
 1445          */
 1446         PROC_LOCK(p);
 1447         kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
 1448             SIGPROCMASK_PROC_LOCKED);
 1449         td->td_pflags |= TDP_OLDMASK;
 1450 
 1451         /*
 1452          * Process signals now. Otherwise, we can get spurious wakeup
 1453          * due to signal entered process queue, but delivered to other
 1454          * thread. But sigsuspend should return only on signal
 1455          * delivery.
 1456          */
 1457         (p->p_sysent->sv_set_syscall_retval)(td, EINTR);
 1458         for (has_sig = 0; !has_sig;) {
 1459                 while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
 1460                         0) == 0)
 1461                         /* void */;
 1462                 thread_suspend_check(0);
 1463                 mtx_lock(&p->p_sigacts->ps_mtx);
 1464                 while ((sig = cursig(td, SIG_STOP_ALLOWED)) != 0)
 1465                         has_sig += postsig(sig);
 1466                 mtx_unlock(&p->p_sigacts->ps_mtx);
 1467         }
 1468         PROC_UNLOCK(p);
 1469         td->td_errno = EINTR;
 1470         td->td_pflags |= TDP_NERRNO;
 1471         return (EJUSTRETURN);
 1472 }
 1473 
 1474 #ifdef COMPAT_43        /* XXX - COMPAT_FBSD3 */
 1475 /*
 1476  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
 1477  * convention: libc stub passes mask, not pointer, to save a copyin.
 1478  */
 1479 #ifndef _SYS_SYSPROTO_H_
 1480 struct osigsuspend_args {
 1481         osigset_t mask;
 1482 };
 1483 #endif
 1484 /* ARGSUSED */
 1485 int
 1486 osigsuspend(td, uap)
 1487         struct thread *td;
 1488         struct osigsuspend_args *uap;
 1489 {
 1490         sigset_t mask;
 1491 
 1492         OSIG2SIG(uap->mask, mask);
 1493         return (kern_sigsuspend(td, mask));
 1494 }
 1495 #endif /* COMPAT_43 */
 1496 
 1497 #if defined(COMPAT_43)
 1498 #ifndef _SYS_SYSPROTO_H_
 1499 struct osigstack_args {
 1500         struct  sigstack *nss;
 1501         struct  sigstack *oss;
 1502 };
 1503 #endif
 1504 /* ARGSUSED */
 1505 int
 1506 osigstack(td, uap)
 1507         struct thread *td;
 1508         register struct osigstack_args *uap;
 1509 {
 1510         struct sigstack nss, oss;
 1511         int error = 0;
 1512 
 1513         if (uap->nss != NULL) {
 1514                 error = copyin(uap->nss, &nss, sizeof(nss));
 1515                 if (error)
 1516                         return (error);
 1517         }
 1518         oss.ss_sp = td->td_sigstk.ss_sp;
 1519         oss.ss_onstack = sigonstack(cpu_getstack(td));
 1520         if (uap->nss != NULL) {
 1521                 td->td_sigstk.ss_sp = nss.ss_sp;
 1522                 td->td_sigstk.ss_size = 0;
 1523                 td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
 1524                 td->td_pflags |= TDP_ALTSTACK;
 1525         }
 1526         if (uap->oss != NULL)
 1527                 error = copyout(&oss, uap->oss, sizeof(oss));
 1528 
 1529         return (error);
 1530 }
 1531 #endif /* COMPAT_43 */
 1532 
 1533 #ifndef _SYS_SYSPROTO_H_
 1534 struct sigaltstack_args {
 1535         stack_t *ss;
 1536         stack_t *oss;
 1537 };
 1538 #endif
 1539 /* ARGSUSED */
 1540 int
 1541 sys_sigaltstack(td, uap)
 1542         struct thread *td;
 1543         register struct sigaltstack_args *uap;
 1544 {
 1545         stack_t ss, oss;
 1546         int error;
 1547 
 1548         if (uap->ss != NULL) {
 1549                 error = copyin(uap->ss, &ss, sizeof(ss));
 1550                 if (error)
 1551                         return (error);
 1552         }
 1553         error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
 1554             (uap->oss != NULL) ? &oss : NULL);
 1555         if (error)
 1556                 return (error);
 1557         if (uap->oss != NULL)
 1558                 error = copyout(&oss, uap->oss, sizeof(stack_t));
 1559         return (error);
 1560 }
 1561 
 1562 int
 1563 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
 1564 {
 1565         struct proc *p = td->td_proc;
 1566         int oonstack;
 1567 
 1568         oonstack = sigonstack(cpu_getstack(td));
 1569 
 1570         if (oss != NULL) {
 1571                 *oss = td->td_sigstk;
 1572                 oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
 1573                     ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
 1574         }
 1575 
 1576         if (ss != NULL) {
 1577                 if (oonstack)
 1578                         return (EPERM);
 1579                 if ((ss->ss_flags & ~SS_DISABLE) != 0)
 1580                         return (EINVAL);
 1581                 if (!(ss->ss_flags & SS_DISABLE)) {
 1582                         if (ss->ss_size < p->p_sysent->sv_minsigstksz)
 1583                                 return (ENOMEM);
 1584 
 1585                         td->td_sigstk = *ss;
 1586                         td->td_pflags |= TDP_ALTSTACK;
 1587                 } else {
 1588                         td->td_pflags &= ~TDP_ALTSTACK;
 1589                 }
 1590         }
 1591         return (0);
 1592 }
 1593 
 1594 /*
 1595  * Common code for kill process group/broadcast kill.
 1596  * cp is calling process.
 1597  */
 1598 static int
 1599 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
 1600 {
 1601         struct proc *p;
 1602         struct pgrp *pgrp;
 1603         int err;
 1604         int ret;
 1605 
 1606         ret = ESRCH;
 1607         if (all) {
 1608                 /*
 1609                  * broadcast
 1610                  */
 1611                 sx_slock(&allproc_lock);
 1612                 FOREACH_PROC_IN_SYSTEM(p) {
 1613                         PROC_LOCK(p);
 1614                         if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
 1615                             p == td->td_proc || p->p_state == PRS_NEW) {
 1616                                 PROC_UNLOCK(p);
 1617                                 continue;
 1618                         }
 1619                         err = p_cansignal(td, p, sig);
 1620                         if (err == 0) {
 1621                                 if (sig)
 1622                                         pksignal(p, sig, ksi);
 1623                                 ret = err;
 1624                         }
 1625                         else if (ret == ESRCH)
 1626                                 ret = err;
 1627                         PROC_UNLOCK(p);
 1628                 }
 1629                 sx_sunlock(&allproc_lock);
 1630         } else {
 1631                 sx_slock(&proctree_lock);
 1632                 if (pgid == 0) {
 1633                         /*
 1634                          * zero pgid means send to my process group.
 1635                          */
 1636                         pgrp = td->td_proc->p_pgrp;
 1637                         PGRP_LOCK(pgrp);
 1638                 } else {
 1639                         pgrp = pgfind(pgid);
 1640                         if (pgrp == NULL) {
 1641                                 sx_sunlock(&proctree_lock);
 1642                                 return (ESRCH);
 1643                         }
 1644                 }
 1645                 sx_sunlock(&proctree_lock);
 1646                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
 1647                         PROC_LOCK(p);         
 1648                         if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
 1649                             p->p_state == PRS_NEW) {
 1650                                 PROC_UNLOCK(p);
 1651                                 continue;
 1652                         }
 1653                         err = p_cansignal(td, p, sig);
 1654                         if (err == 0) {
 1655                                 if (sig)
 1656                                         pksignal(p, sig, ksi);
 1657                                 ret = err;
 1658                         }
 1659                         else if (ret == ESRCH)
 1660                                 ret = err;
 1661                         PROC_UNLOCK(p);
 1662                 }
 1663                 PGRP_UNLOCK(pgrp);
 1664         }
 1665         return (ret);
 1666 }
 1667 
 1668 #ifndef _SYS_SYSPROTO_H_
 1669 struct kill_args {
 1670         int     pid;
 1671         int     signum;
 1672 };
 1673 #endif
 1674 /* ARGSUSED */
 1675 int
 1676 sys_kill(struct thread *td, struct kill_args *uap)
 1677 {
 1678         ksiginfo_t ksi;
 1679         struct proc *p;
 1680         int error;
 1681 
 1682         AUDIT_ARG_SIGNUM(uap->signum);
 1683         AUDIT_ARG_PID(uap->pid);
 1684         if ((u_int)uap->signum > _SIG_MAXSIG)
 1685                 return (EINVAL);
 1686 
 1687         ksiginfo_init(&ksi);
 1688         ksi.ksi_signo = uap->signum;
 1689         ksi.ksi_code = SI_USER;
 1690         ksi.ksi_pid = td->td_proc->p_pid;
 1691         ksi.ksi_uid = td->td_ucred->cr_ruid;
 1692 
 1693         if (uap->pid > 0) {
 1694                 /* kill single process */
 1695                 if ((p = pfind(uap->pid)) == NULL) {
 1696                         if ((p = zpfind(uap->pid)) == NULL)
 1697                                 return (ESRCH);
 1698                 }
 1699                 AUDIT_ARG_PROCESS(p);
 1700                 error = p_cansignal(td, p, uap->signum);
 1701                 if (error == 0 && uap->signum)
 1702                         pksignal(p, uap->signum, &ksi);
 1703                 PROC_UNLOCK(p);
 1704                 return (error);
 1705         }
 1706         switch (uap->pid) {
 1707         case -1:                /* broadcast signal */
 1708                 return (killpg1(td, uap->signum, 0, 1, &ksi));
 1709         case 0:                 /* signal own process group */
 1710                 return (killpg1(td, uap->signum, 0, 0, &ksi));
 1711         default:                /* negative explicit process group */
 1712                 return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
 1713         }
 1714         /* NOTREACHED */
 1715 }
 1716 
 1717 int
 1718 sys_pdkill(td, uap)
 1719         struct thread *td;
 1720         struct pdkill_args *uap;
 1721 {
 1722 #ifdef PROCDESC
 1723         struct proc *p;
 1724         int error;
 1725 
 1726         AUDIT_ARG_SIGNUM(uap->signum);
 1727         AUDIT_ARG_FD(uap->fd);
 1728         if ((u_int)uap->signum > _SIG_MAXSIG)
 1729                 return (EINVAL);
 1730 
 1731         error = procdesc_find(td, uap->fd, CAP_PDKILL, &p);
 1732         if (error)
 1733                 return (error);
 1734         AUDIT_ARG_PROCESS(p);
 1735         error = p_cansignal(td, p, uap->signum);
 1736         if (error == 0 && uap->signum)
 1737                 kern_psignal(p, uap->signum);
 1738         PROC_UNLOCK(p);
 1739         return (error);
 1740 #else
 1741         return (ENOSYS);
 1742 #endif
 1743 }
 1744 
 1745 #if defined(COMPAT_43)
 1746 #ifndef _SYS_SYSPROTO_H_
 1747 struct okillpg_args {
 1748         int     pgid;
 1749         int     signum;
 1750 };
 1751 #endif
 1752 /* ARGSUSED */
 1753 int
 1754 okillpg(struct thread *td, struct okillpg_args *uap)
 1755 {
 1756         ksiginfo_t ksi;
 1757 
 1758         AUDIT_ARG_SIGNUM(uap->signum);
 1759         AUDIT_ARG_PID(uap->pgid);
 1760         if ((u_int)uap->signum > _SIG_MAXSIG)
 1761                 return (EINVAL);
 1762 
 1763         ksiginfo_init(&ksi);
 1764         ksi.ksi_signo = uap->signum;
 1765         ksi.ksi_code = SI_USER;
 1766         ksi.ksi_pid = td->td_proc->p_pid;
 1767         ksi.ksi_uid = td->td_ucred->cr_ruid;
 1768         return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
 1769 }
 1770 #endif /* COMPAT_43 */
 1771 
 1772 #ifndef _SYS_SYSPROTO_H_
 1773 struct sigqueue_args {
 1774         pid_t pid;
 1775         int signum;
 1776         /* union sigval */ void *value;
 1777 };
 1778 #endif
 1779 int
 1780 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
 1781 {
 1782         ksiginfo_t ksi;
 1783         struct proc *p;
 1784         int error;
 1785 
 1786         if ((u_int)uap->signum > _SIG_MAXSIG)
 1787                 return (EINVAL);
 1788 
 1789         /*
 1790          * Specification says sigqueue can only send signal to
 1791          * single process.
 1792          */
 1793         if (uap->pid <= 0)
 1794                 return (EINVAL);
 1795 
 1796         if ((p = pfind(uap->pid)) == NULL) {
 1797                 if ((p = zpfind(uap->pid)) == NULL)
 1798                         return (ESRCH);
 1799         }
 1800         error = p_cansignal(td, p, uap->signum);
 1801         if (error == 0 && uap->signum != 0) {
 1802                 ksiginfo_init(&ksi);
 1803                 ksi.ksi_flags = KSI_SIGQ;
 1804                 ksi.ksi_signo = uap->signum;
 1805                 ksi.ksi_code = SI_QUEUE;
 1806                 ksi.ksi_pid = td->td_proc->p_pid;
 1807                 ksi.ksi_uid = td->td_ucred->cr_ruid;
 1808                 ksi.ksi_value.sival_ptr = uap->value;
 1809                 error = pksignal(p, ksi.ksi_signo, &ksi);
 1810         }
 1811         PROC_UNLOCK(p);
 1812         return (error);
 1813 }
 1814 
 1815 /*
 1816  * Send a signal to a process group.
 1817  */
 1818 void
 1819 gsignal(int pgid, int sig, ksiginfo_t *ksi)
 1820 {
 1821         struct pgrp *pgrp;
 1822 
 1823         if (pgid != 0) {
 1824                 sx_slock(&proctree_lock);
 1825                 pgrp = pgfind(pgid);
 1826                 sx_sunlock(&proctree_lock);
 1827                 if (pgrp != NULL) {
 1828                         pgsignal(pgrp, sig, 0, ksi);
 1829                         PGRP_UNLOCK(pgrp);
 1830                 }
 1831         }
 1832 }
 1833 
 1834 /*
 1835  * Send a signal to a process group.  If checktty is 1,
 1836  * limit to members which have a controlling terminal.
 1837  */
 1838 void
 1839 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
 1840 {
 1841         struct proc *p;
 1842 
 1843         if (pgrp) {
 1844                 PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
 1845                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
 1846                         PROC_LOCK(p);
 1847                         if (p->p_state == PRS_NORMAL &&
 1848                             (checkctty == 0 || p->p_flag & P_CONTROLT))
 1849                                 pksignal(p, sig, ksi);
 1850                         PROC_UNLOCK(p);
 1851                 }
 1852         }
 1853 }
 1854 
 1855 /*
 1856  * Send a signal caused by a trap to the current thread.  If it will be
 1857  * caught immediately, deliver it with correct code.  Otherwise, post it
 1858  * normally.
 1859  */
 1860 void
 1861 trapsignal(struct thread *td, ksiginfo_t *ksi)
 1862 {
 1863         struct sigacts *ps;
 1864         sigset_t mask;
 1865         struct proc *p;
 1866         int sig;
 1867         int code;
 1868 
 1869         p = td->td_proc;
 1870         sig = ksi->ksi_signo;
 1871         code = ksi->ksi_code;
 1872         KASSERT(_SIG_VALID(sig), ("invalid signal"));
 1873 
 1874         PROC_LOCK(p);
 1875         ps = p->p_sigacts;
 1876         mtx_lock(&ps->ps_mtx);
 1877         if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
 1878             !SIGISMEMBER(td->td_sigmask, sig)) {
 1879                 td->td_ru.ru_nsignals++;
 1880 #ifdef KTRACE
 1881                 if (KTRPOINT(curthread, KTR_PSIG))
 1882                         ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
 1883                             &td->td_sigmask, code);
 1884 #endif
 1885                 (*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)], 
 1886                                 ksi, &td->td_sigmask);
 1887                 mask = ps->ps_catchmask[_SIG_IDX(sig)];
 1888                 if (!SIGISMEMBER(ps->ps_signodefer, sig))
 1889                         SIGADDSET(mask, sig);
 1890                 kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
 1891                     SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
 1892                 if (SIGISMEMBER(ps->ps_sigreset, sig)) {
 1893                         /*
 1894                          * See kern_sigaction() for origin of this code.
 1895                          */
 1896                         SIGDELSET(ps->ps_sigcatch, sig);
 1897                         if (sig != SIGCONT &&
 1898                             sigprop(sig) & SA_IGNORE)
 1899                                 SIGADDSET(ps->ps_sigignore, sig);
 1900                         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
 1901                 }
 1902                 mtx_unlock(&ps->ps_mtx);
 1903         } else {
 1904                 /*
 1905                  * Avoid a possible infinite loop if the thread
 1906                  * masking the signal or process is ignoring the
 1907                  * signal.
 1908                  */
 1909                 if (kern_forcesigexit &&
 1910                     (SIGISMEMBER(td->td_sigmask, sig) ||
 1911                      ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
 1912                         SIGDELSET(td->td_sigmask, sig);
 1913                         SIGDELSET(ps->ps_sigcatch, sig);
 1914                         SIGDELSET(ps->ps_sigignore, sig);
 1915                         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
 1916                 }
 1917                 mtx_unlock(&ps->ps_mtx);
 1918                 p->p_code = code;       /* XXX for core dump/debugger */
 1919                 p->p_sig = sig;         /* XXX to verify code */
 1920                 tdsendsignal(p, td, sig, ksi);
 1921         }
 1922         PROC_UNLOCK(p);
 1923 }
 1924 
 1925 static struct thread *
 1926 sigtd(struct proc *p, int sig, int prop)
 1927 {
 1928         struct thread *td, *signal_td;
 1929 
 1930         PROC_LOCK_ASSERT(p, MA_OWNED);
 1931 
 1932         /*
 1933          * Check if current thread can handle the signal without
 1934          * switching context to another thread.
 1935          */
 1936         if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
 1937                 return (curthread);
 1938         signal_td = NULL;
 1939         FOREACH_THREAD_IN_PROC(p, td) {
 1940                 if (!SIGISMEMBER(td->td_sigmask, sig)) {
 1941                         signal_td = td;
 1942                         break;
 1943                 }
 1944         }
 1945         if (signal_td == NULL)
 1946                 signal_td = FIRST_THREAD_IN_PROC(p);
 1947         return (signal_td);
 1948 }
 1949 
 1950 /*
 1951  * Send the signal to the process.  If the signal has an action, the action
 1952  * is usually performed by the target process rather than the caller; we add
 1953  * the signal to the set of pending signals for the process.
 1954  *
 1955  * Exceptions:
 1956  *   o When a stop signal is sent to a sleeping process that takes the
 1957  *     default action, the process is stopped without awakening it.
 1958  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
 1959  *     regardless of the signal action (eg, blocked or ignored).
 1960  *
 1961  * Other ignored signals are discarded immediately.
 1962  * 
 1963  * NB: This function may be entered from the debugger via the "kill" DDB
 1964  * command.  There is little that can be done to mitigate the possibly messy
 1965  * side effects of this unwise possibility.
 1966  */
 1967 void
 1968 kern_psignal(struct proc *p, int sig)
 1969 {
 1970         ksiginfo_t ksi;
 1971 
 1972         ksiginfo_init(&ksi);
 1973         ksi.ksi_signo = sig;
 1974         ksi.ksi_code = SI_KERNEL;
 1975         (void) tdsendsignal(p, NULL, sig, &ksi);
 1976 }
 1977 
 1978 int
 1979 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
 1980 {
 1981 
 1982         return (tdsendsignal(p, NULL, sig, ksi));
 1983 }
 1984 
 1985 /* Utility function for finding a thread to send signal event to. */
 1986 int
 1987 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
 1988 {
 1989         struct thread *td;
 1990 
 1991         if (sigev->sigev_notify == SIGEV_THREAD_ID) {
 1992                 td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
 1993                 if (td == NULL)
 1994                         return (ESRCH);
 1995                 *ttd = td;
 1996         } else {
 1997                 *ttd = NULL;
 1998                 PROC_LOCK(p);
 1999         }
 2000         return (0);
 2001 }
 2002 
 2003 void
 2004 tdsignal(struct thread *td, int sig)
 2005 {
 2006         ksiginfo_t ksi;
 2007 
 2008         ksiginfo_init(&ksi);
 2009         ksi.ksi_signo = sig;
 2010         ksi.ksi_code = SI_KERNEL;
 2011         (void) tdsendsignal(td->td_proc, td, sig, &ksi);
 2012 }
 2013 
 2014 void
 2015 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
 2016 {
 2017 
 2018         (void) tdsendsignal(td->td_proc, td, sig, ksi);
 2019 }
 2020 
 2021 int
 2022 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
 2023 {
 2024         sig_t action;
 2025         sigqueue_t *sigqueue;
 2026         int prop;
 2027         struct sigacts *ps;
 2028         int intrval;
 2029         int ret = 0;
 2030         int wakeup_swapper;
 2031 
 2032         MPASS(td == NULL || p == td->td_proc);
 2033         PROC_LOCK_ASSERT(p, MA_OWNED);
 2034 
 2035         if (!_SIG_VALID(sig))
 2036                 panic("%s(): invalid signal %d", __func__, sig);
 2037 
 2038         KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
 2039 
 2040         /*
 2041          * IEEE Std 1003.1-2001: return success when killing a zombie.
 2042          */
 2043         if (p->p_state == PRS_ZOMBIE) {
 2044                 if (ksi && (ksi->ksi_flags & KSI_INS))
 2045                         ksiginfo_tryfree(ksi);
 2046                 return (ret);
 2047         }
 2048 
 2049         ps = p->p_sigacts;
 2050         KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
 2051         prop = sigprop(sig);
 2052 
 2053         if (td == NULL) {
 2054                 td = sigtd(p, sig, prop);
 2055                 sigqueue = &p->p_sigqueue;
 2056         } else {
 2057                 KASSERT(td->td_proc == p, ("invalid thread"));
 2058                 sigqueue = &td->td_sigqueue;
 2059         }
 2060 
 2061         SDT_PROBE(proc, kernel, , signal_send, td, p, sig, 0, 0 );
 2062 
 2063         /*
 2064          * If the signal is being ignored,
 2065          * then we forget about it immediately.
 2066          * (Note: we don't set SIGCONT in ps_sigignore,
 2067          * and if it is set to SIG_IGN,
 2068          * action will be SIG_DFL here.)
 2069          */
 2070         mtx_lock(&ps->ps_mtx);
 2071         if (SIGISMEMBER(ps->ps_sigignore, sig)) {
 2072                 SDT_PROBE(proc, kernel, , signal_discard, td, p, sig, 0, 0 );
 2073 
 2074                 mtx_unlock(&ps->ps_mtx);
 2075                 if (ksi && (ksi->ksi_flags & KSI_INS))
 2076                         ksiginfo_tryfree(ksi);
 2077                 return (ret);
 2078         }
 2079         if (SIGISMEMBER(td->td_sigmask, sig))
 2080                 action = SIG_HOLD;
 2081         else if (SIGISMEMBER(ps->ps_sigcatch, sig))
 2082                 action = SIG_CATCH;
 2083         else
 2084                 action = SIG_DFL;
 2085         if (SIGISMEMBER(ps->ps_sigintr, sig))
 2086                 intrval = EINTR;
 2087         else
 2088                 intrval = ERESTART;
 2089         mtx_unlock(&ps->ps_mtx);
 2090 
 2091         if (prop & SA_CONT)
 2092                 sigqueue_delete_stopmask_proc(p);
 2093         else if (prop & SA_STOP) {
 2094                 /*
 2095                  * If sending a tty stop signal to a member of an orphaned
 2096                  * process group, discard the signal here if the action
 2097                  * is default; don't stop the process below if sleeping,
 2098                  * and don't clear any pending SIGCONT.
 2099                  */
 2100                 if ((prop & SA_TTYSTOP) &&
 2101                     (p->p_pgrp->pg_jobc == 0) &&
 2102                     (action == SIG_DFL)) {
 2103                         if (ksi && (ksi->ksi_flags & KSI_INS))
 2104                                 ksiginfo_tryfree(ksi);
 2105                         return (ret);
 2106                 }
 2107                 sigqueue_delete_proc(p, SIGCONT);
 2108                 if (p->p_flag & P_CONTINUED) {
 2109                         p->p_flag &= ~P_CONTINUED;
 2110                         PROC_LOCK(p->p_pptr);
 2111                         sigqueue_take(p->p_ksi);
 2112                         PROC_UNLOCK(p->p_pptr);
 2113                 }
 2114         }
 2115 
 2116         ret = sigqueue_add(sigqueue, sig, ksi);
 2117         if (ret != 0)
 2118                 return (ret);
 2119         signotify(td);
 2120         /*
 2121          * Defer further processing for signals which are held,
 2122          * except that stopped processes must be continued by SIGCONT.
 2123          */
 2124         if (action == SIG_HOLD &&
 2125             !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
 2126                 return (ret);
 2127         /*
 2128          * SIGKILL: Remove procfs STOPEVENTs.
 2129          */
 2130         if (sig == SIGKILL) {
 2131                 /* from procfs_ioctl.c: PIOCBIC */
 2132                 p->p_stops = 0;
 2133                 /* from procfs_ioctl.c: PIOCCONT */
 2134                 p->p_step = 0;
 2135                 wakeup(&p->p_step);
 2136         }
 2137         /*
 2138          * Some signals have a process-wide effect and a per-thread
 2139          * component.  Most processing occurs when the process next
 2140          * tries to cross the user boundary, however there are some
 2141          * times when processing needs to be done immediatly, such as
 2142          * waking up threads so that they can cross the user boundary.
 2143          * We try do the per-process part here.
 2144          */
 2145         if (P_SHOULDSTOP(p)) {
 2146                 KASSERT(!(p->p_flag & P_WEXIT),
 2147                     ("signal to stopped but exiting process"));
 2148                 if (sig == SIGKILL) {
 2149                         /*
 2150                          * If traced process is already stopped,
 2151                          * then no further action is necessary.
 2152                          */
 2153                         if (p->p_flag & P_TRACED)
 2154                                 goto out;
 2155                         /*
 2156                          * SIGKILL sets process running.
 2157                          * It will die elsewhere.
 2158                          * All threads must be restarted.
 2159                          */
 2160                         p->p_flag &= ~P_STOPPED_SIG;
 2161                         goto runfast;
 2162                 }
 2163 
 2164                 if (prop & SA_CONT) {
 2165                         /*
 2166                          * If traced process is already stopped,
 2167                          * then no further action is necessary.
 2168                          */
 2169                         if (p->p_flag & P_TRACED)
 2170                                 goto out;
 2171                         /*
 2172                          * If SIGCONT is default (or ignored), we continue the
 2173                          * process but don't leave the signal in sigqueue as
 2174                          * it has no further action.  If SIGCONT is held, we
 2175                          * continue the process and leave the signal in
 2176                          * sigqueue.  If the process catches SIGCONT, let it
 2177                          * handle the signal itself.  If it isn't waiting on
 2178                          * an event, it goes back to run state.
 2179                          * Otherwise, process goes back to sleep state.
 2180                          */
 2181                         p->p_flag &= ~P_STOPPED_SIG;
 2182                         PROC_SLOCK(p);
 2183                         if (p->p_numthreads == p->p_suspcount) {
 2184                                 PROC_SUNLOCK(p);
 2185                                 p->p_flag |= P_CONTINUED;
 2186                                 p->p_xstat = SIGCONT;
 2187                                 PROC_LOCK(p->p_pptr);
 2188                                 childproc_continued(p);
 2189                                 PROC_UNLOCK(p->p_pptr);
 2190                                 PROC_SLOCK(p);
 2191                         }
 2192                         if (action == SIG_DFL) {
 2193                                 thread_unsuspend(p);
 2194                                 PROC_SUNLOCK(p);
 2195                                 sigqueue_delete(sigqueue, sig);
 2196                                 goto out;
 2197                         }
 2198                         if (action == SIG_CATCH) {
 2199                                 /*
 2200                                  * The process wants to catch it so it needs
 2201                                  * to run at least one thread, but which one?
 2202                                  */
 2203                                 PROC_SUNLOCK(p);
 2204                                 goto runfast;
 2205                         }
 2206                         /*
 2207                          * The signal is not ignored or caught.
 2208                          */
 2209                         thread_unsuspend(p);
 2210                         PROC_SUNLOCK(p);
 2211                         goto out;
 2212                 }
 2213 
 2214                 if (prop & SA_STOP) {
 2215                         /*
 2216                          * If traced process is already stopped,
 2217                          * then no further action is necessary.
 2218                          */
 2219                         if (p->p_flag & P_TRACED)
 2220                                 goto out;
 2221                         /*
 2222                          * Already stopped, don't need to stop again
 2223                          * (If we did the shell could get confused).
 2224                          * Just make sure the signal STOP bit set.
 2225                          */
 2226                         p->p_flag |= P_STOPPED_SIG;
 2227                         sigqueue_delete(sigqueue, sig);
 2228                         goto out;
 2229                 }
 2230 
 2231                 /*
 2232                  * All other kinds of signals:
 2233                  * If a thread is sleeping interruptibly, simulate a
 2234                  * wakeup so that when it is continued it will be made
 2235                  * runnable and can look at the signal.  However, don't make
 2236                  * the PROCESS runnable, leave it stopped.
 2237                  * It may run a bit until it hits a thread_suspend_check().
 2238                  */
 2239                 wakeup_swapper = 0;
 2240                 PROC_SLOCK(p);
 2241                 thread_lock(td);
 2242                 if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
 2243                         wakeup_swapper = sleepq_abort(td, intrval);
 2244                 thread_unlock(td);
 2245                 PROC_SUNLOCK(p);
 2246                 if (wakeup_swapper)
 2247                         kick_proc0();
 2248                 goto out;
 2249                 /*
 2250                  * Mutexes are short lived. Threads waiting on them will
 2251                  * hit thread_suspend_check() soon.
 2252                  */
 2253         } else if (p->p_state == PRS_NORMAL) {
 2254                 if (p->p_flag & P_TRACED || action == SIG_CATCH) {
 2255                         tdsigwakeup(td, sig, action, intrval);
 2256                         goto out;
 2257                 }
 2258 
 2259                 MPASS(action == SIG_DFL);
 2260 
 2261                 if (prop & SA_STOP) {
 2262                         if (p->p_flag & (P_PPWAIT|P_WEXIT))
 2263                                 goto out;
 2264                         p->p_flag |= P_STOPPED_SIG;
 2265                         p->p_xstat = sig;
 2266                         PROC_SLOCK(p);
 2267                         sig_suspend_threads(td, p, 1);
 2268                         if (p->p_numthreads == p->p_suspcount) {
 2269                                 /*
 2270                                  * only thread sending signal to another
 2271                                  * process can reach here, if thread is sending
 2272                                  * signal to its process, because thread does
 2273                                  * not suspend itself here, p_numthreads
 2274                                  * should never be equal to p_suspcount.
 2275                                  */
 2276                                 thread_stopped(p);
 2277                                 PROC_SUNLOCK(p);
 2278                                 sigqueue_delete_proc(p, p->p_xstat);
 2279                         } else
 2280                                 PROC_SUNLOCK(p);
 2281                         goto out;
 2282                 }
 2283         } else {
 2284                 /* Not in "NORMAL" state. discard the signal. */
 2285                 sigqueue_delete(sigqueue, sig);
 2286                 goto out;
 2287         }
 2288 
 2289         /*
 2290          * The process is not stopped so we need to apply the signal to all the
 2291          * running threads.
 2292          */
 2293 runfast:
 2294         tdsigwakeup(td, sig, action, intrval);
 2295         PROC_SLOCK(p);
 2296         thread_unsuspend(p);
 2297         PROC_SUNLOCK(p);
 2298 out:
 2299         /* If we jump here, proc slock should not be owned. */
 2300         PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
 2301         return (ret);
 2302 }
 2303 
 2304 /*
 2305  * The force of a signal has been directed against a single
 2306  * thread.  We need to see what we can do about knocking it
 2307  * out of any sleep it may be in etc.
 2308  */
 2309 static void
 2310 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
 2311 {
 2312         struct proc *p = td->td_proc;
 2313         register int prop;
 2314         int wakeup_swapper;
 2315 
 2316         wakeup_swapper = 0;
 2317         PROC_LOCK_ASSERT(p, MA_OWNED);
 2318         prop = sigprop(sig);
 2319 
 2320         PROC_SLOCK(p);
 2321         thread_lock(td);
 2322         /*
 2323          * Bring the priority of a thread up if we want it to get
 2324          * killed in this lifetime.
 2325          */
 2326         if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
 2327                 sched_prio(td, PUSER);
 2328         if (TD_ON_SLEEPQ(td)) {
 2329                 /*
 2330                  * If thread is sleeping uninterruptibly
 2331                  * we can't interrupt the sleep... the signal will
 2332                  * be noticed when the process returns through
 2333                  * trap() or syscall().
 2334                  */
 2335                 if ((td->td_flags & TDF_SINTR) == 0)
 2336                         goto out;
 2337                 /*
 2338                  * If SIGCONT is default (or ignored) and process is
 2339                  * asleep, we are finished; the process should not
 2340                  * be awakened.
 2341                  */
 2342                 if ((prop & SA_CONT) && action == SIG_DFL) {
 2343                         thread_unlock(td);
 2344                         PROC_SUNLOCK(p);
 2345                         sigqueue_delete(&p->p_sigqueue, sig);
 2346                         /*
 2347                          * It may be on either list in this state.
 2348                          * Remove from both for now.
 2349                          */
 2350                         sigqueue_delete(&td->td_sigqueue, sig);
 2351                         return;
 2352                 }
 2353 
 2354                 /*
 2355                  * Don't awaken a sleeping thread for SIGSTOP if the
 2356                  * STOP signal is deferred.
 2357                  */
 2358                 if ((prop & SA_STOP) && (td->td_flags & TDF_SBDRY))
 2359                         goto out;
 2360 
 2361                 /*
 2362                  * Give low priority threads a better chance to run.
 2363                  */
 2364                 if (td->td_priority > PUSER)
 2365                         sched_prio(td, PUSER);
 2366 
 2367                 wakeup_swapper = sleepq_abort(td, intrval);
 2368         } else {
 2369                 /*
 2370                  * Other states do nothing with the signal immediately,
 2371                  * other than kicking ourselves if we are running.
 2372                  * It will either never be noticed, or noticed very soon.
 2373                  */
 2374 #ifdef SMP
 2375                 if (TD_IS_RUNNING(td) && td != curthread)
 2376                         forward_signal(td);
 2377 #endif
 2378         }
 2379 out:
 2380         PROC_SUNLOCK(p);
 2381         thread_unlock(td);
 2382         if (wakeup_swapper)
 2383                 kick_proc0();
 2384 }
 2385 
 2386 static void
 2387 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
 2388 {
 2389         struct thread *td2;
 2390         int wakeup_swapper;
 2391 
 2392         PROC_LOCK_ASSERT(p, MA_OWNED);
 2393         PROC_SLOCK_ASSERT(p, MA_OWNED);
 2394 
 2395         wakeup_swapper = 0;
 2396         FOREACH_THREAD_IN_PROC(p, td2) {
 2397                 thread_lock(td2);
 2398                 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
 2399                 if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
 2400                     (td2->td_flags & TDF_SINTR)) {
 2401                         if (td2->td_flags & TDF_SBDRY) {
 2402                                 /*
 2403                                  * Once a thread is asleep with
 2404                                  * TDF_SBDRY set, it should never
 2405                                  * become suspended due to this check.
 2406                                  */
 2407                                 KASSERT(!TD_IS_SUSPENDED(td2),
 2408                                     ("thread with deferred stops suspended"));
 2409                         } else if (!TD_IS_SUSPENDED(td2)) {
 2410                                 thread_suspend_one(td2);
 2411                         }
 2412                 } else if (!TD_IS_SUSPENDED(td2)) {
 2413                         if (sending || td != td2)
 2414                                 td2->td_flags |= TDF_ASTPENDING;
 2415 #ifdef SMP
 2416                         if (TD_IS_RUNNING(td2) && td2 != td)
 2417                                 forward_signal(td2);
 2418 #endif
 2419                 }
 2420                 thread_unlock(td2);
 2421         }
 2422         if (wakeup_swapper)
 2423                 kick_proc0();
 2424 }
 2425 
 2426 int
 2427 ptracestop(struct thread *td, int sig)
 2428 {
 2429         struct proc *p = td->td_proc;
 2430 
 2431         PROC_LOCK_ASSERT(p, MA_OWNED);
 2432         KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
 2433         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
 2434             &p->p_mtx.lock_object, "Stopping for traced signal");
 2435 
 2436         td->td_dbgflags |= TDB_XSIG;
 2437         td->td_xsig = sig;
 2438         PROC_SLOCK(p);
 2439         while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
 2440                 if (p->p_flag & P_SINGLE_EXIT) {
 2441                         td->td_dbgflags &= ~TDB_XSIG;
 2442                         PROC_SUNLOCK(p);
 2443                         return (sig);
 2444                 }
 2445                 /*
 2446                  * Just make wait() to work, the last stopped thread
 2447                  * will win.
 2448                  */
 2449                 p->p_xstat = sig;
 2450                 p->p_xthread = td;
 2451                 p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
 2452                 sig_suspend_threads(td, p, 0);
 2453                 if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
 2454                         td->td_dbgflags &= ~TDB_STOPATFORK;
 2455                         cv_broadcast(&p->p_dbgwait);
 2456                 }
 2457 stopme:
 2458                 thread_suspend_switch(td);
 2459                 if (!(p->p_flag & P_TRACED)) {
 2460                         break;
 2461                 }
 2462                 if (td->td_dbgflags & TDB_SUSPEND) {
 2463                         if (p->p_flag & P_SINGLE_EXIT)
 2464                                 break;
 2465                         goto stopme;
 2466                 }
 2467         }
 2468         PROC_SUNLOCK(p);
 2469         return (td->td_xsig);
 2470 }
 2471 
 2472 static void
 2473 reschedule_signals(struct proc *p, sigset_t block, int flags)
 2474 {
 2475         struct sigacts *ps;
 2476         struct thread *td;
 2477         int sig;
 2478 
 2479         PROC_LOCK_ASSERT(p, MA_OWNED);
 2480         if (SIGISEMPTY(p->p_siglist))
 2481                 return;
 2482         ps = p->p_sigacts;
 2483         SIGSETAND(block, p->p_siglist);
 2484         while ((sig = sig_ffs(&block)) != 0) {
 2485                 SIGDELSET(block, sig);
 2486                 td = sigtd(p, sig, 0);
 2487                 signotify(td);
 2488                 if (!(flags & SIGPROCMASK_PS_LOCKED))
 2489                         mtx_lock(&ps->ps_mtx);
 2490                 if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
 2491                         tdsigwakeup(td, sig, SIG_CATCH,
 2492                             (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
 2493                              ERESTART));
 2494                 if (!(flags & SIGPROCMASK_PS_LOCKED))
 2495                         mtx_unlock(&ps->ps_mtx);
 2496         }
 2497 }
 2498 
 2499 void
 2500 tdsigcleanup(struct thread *td)
 2501 {
 2502         struct proc *p;
 2503         sigset_t unblocked;
 2504 
 2505         p = td->td_proc;
 2506         PROC_LOCK_ASSERT(p, MA_OWNED);
 2507 
 2508         sigqueue_flush(&td->td_sigqueue);
 2509         if (p->p_numthreads == 1)
 2510                 return;
 2511 
 2512         /*
 2513          * Since we cannot handle signals, notify signal post code
 2514          * about this by filling the sigmask.
 2515          *
 2516          * Also, if needed, wake up thread(s) that do not block the
 2517          * same signals as the exiting thread, since the thread might
 2518          * have been selected for delivery and woken up.
 2519          */
 2520         SIGFILLSET(unblocked);
 2521         SIGSETNAND(unblocked, td->td_sigmask);
 2522         SIGFILLSET(td->td_sigmask);
 2523         reschedule_signals(p, unblocked, 0);
 2524 
 2525 }
 2526 
 2527 /*
 2528  * Defer the delivery of SIGSTOP for the current thread.  Returns true
 2529  * if stops were deferred and false if they were already deferred.
 2530  */
 2531 int
 2532 sigdeferstop(void)
 2533 {
 2534         struct thread *td;
 2535 
 2536         td = curthread;
 2537         if (td->td_flags & TDF_SBDRY)
 2538                 return (0);
 2539         thread_lock(td);
 2540         td->td_flags |= TDF_SBDRY;
 2541         thread_unlock(td);
 2542         return (1);
 2543 }
 2544 
 2545 /*
 2546  * Permit the delivery of SIGSTOP for the current thread.  This does
 2547  * not immediately suspend if a stop was posted.  Instead, the thread
 2548  * will suspend either via ast() or a subsequent interruptible sleep.
 2549  */
 2550 void
 2551 sigallowstop()
 2552 {
 2553         struct thread *td;
 2554 
 2555         td = curthread;
 2556         thread_lock(td);
 2557         td->td_flags &= ~TDF_SBDRY;
 2558         thread_unlock(td);
 2559 }
 2560 
 2561 /*
 2562  * If the current process has received a signal (should be caught or cause
 2563  * termination, should interrupt current syscall), return the signal number.
 2564  * Stop signals with default action are processed immediately, then cleared;
 2565  * they aren't returned.  This is checked after each entry to the system for
 2566  * a syscall or trap (though this can usually be done without calling issignal
 2567  * by checking the pending signal masks in cursig.) The normal call
 2568  * sequence is
 2569  *
 2570  *      while (sig = cursig(curthread))
 2571  *              postsig(sig);
 2572  */
 2573 static int
 2574 issignal(struct thread *td, int stop_allowed)
 2575 {
 2576         struct proc *p;
 2577         struct sigacts *ps;
 2578         struct sigqueue *queue;
 2579         sigset_t sigpending;
 2580         int sig, prop, newsig;
 2581 
 2582         p = td->td_proc;
 2583         ps = p->p_sigacts;
 2584         mtx_assert(&ps->ps_mtx, MA_OWNED);
 2585         PROC_LOCK_ASSERT(p, MA_OWNED);
 2586         for (;;) {
 2587                 int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
 2588 
 2589                 sigpending = td->td_sigqueue.sq_signals;
 2590                 SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
 2591                 SIGSETNAND(sigpending, td->td_sigmask);
 2592 
 2593                 if (p->p_flag & P_PPWAIT || td->td_flags & TDF_SBDRY)
 2594                         SIG_STOPSIGMASK(sigpending);
 2595                 if (SIGISEMPTY(sigpending))     /* no signal to send */
 2596                         return (0);
 2597                 sig = sig_ffs(&sigpending);
 2598 
 2599                 if (p->p_stops & S_SIG) {
 2600                         mtx_unlock(&ps->ps_mtx);
 2601                         stopevent(p, S_SIG, sig);
 2602                         mtx_lock(&ps->ps_mtx);
 2603                 }
 2604 
 2605                 /*
 2606                  * We should see pending but ignored signals
 2607                  * only if P_TRACED was on when they were posted.
 2608                  */
 2609                 if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
 2610                         sigqueue_delete(&td->td_sigqueue, sig);
 2611                         sigqueue_delete(&p->p_sigqueue, sig);
 2612                         continue;
 2613                 }
 2614                 if (p->p_flag & P_TRACED && (p->p_flag & P_PPTRACE) == 0) {
 2615                         /*
 2616                          * If traced, always stop.
 2617                          * Remove old signal from queue before the stop.
 2618                          * XXX shrug off debugger, it causes siginfo to
 2619                          * be thrown away.
 2620                          */
 2621                         queue = &td->td_sigqueue;
 2622                         td->td_dbgksi.ksi_signo = 0;
 2623                         if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
 2624                                 queue = &p->p_sigqueue;
 2625                                 sigqueue_get(queue, sig, &td->td_dbgksi);
 2626                         }
 2627 
 2628                         mtx_unlock(&ps->ps_mtx);
 2629                         newsig = ptracestop(td, sig);
 2630                         mtx_lock(&ps->ps_mtx);
 2631 
 2632                         if (sig != newsig) {
 2633 
 2634                                 /*
 2635                                  * If parent wants us to take the signal,
 2636                                  * then it will leave it in p->p_xstat;
 2637                                  * otherwise we just look for signals again.
 2638                                 */
 2639                                 if (newsig == 0)
 2640                                         continue;
 2641                                 sig = newsig;
 2642 
 2643                                 /*
 2644                                  * Put the new signal into td_sigqueue. If the
 2645                                  * signal is being masked, look for other signals.
 2646                                  */
 2647                                 sigqueue_add(queue, sig, NULL);
 2648                                 if (SIGISMEMBER(td->td_sigmask, sig))
 2649                                         continue;
 2650                                 signotify(td);
 2651                         } else {
 2652                                 if (td->td_dbgksi.ksi_signo != 0) {
 2653                                         td->td_dbgksi.ksi_flags |= KSI_HEAD;
 2654                                         if (sigqueue_add(&td->td_sigqueue, sig,
 2655                                             &td->td_dbgksi) != 0)
 2656                                                 td->td_dbgksi.ksi_signo = 0;
 2657                                 }
 2658                                 if (td->td_dbgksi.ksi_signo == 0)
 2659                                         sigqueue_add(&td->td_sigqueue, sig,
 2660                                             NULL);
 2661                         }
 2662 
 2663                         /*
 2664                          * If the traced bit got turned off, go back up
 2665                          * to the top to rescan signals.  This ensures
 2666                          * that p_sig* and p_sigact are consistent.
 2667                          */
 2668                         if ((p->p_flag & P_TRACED) == 0)
 2669                                 continue;
 2670                 }
 2671 
 2672                 prop = sigprop(sig);
 2673 
 2674                 /*
 2675                  * Decide whether the signal should be returned.
 2676                  * Return the signal's number, or fall through
 2677                  * to clear it from the pending mask.
 2678                  */
 2679                 switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
 2680 
 2681                 case (intptr_t)SIG_DFL:
 2682                         /*
 2683                          * Don't take default actions on system processes.
 2684                          */
 2685                         if (p->p_pid <= 1) {
 2686 #ifdef DIAGNOSTIC
 2687                                 /*
 2688                                  * Are you sure you want to ignore SIGSEGV
 2689                                  * in init? XXX
 2690                                  */
 2691                                 printf("Process (pid %lu) got signal %d\n",
 2692                                         (u_long)p->p_pid, sig);
 2693 #endif
 2694                                 break;          /* == ignore */
 2695                         }
 2696                         /*
 2697                          * If there is a pending stop signal to process
 2698                          * with default action, stop here,
 2699                          * then clear the signal.  However,
 2700                          * if process is member of an orphaned
 2701                          * process group, ignore tty stop signals.
 2702                          */
 2703                         if (prop & SA_STOP) {
 2704                                 if (p->p_flag & (P_TRACED|P_WEXIT) ||
 2705                                     (p->p_pgrp->pg_jobc == 0 &&
 2706                                      prop & SA_TTYSTOP))
 2707                                         break;  /* == ignore */
 2708                                 mtx_unlock(&ps->ps_mtx);
 2709                                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
 2710                                     &p->p_mtx.lock_object, "Catching SIGSTOP");
 2711                                 p->p_flag |= P_STOPPED_SIG;
 2712                                 p->p_xstat = sig;
 2713                                 PROC_SLOCK(p);
 2714                                 sig_suspend_threads(td, p, 0);
 2715                                 thread_suspend_switch(td);
 2716                                 PROC_SUNLOCK(p);
 2717                                 mtx_lock(&ps->ps_mtx);
 2718                                 break;
 2719                         } else if (prop & SA_IGNORE) {
 2720                                 /*
 2721                                  * Except for SIGCONT, shouldn't get here.
 2722                                  * Default action is to ignore; drop it.
 2723                                  */
 2724                                 break;          /* == ignore */
 2725                         } else
 2726                                 return (sig);
 2727                         /*NOTREACHED*/
 2728 
 2729                 case (intptr_t)SIG_IGN:
 2730                         /*
 2731                          * Masking above should prevent us ever trying
 2732                          * to take action on an ignored signal other
 2733                          * than SIGCONT, unless process is traced.
 2734                          */
 2735                         if ((prop & SA_CONT) == 0 &&
 2736                             (p->p_flag & P_TRACED) == 0)
 2737                                 printf("issignal\n");
 2738                         break;          /* == ignore */
 2739 
 2740                 default:
 2741                         /*
 2742                          * This signal has an action, let
 2743                          * postsig() process it.
 2744                          */
 2745                         return (sig);
 2746                 }
 2747                 sigqueue_delete(&td->td_sigqueue, sig);         /* take the signal! */
 2748                 sigqueue_delete(&p->p_sigqueue, sig);
 2749         }
 2750         /* NOTREACHED */
 2751 }
 2752 
 2753 void
 2754 thread_stopped(struct proc *p)
 2755 {
 2756         int n;
 2757 
 2758         PROC_LOCK_ASSERT(p, MA_OWNED);
 2759         PROC_SLOCK_ASSERT(p, MA_OWNED);
 2760         n = p->p_suspcount;
 2761         if (p == curproc)
 2762                 n++;
 2763         if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
 2764                 PROC_SUNLOCK(p);
 2765                 p->p_flag &= ~P_WAITED;
 2766                 PROC_LOCK(p->p_pptr);
 2767                 childproc_stopped(p, (p->p_flag & P_TRACED) ?
 2768                         CLD_TRAPPED : CLD_STOPPED);
 2769                 PROC_UNLOCK(p->p_pptr);
 2770                 PROC_SLOCK(p);
 2771         }
 2772 }
 2773  
 2774 /*
 2775  * Take the action for the specified signal
 2776  * from the current set of pending signals.
 2777  */
 2778 int
 2779 postsig(sig)
 2780         register int sig;
 2781 {
 2782         struct thread *td = curthread;
 2783         register struct proc *p = td->td_proc;
 2784         struct sigacts *ps;
 2785         sig_t action;
 2786         ksiginfo_t ksi;
 2787         sigset_t returnmask, mask;
 2788 
 2789         KASSERT(sig != 0, ("postsig"));
 2790 
 2791         PROC_LOCK_ASSERT(p, MA_OWNED);
 2792         ps = p->p_sigacts;
 2793         mtx_assert(&ps->ps_mtx, MA_OWNED);
 2794         ksiginfo_init(&ksi);
 2795         if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
 2796             sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
 2797                 return (0);
 2798         ksi.ksi_signo = sig;
 2799         if (ksi.ksi_code == SI_TIMER)
 2800                 itimer_accept(p, ksi.ksi_timerid, &ksi);
 2801         action = ps->ps_sigact[_SIG_IDX(sig)];
 2802 #ifdef KTRACE
 2803         if (KTRPOINT(td, KTR_PSIG))
 2804                 ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
 2805                     &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
 2806 #endif
 2807         if (p->p_stops & S_SIG) {
 2808                 mtx_unlock(&ps->ps_mtx);
 2809                 stopevent(p, S_SIG, sig);
 2810                 mtx_lock(&ps->ps_mtx);
 2811         }
 2812 
 2813         if (action == SIG_DFL) {
 2814                 /*
 2815                  * Default action, where the default is to kill
 2816                  * the process.  (Other cases were ignored above.)
 2817                  */
 2818                 mtx_unlock(&ps->ps_mtx);
 2819                 sigexit(td, sig);
 2820                 /* NOTREACHED */
 2821         } else {
 2822                 /*
 2823                  * If we get here, the signal must be caught.
 2824                  */
 2825                 KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
 2826                     ("postsig action"));
 2827                 /*
 2828                  * Set the new mask value and also defer further
 2829                  * occurrences of this signal.
 2830                  *
 2831                  * Special case: user has done a sigsuspend.  Here the
 2832                  * current mask is not of interest, but rather the
 2833                  * mask from before the sigsuspend is what we want
 2834                  * restored after the signal processing is completed.
 2835                  */
 2836                 if (td->td_pflags & TDP_OLDMASK) {
 2837                         returnmask = td->td_oldsigmask;
 2838                         td->td_pflags &= ~TDP_OLDMASK;
 2839                 } else
 2840                         returnmask = td->td_sigmask;
 2841 
 2842                 mask = ps->ps_catchmask[_SIG_IDX(sig)];
 2843                 if (!SIGISMEMBER(ps->ps_signodefer, sig))
 2844                         SIGADDSET(mask, sig);
 2845                 kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
 2846                     SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
 2847 
 2848                 if (SIGISMEMBER(ps->ps_sigreset, sig)) {
 2849                         /*
 2850                          * See kern_sigaction() for origin of this code.
 2851                          */
 2852                         SIGDELSET(ps->ps_sigcatch, sig);
 2853                         if (sig != SIGCONT &&
 2854                             sigprop(sig) & SA_IGNORE)
 2855                                 SIGADDSET(ps->ps_sigignore, sig);
 2856                         ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
 2857                 }
 2858                 td->td_ru.ru_nsignals++;
 2859                 if (p->p_sig == sig) {
 2860                         p->p_code = 0;
 2861                         p->p_sig = 0;
 2862                 }
 2863                 (*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
 2864         }
 2865         return (1);
 2866 }
 2867 
 2868 /*
 2869  * Kill the current process for stated reason.
 2870  */
 2871 void
 2872 killproc(p, why)
 2873         struct proc *p;
 2874         char *why;
 2875 {
 2876 
 2877         PROC_LOCK_ASSERT(p, MA_OWNED);
 2878         CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
 2879                 p, p->p_pid, p->p_comm);
 2880         log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
 2881                 p->p_ucred ? p->p_ucred->cr_uid : -1, why);
 2882         p->p_flag |= P_WKILLED;
 2883         kern_psignal(p, SIGKILL);
 2884 }
 2885 
 2886 /*
 2887  * Force the current process to exit with the specified signal, dumping core
 2888  * if appropriate.  We bypass the normal tests for masked and caught signals,
 2889  * allowing unrecoverable failures to terminate the process without changing
 2890  * signal state.  Mark the accounting record with the signal termination.
 2891  * If dumping core, save the signal number for the debugger.  Calls exit and
 2892  * does not return.
 2893  */
 2894 void
 2895 sigexit(td, sig)
 2896         struct thread *td;
 2897         int sig;
 2898 {
 2899         struct proc *p = td->td_proc;
 2900 
 2901         PROC_LOCK_ASSERT(p, MA_OWNED);
 2902         p->p_acflag |= AXSIG;
 2903         /*
 2904          * We must be single-threading to generate a core dump.  This
 2905          * ensures that the registers in the core file are up-to-date.
 2906          * Also, the ELF dump handler assumes that the thread list doesn't
 2907          * change out from under it.
 2908          *
 2909          * XXX If another thread attempts to single-thread before us
 2910          *     (e.g. via fork()), we won't get a dump at all.
 2911          */
 2912         if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
 2913                 p->p_sig = sig;
 2914                 /*
 2915                  * Log signals which would cause core dumps
 2916                  * (Log as LOG_INFO to appease those who don't want
 2917                  * these messages.)
 2918                  * XXX : Todo, as well as euid, write out ruid too
 2919                  * Note that coredump() drops proc lock.
 2920                  */
 2921                 if (coredump(td) == 0)
 2922                         sig |= WCOREFLAG;
 2923                 if (kern_logsigexit)
 2924                         log(LOG_INFO,
 2925                             "pid %d (%s), uid %d: exited on signal %d%s\n",
 2926                             p->p_pid, p->p_comm,
 2927                             td->td_ucred ? td->td_ucred->cr_uid : -1,
 2928                             sig &~ WCOREFLAG,
 2929                             sig & WCOREFLAG ? " (core dumped)" : "");
 2930         } else
 2931                 PROC_UNLOCK(p);
 2932         exit1(td, W_EXITCODE(0, sig));
 2933         /* NOTREACHED */
 2934 }
 2935 
 2936 /*
 2937  * Send queued SIGCHLD to parent when child process's state
 2938  * is changed.
 2939  */
 2940 static void
 2941 sigparent(struct proc *p, int reason, int status)
 2942 {
 2943         PROC_LOCK_ASSERT(p, MA_OWNED);
 2944         PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
 2945 
 2946         if (p->p_ksi != NULL) {
 2947                 p->p_ksi->ksi_signo  = SIGCHLD;
 2948                 p->p_ksi->ksi_code   = reason;
 2949                 p->p_ksi->ksi_status = status;
 2950                 p->p_ksi->ksi_pid    = p->p_pid;
 2951                 p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
 2952                 if (KSI_ONQ(p->p_ksi))
 2953                         return;
 2954         }
 2955         pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
 2956 }
 2957 
 2958 static void
 2959 childproc_jobstate(struct proc *p, int reason, int status)
 2960 {
 2961         struct sigacts *ps;
 2962 
 2963         PROC_LOCK_ASSERT(p, MA_OWNED);
 2964         PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
 2965 
 2966         /*
 2967          * Wake up parent sleeping in kern_wait(), also send
 2968          * SIGCHLD to parent, but SIGCHLD does not guarantee
 2969          * that parent will awake, because parent may masked
 2970          * the signal.
 2971          */
 2972         p->p_pptr->p_flag |= P_STATCHILD;
 2973         wakeup(p->p_pptr);
 2974 
 2975         ps = p->p_pptr->p_sigacts;
 2976         mtx_lock(&ps->ps_mtx);
 2977         if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
 2978                 mtx_unlock(&ps->ps_mtx);
 2979                 sigparent(p, reason, status);
 2980         } else
 2981                 mtx_unlock(&ps->ps_mtx);
 2982 }
 2983 
 2984 void
 2985 childproc_stopped(struct proc *p, int reason)
 2986 {
 2987         childproc_jobstate(p, reason, p->p_xstat);
 2988 }
 2989 
 2990 void
 2991 childproc_continued(struct proc *p)
 2992 {
 2993         childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
 2994 }
 2995 
 2996 void
 2997 childproc_exited(struct proc *p)
 2998 {
 2999         int reason;
 3000         int status = p->p_xstat; /* convert to int */
 3001 
 3002         reason = CLD_EXITED;
 3003         if (WCOREDUMP(status))
 3004                 reason = CLD_DUMPED;
 3005         else if (WIFSIGNALED(status))
 3006                 reason = CLD_KILLED;
 3007         /*
 3008          * XXX avoid calling wakeup(p->p_pptr), the work is
 3009          * done in exit1().
 3010          */
 3011         sigparent(p, reason, status);
 3012 }
 3013 
 3014 /*
 3015  * We only have 1 character for the core count in the format
 3016  * string, so the range will be 0-9
 3017  */
 3018 #define MAX_NUM_CORES 10
 3019 static int num_cores = 5;
 3020 
 3021 static int
 3022 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
 3023 {
 3024         int error;
 3025         int new_val;
 3026 
 3027         new_val = num_cores;
 3028         error = sysctl_handle_int(oidp, &new_val, 0, req);
 3029         if (error != 0 || req->newptr == NULL)
 3030                 return (error);
 3031         if (new_val > MAX_NUM_CORES)
 3032                 new_val = MAX_NUM_CORES;
 3033         if (new_val < 0)
 3034                 new_val = 0;
 3035         num_cores = new_val;
 3036         return (0);
 3037 }
 3038 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW, 
 3039             0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
 3040 
 3041 #if defined(COMPRESS_USER_CORES)
 3042 int compress_user_cores = 1;
 3043 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
 3044         &compress_user_cores, 0, "");
 3045 
 3046 int compress_user_cores_gzlevel = -1; /* default level */
 3047 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
 3048     &compress_user_cores_gzlevel, -1, "user core gz compression level");
 3049 
 3050 #define GZ_SUFFIX       ".gz"   
 3051 #define GZ_SUFFIX_LEN   3       
 3052 #endif
 3053 
 3054 static char corefilename[MAXPATHLEN] = {"%N.core"};
 3055 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
 3056               sizeof(corefilename), "process corefile name format string");
 3057 
 3058 /*
 3059  * expand_name(name, uid, pid, td, compress)
 3060  * Expand the name described in corefilename, using name, uid, and pid.
 3061  * corefilename is a printf-like string, with three format specifiers:
 3062  *      %N      name of process ("name")
 3063  *      %P      process id (pid)
 3064  *      %U      user id (uid)
 3065  * For example, "%N.core" is the default; they can be disabled completely
 3066  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
 3067  * This is controlled by the sysctl variable kern.corefile (see above).
 3068  */
 3069 static char *
 3070 expand_name(const char *name, uid_t uid, pid_t pid, struct thread *td,
 3071     int compress)
 3072 {
 3073         struct sbuf sb;
 3074         const char *format;
 3075         char *temp;
 3076         size_t i;
 3077         int indexpos;
 3078         char *hostname;
 3079         
 3080         hostname = NULL;
 3081         format = corefilename;
 3082         temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
 3083         if (temp == NULL)
 3084                 return (NULL);
 3085         indexpos = -1;
 3086         (void)sbuf_new(&sb, temp, MAXPATHLEN, SBUF_FIXEDLEN);
 3087         for (i = 0; format[i]; i++) {
 3088                 switch (format[i]) {
 3089                 case '%':       /* Format character */
 3090                         i++;
 3091                         switch (format[i]) {
 3092                         case '%':
 3093                                 sbuf_putc(&sb, '%');
 3094                                 break;
 3095                         case 'H':       /* hostname */
 3096                                 if (hostname == NULL) {
 3097                                         hostname = malloc(MAXHOSTNAMELEN,
 3098                                             M_TEMP, M_NOWAIT);
 3099                                         if (hostname == NULL) {
 3100                                                 log(LOG_ERR,
 3101                                                     "pid %ld (%s), uid (%lu): "
 3102                                                     "unable to alloc memory "
 3103                                                     "for corefile hostname\n",
 3104                                                     (long)pid, name,
 3105                                                     (u_long)uid);
 3106                                                 goto nomem;
 3107                                         }
 3108                                 }
 3109                                 getcredhostname(td->td_ucred, hostname,
 3110                                     MAXHOSTNAMELEN);
 3111                                 sbuf_printf(&sb, "%s", hostname);
 3112                                 break;
 3113                         case 'I':       /* autoincrementing index */
 3114                                 sbuf_printf(&sb, "");
 3115                                 indexpos = sbuf_len(&sb) - 1;
 3116                                 break;
 3117                         case 'N':       /* process name */
 3118                                 sbuf_printf(&sb, "%s", name);
 3119                                 break;
 3120                         case 'P':       /* process id */
 3121                                 sbuf_printf(&sb, "%u", pid);
 3122                                 break;
 3123                         case 'U':       /* user id */
 3124                                 sbuf_printf(&sb, "%u", uid);
 3125                                 break;
 3126                         default:
 3127                                 log(LOG_ERR,
 3128                                     "Unknown format character %c in "
 3129                                     "corename `%s'\n", format[i], format);
 3130                         }
 3131                         break;
 3132                 default:
 3133                         sbuf_putc(&sb, format[i]);
 3134                 }
 3135         }
 3136         free(hostname, M_TEMP);
 3137 #ifdef COMPRESS_USER_CORES
 3138         if (compress) {
 3139                 sbuf_printf(&sb, GZ_SUFFIX);
 3140         }
 3141 #endif
 3142         if (sbuf_error(&sb) != 0) {
 3143                 log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
 3144                     "long\n", (long)pid, name, (u_long)uid);
 3145 nomem:
 3146                 sbuf_delete(&sb);
 3147                 free(temp, M_TEMP);
 3148                 return (NULL);
 3149         }
 3150         sbuf_finish(&sb);
 3151         sbuf_delete(&sb);
 3152 
 3153         /*
 3154          * If the core format has a %I in it, then we need to check
 3155          * for existing corefiles before returning a name.
 3156          * To do this we iterate over 0..num_cores to find a
 3157          * non-existing core file name to use.
 3158          */
 3159         if (indexpos != -1) {
 3160                 struct nameidata nd;
 3161                 int error, n;
 3162                 int flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
 3163                 int cmode = S_IRUSR | S_IWUSR;
 3164                 int vfslocked;
 3165 
 3166                 for (n = 0; n < num_cores; n++) {
 3167                         temp[indexpos] = '' + n;
 3168                         NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE,
 3169                             temp, td); 
 3170                         error = vn_open(&nd, &flags, cmode, NULL);
 3171                         if (error) {
 3172                                 if (error == EEXIST) {
 3173                                         continue;
 3174                                 }
 3175                                 log(LOG_ERR,
 3176                                     "pid %d (%s), uid (%u):  Path `%s' failed "
 3177                                     "on initial open test, error = %d\n",
 3178                                     pid, name, uid, temp, error);
 3179                                 free(temp, M_TEMP);
 3180                                 return (NULL);
 3181                         }
 3182                         vfslocked = NDHASGIANT(&nd);
 3183                         NDFREE(&nd, NDF_ONLY_PNBUF);
 3184                         VOP_UNLOCK(nd.ni_vp, 0);
 3185                         error = vn_close(nd.ni_vp, FWRITE, td->td_ucred, td);
 3186                         VFS_UNLOCK_GIANT(vfslocked);
 3187                         if (error) {
 3188                                 log(LOG_ERR,
 3189                                     "pid %d (%s), uid (%u):  Path `%s' failed "
 3190                                     "on close after initial open test, "
 3191                                     "error = %d\n",
 3192                                     pid, name, uid, temp, error);
 3193                                 free(temp, M_TEMP);
 3194                                 return (NULL);
 3195                         }
 3196                         break;
 3197                 }
 3198         }
 3199         return (temp);
 3200 }
 3201 
 3202 /*
 3203  * Dump a process' core.  The main routine does some
 3204  * policy checking, and creates the name of the coredump;
 3205  * then it passes on a vnode and a size limit to the process-specific
 3206  * coredump routine if there is one; if there _is not_ one, it returns
 3207  * ENOSYS; otherwise it returns the error from the process-specific routine.
 3208  */
 3209 
 3210 static int
 3211 coredump(struct thread *td)
 3212 {
 3213         struct proc *p = td->td_proc;
 3214         register struct vnode *vp;
 3215         register struct ucred *cred = td->td_ucred;
 3216         struct flock lf;
 3217         struct nameidata nd;
 3218         struct vattr vattr;
 3219         int error, error1, flags, locked;
 3220         struct mount *mp;
 3221         char *name;                     /* name of corefile */
 3222         off_t limit;
 3223         int vfslocked;
 3224         int compress;
 3225 
 3226 #ifdef COMPRESS_USER_CORES
 3227         compress = compress_user_cores;
 3228 #else
 3229         compress = 0;
 3230 #endif
 3231         PROC_LOCK_ASSERT(p, MA_OWNED);
 3232         MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
 3233         _STOPEVENT(p, S_CORE, 0);
 3234 
 3235         name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid, td,
 3236             compress);
 3237         if (name == NULL) {
 3238                 PROC_UNLOCK(p);
 3239 #ifdef AUDIT
 3240                 audit_proc_coredump(td, NULL, EINVAL);
 3241 #endif
 3242                 return (EINVAL);
 3243         }
 3244         if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
 3245                 PROC_UNLOCK(p);
 3246 #ifdef AUDIT
 3247                 audit_proc_coredump(td, name, EFAULT);
 3248 #endif
 3249                 free(name, M_TEMP);
 3250                 return (EFAULT);
 3251         }
 3252         
 3253         /*
 3254          * Note that the bulk of limit checking is done after
 3255          * the corefile is created.  The exception is if the limit
 3256          * for corefiles is 0, in which case we don't bother
 3257          * creating the corefile at all.  This layout means that
 3258          * a corefile is truncated instead of not being created,
 3259          * if it is larger than the limit.
 3260          */
 3261         limit = (off_t)lim_cur(p, RLIMIT_CORE);
 3262         if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
 3263                 PROC_UNLOCK(p);
 3264 #ifdef AUDIT
 3265                 audit_proc_coredump(td, name, EFBIG);
 3266 #endif
 3267                 free(name, M_TEMP);
 3268                 return (EFBIG);
 3269         }
 3270         PROC_UNLOCK(p);
 3271 
 3272 restart:
 3273         NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
 3274         flags = O_CREAT | FWRITE | O_NOFOLLOW;
 3275         error = vn_open_cred(&nd, &flags, S_IRUSR | S_IWUSR, VN_OPEN_NOAUDIT,
 3276             cred, NULL);
 3277         if (error) {
 3278 #ifdef AUDIT
 3279                 audit_proc_coredump(td, name, error);
 3280 #endif
 3281                 free(name, M_TEMP);
 3282                 return (error);
 3283         }
 3284         vfslocked = NDHASGIANT(&nd);
 3285         NDFREE(&nd, NDF_ONLY_PNBUF);
 3286         vp = nd.ni_vp;
 3287 
 3288         /* Don't dump to non-regular files or files with links. */
 3289         if (vp->v_type != VREG ||
 3290             VOP_GETATTR(vp, &vattr, cred) || vattr.va_nlink != 1) {
 3291                 VOP_UNLOCK(vp, 0);
 3292                 error = EFAULT;
 3293                 goto close;
 3294         }
 3295 
 3296         VOP_UNLOCK(vp, 0);
 3297         lf.l_whence = SEEK_SET;
 3298         lf.l_start = 0;
 3299         lf.l_len = 0;
 3300         lf.l_type = F_WRLCK;
 3301         locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
 3302 
 3303         if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 3304                 lf.l_type = F_UNLCK;
 3305                 if (locked)
 3306                         VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
 3307                 if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
 3308                         goto out;
 3309                 if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
 3310                         goto out;
 3311                 VFS_UNLOCK_GIANT(vfslocked);
 3312                 goto restart;
 3313         }
 3314 
 3315         VATTR_NULL(&vattr);
 3316         vattr.va_size = 0;
 3317         if (set_core_nodump_flag)
 3318                 vattr.va_flags = UF_NODUMP;
 3319         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 3320         VOP_SETATTR(vp, &vattr, cred);
 3321         VOP_UNLOCK(vp, 0);
 3322         vn_finished_write(mp);
 3323         PROC_LOCK(p);
 3324         p->p_acflag |= ACORE;
 3325         PROC_UNLOCK(p);
 3326 
 3327         error = p->p_sysent->sv_coredump ?
 3328           p->p_sysent->sv_coredump(td, vp, limit, compress ? IMGACT_CORE_COMPRESS : 0) :
 3329           ENOSYS;
 3330 
 3331         if (locked) {
 3332                 lf.l_type = F_UNLCK;
 3333                 VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
 3334         }
 3335 close:
 3336         error1 = vn_close(vp, FWRITE, cred, td);
 3337         if (error == 0)
 3338                 error = error1;
 3339 out:
 3340 #ifdef AUDIT
 3341         audit_proc_coredump(td, name, error);
 3342 #endif
 3343         free(name, M_TEMP);
 3344         VFS_UNLOCK_GIANT(vfslocked);
 3345         return (error);
 3346 }
 3347 
 3348 /*
 3349  * Nonexistent system call-- signal process (may want to handle it).  Flag
 3350  * error in case process won't see signal immediately (blocked or ignored).
 3351  */
 3352 #ifndef _SYS_SYSPROTO_H_
 3353 struct nosys_args {
 3354         int     dummy;
 3355 };
 3356 #endif
 3357 /* ARGSUSED */
 3358 int
 3359 nosys(td, args)
 3360         struct thread *td;
 3361         struct nosys_args *args;
 3362 {
 3363         struct proc *p = td->td_proc;
 3364 
 3365         PROC_LOCK(p);
 3366         tdsignal(td, SIGSYS);
 3367         PROC_UNLOCK(p);
 3368         return (ENOSYS);
 3369 }
 3370 
 3371 /*
 3372  * Send a SIGIO or SIGURG signal to a process or process group using stored
 3373  * credentials rather than those of the current process.
 3374  */
 3375 void
 3376 pgsigio(sigiop, sig, checkctty)
 3377         struct sigio **sigiop;
 3378         int sig, checkctty;
 3379 {
 3380         ksiginfo_t ksi;
 3381         struct sigio *sigio;
 3382 
 3383         ksiginfo_init(&ksi);
 3384         ksi.ksi_signo = sig;
 3385         ksi.ksi_code = SI_KERNEL;
 3386 
 3387         SIGIO_LOCK();
 3388         sigio = *sigiop;
 3389         if (sigio == NULL) {
 3390                 SIGIO_UNLOCK();
 3391                 return;
 3392         }
 3393         if (sigio->sio_pgid > 0) {
 3394                 PROC_LOCK(sigio->sio_proc);
 3395                 if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
 3396                         kern_psignal(sigio->sio_proc, sig);
 3397                 PROC_UNLOCK(sigio->sio_proc);
 3398         } else if (sigio->sio_pgid < 0) {
 3399                 struct proc *p;
 3400 
 3401                 PGRP_LOCK(sigio->sio_pgrp);
 3402                 LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
 3403                         PROC_LOCK(p);
 3404                         if (p->p_state == PRS_NORMAL &&
 3405                             CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
 3406                             (checkctty == 0 || (p->p_flag & P_CONTROLT)))
 3407                                 kern_psignal(p, sig);
 3408                         PROC_UNLOCK(p);
 3409                 }
 3410                 PGRP_UNLOCK(sigio->sio_pgrp);
 3411         }
 3412         SIGIO_UNLOCK();
 3413 }
 3414 
 3415 static int
 3416 filt_sigattach(struct knote *kn)
 3417 {
 3418         struct proc *p = curproc;
 3419 
 3420         kn->kn_ptr.p_proc = p;
 3421         kn->kn_flags |= EV_CLEAR;               /* automatically set */
 3422 
 3423         knlist_add(&p->p_klist, kn, 0);
 3424 
 3425         return (0);
 3426 }
 3427 
 3428 static void
 3429 filt_sigdetach(struct knote *kn)
 3430 {
 3431         struct proc *p = kn->kn_ptr.p_proc;
 3432 
 3433         knlist_remove(&p->p_klist, kn, 0);
 3434 }
 3435 
 3436 /*
 3437  * signal knotes are shared with proc knotes, so we apply a mask to 
 3438  * the hint in order to differentiate them from process hints.  This
 3439  * could be avoided by using a signal-specific knote list, but probably
 3440  * isn't worth the trouble.
 3441  */
 3442 static int
 3443 filt_signal(struct knote *kn, long hint)
 3444 {
 3445 
 3446         if (hint & NOTE_SIGNAL) {
 3447                 hint &= ~NOTE_SIGNAL;
 3448 
 3449                 if (kn->kn_id == hint)
 3450                         kn->kn_data++;
 3451         }
 3452         return (kn->kn_data != 0);
 3453 }
 3454 
 3455 struct sigacts *
 3456 sigacts_alloc(void)
 3457 {
 3458         struct sigacts *ps;
 3459 
 3460         ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
 3461         ps->ps_refcnt = 1;
 3462         mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
 3463         return (ps);
 3464 }
 3465 
 3466 void
 3467 sigacts_free(struct sigacts *ps)
 3468 {
 3469 
 3470         mtx_lock(&ps->ps_mtx);
 3471         ps->ps_refcnt--;
 3472         if (ps->ps_refcnt == 0) {
 3473                 mtx_destroy(&ps->ps_mtx);
 3474                 free(ps, M_SUBPROC);
 3475         } else
 3476                 mtx_unlock(&ps->ps_mtx);
 3477 }
 3478 
 3479 struct sigacts *
 3480 sigacts_hold(struct sigacts *ps)
 3481 {
 3482         mtx_lock(&ps->ps_mtx);
 3483         ps->ps_refcnt++;
 3484         mtx_unlock(&ps->ps_mtx);
 3485         return (ps);
 3486 }
 3487 
 3488 void
 3489 sigacts_copy(struct sigacts *dest, struct sigacts *src)
 3490 {
 3491 
 3492         KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
 3493         mtx_lock(&src->ps_mtx);
 3494         bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
 3495         mtx_unlock(&src->ps_mtx);
 3496 }
 3497 
 3498 int
 3499 sigacts_shared(struct sigacts *ps)
 3500 {
 3501         int shared;
 3502 
 3503         mtx_lock(&ps->ps_mtx);
 3504         shared = ps->ps_refcnt > 1;
 3505         mtx_unlock(&ps->ps_mtx);
 3506         return (shared);
 3507 }

Cache object: 5c2aa53377ac2690de62a4a89a1b172d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.