The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_slaballoc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * (MPSAFE)
    3  *
    4  * KERN_SLABALLOC.C     - Kernel SLAB memory allocator
    5  * 
    6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
    7  * 
    8  * This code is derived from software contributed to The DragonFly Project
    9  * by Matthew Dillon <dillon@backplane.com>
   10  * 
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in
   19  *    the documentation and/or other materials provided with the
   20  *    distribution.
   21  * 3. Neither the name of The DragonFly Project nor the names of its
   22  *    contributors may be used to endorse or promote products derived
   23  *    from this software without specific, prior written permission.
   24  * 
   25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
   29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
   31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  * This module implements a slab allocator drop-in replacement for the
   39  * kernel malloc().
   40  *
   41  * A slab allocator reserves a ZONE for each chunk size, then lays the
   42  * chunks out in an array within the zone.  Allocation and deallocation
   43  * is nearly instantanious, and fragmentation/overhead losses are limited
   44  * to a fixed worst-case amount.
   45  *
   46  * The downside of this slab implementation is in the chunk size
   47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
   48  * In a kernel implementation all this memory will be physical so
   49  * the zone size is adjusted downward on machines with less physical
   50  * memory.  The upside is that overhead is bounded... this is the *worst*
   51  * case overhead.
   52  *
   53  * Slab management is done on a per-cpu basis and no locking or mutexes
   54  * are required, only a critical section.  When one cpu frees memory
   55  * belonging to another cpu's slab manager an asynchronous IPI message
   56  * will be queued to execute the operation.   In addition, both the
   57  * high level slab allocator and the low level zone allocator optimize
   58  * M_ZERO requests, and the slab allocator does not have to pre initialize
   59  * the linked list of chunks.
   60  *
   61  * XXX Balancing is needed between cpus.  Balance will be handled through
   62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
   63  *
   64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
   65  * the new zone should be restricted to M_USE_RESERVE requests only.
   66  *
   67  *      Alloc Size      Chunking        Number of zones
   68  *      0-127           8               16
   69  *      128-255         16              8
   70  *      256-511         32              8
   71  *      512-1023        64              8
   72  *      1024-2047       128             8
   73  *      2048-4095       256             8
   74  *      4096-8191       512             8
   75  *      8192-16383      1024            8
   76  *      16384-32767     2048            8
   77  *      (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
   78  *
   79  *      Allocations >= ZoneLimit go directly to kmem.
   80  *
   81  * Alignment properties:
   82  * - All power-of-2 sized allocations are power-of-2 aligned.
   83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
   84  *   power-of-2 round up of 'size'.
   85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
   86  *   above table 'Chunking' column).
   87  *
   88  *                      API REQUIREMENTS AND SIDE EFFECTS
   89  *
   90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
   91  *    have remained compatible with the following API requirements:
   92  *
   93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
   94  *    + ability to allocate arbitrarily large chunks of memory
   95  */
   96 
   97 #include "opt_vm.h"
   98 
   99 #include <sys/param.h>
  100 #include <sys/systm.h>
  101 #include <sys/kernel.h>
  102 #include <sys/slaballoc.h>
  103 #include <sys/mbuf.h>
  104 #include <sys/vmmeter.h>
  105 #include <sys/lock.h>
  106 #include <sys/thread.h>
  107 #include <sys/globaldata.h>
  108 #include <sys/sysctl.h>
  109 #include <sys/ktr.h>
  110 
  111 #include <vm/vm.h>
  112 #include <vm/vm_param.h>
  113 #include <vm/vm_kern.h>
  114 #include <vm/vm_extern.h>
  115 #include <vm/vm_object.h>
  116 #include <vm/pmap.h>
  117 #include <vm/vm_map.h>
  118 #include <vm/vm_page.h>
  119 #include <vm/vm_pageout.h>
  120 
  121 #include <machine/cpu.h>
  122 
  123 #include <sys/thread2.h>
  124 #include <vm/vm_page2.h>
  125 
  126 #define btokup(z)       (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
  127 
  128 #define MEMORY_STRING   "ptr=%p type=%p size=%lu flags=%04x"
  129 #define MEMORY_ARGS     void *ptr, void *type, unsigned long size, int flags
  130 
  131 #if !defined(KTR_MEMORY)
  132 #define KTR_MEMORY      KTR_ALL
  133 #endif
  134 KTR_INFO_MASTER(memory);
  135 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
  136 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
  137 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
  138 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
  139 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
  140 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
  141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
  142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
  143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
  144 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
  145 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
  146 
  147 #define logmemory(name, ptr, type, size, flags)                         \
  148         KTR_LOG(memory_ ## name, ptr, type, size, flags)
  149 #define logmemory_quick(name)                                           \
  150         KTR_LOG(memory_ ## name)
  151 
  152 /*
  153  * Fixed globals (not per-cpu)
  154  */
  155 static int ZoneSize;
  156 static int ZoneLimit;
  157 static int ZonePageCount;
  158 static uintptr_t ZoneMask;
  159 static int ZoneBigAlloc;                /* in KB */
  160 static int ZoneGenAlloc;                /* in KB */
  161 struct malloc_type *kmemstatistics;     /* exported to vmstat */
  162 static int32_t weirdary[16];
  163 
  164 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
  165 static void kmem_slab_free(void *ptr, vm_size_t bytes);
  166 
  167 #if defined(INVARIANTS)
  168 static void chunk_mark_allocated(SLZone *z, void *chunk);
  169 static void chunk_mark_free(SLZone *z, void *chunk);
  170 #else
  171 #define chunk_mark_allocated(z, chunk)
  172 #define chunk_mark_free(z, chunk)
  173 #endif
  174 
  175 /*
  176  * Misc constants.  Note that allocations that are exact multiples of 
  177  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
  178  */
  179 #define ZONE_RELS_THRESH        32              /* threshold number of zones */
  180 
  181 /*
  182  * The WEIRD_ADDR is used as known text to copy into free objects to
  183  * try to create deterministic failure cases if the data is accessed after
  184  * free.
  185  */    
  186 #define WEIRD_ADDR      0xdeadc0de
  187 #define MAX_COPY        sizeof(weirdary)
  188 #define ZERO_LENGTH_PTR ((void *)-8)
  189 
  190 /*
  191  * Misc global malloc buckets
  192  */
  193 
  194 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
  195 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
  196 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
  197  
  198 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
  199 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
  200 
  201 /*
  202  * Initialize the slab memory allocator.  We have to choose a zone size based
  203  * on available physical memory.  We choose a zone side which is approximately
  204  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
  205  * 128K.  The zone size is limited to the bounds set in slaballoc.h
  206  * (typically 32K min, 128K max). 
  207  */
  208 static void kmeminit(void *dummy);
  209 
  210 char *ZeroPage;
  211 
  212 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
  213 
  214 #ifdef INVARIANTS
  215 /*
  216  * If enabled any memory allocated without M_ZERO is initialized to -1.
  217  */
  218 static int  use_malloc_pattern;
  219 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
  220     &use_malloc_pattern, 0,
  221     "Initialize memory to -1 if M_ZERO not specified");
  222 #endif
  223 
  224 static int ZoneRelsThresh = ZONE_RELS_THRESH;
  225 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
  226 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
  227 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
  228 static long SlabsAllocated;
  229 static long SlabsFreed;
  230 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD, &SlabsAllocated, 0, "");
  231 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD, &SlabsFreed, 0, "");
  232 
  233 /*
  234  * Returns the kernel memory size limit for the purposes of initializing
  235  * various subsystem caches.  The smaller of available memory and the KVM
  236  * memory space is returned.
  237  *
  238  * The size in megabytes is returned.
  239  */
  240 size_t
  241 kmem_lim_size(void)
  242 {
  243     size_t limsize;
  244 
  245     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
  246     if (limsize > KvaSize)
  247         limsize = KvaSize;
  248     return (limsize / (1024 * 1024));
  249 }
  250 
  251 static void
  252 kmeminit(void *dummy)
  253 {
  254     size_t limsize;
  255     int usesize;
  256     int i;
  257 
  258     limsize = kmem_lim_size();
  259     usesize = (int)(limsize * 1024);    /* convert to KB */
  260 
  261     /*
  262      * If the machine has a large KVM space and more than 8G of ram,
  263      * double the zone release threshold to reduce SMP invalidations.
  264      * If more than 16G of ram, do it again.
  265      *
  266      * The BIOS eats a little ram so add some slop.  We want 8G worth of
  267      * memory sticks to trigger the first adjustment.
  268      */
  269     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
  270             if (limsize >= 7 * 1024)
  271                     ZoneRelsThresh *= 2;
  272             if (limsize >= 15 * 1024)
  273                     ZoneRelsThresh *= 2;
  274     }
  275 
  276     /*
  277      * Calculate the zone size.  This typically calculates to
  278      * ZALLOC_MAX_ZONE_SIZE
  279      */
  280     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
  281     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
  282         ZoneSize <<= 1;
  283     ZoneLimit = ZoneSize / 4;
  284     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
  285         ZoneLimit = ZALLOC_ZONE_LIMIT;
  286     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
  287     ZonePageCount = ZoneSize / PAGE_SIZE;
  288 
  289     for (i = 0; i < NELEM(weirdary); ++i)
  290         weirdary[i] = WEIRD_ADDR;
  291 
  292     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
  293 
  294     if (bootverbose)
  295         kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
  296 }
  297 
  298 /*
  299  * Initialize a malloc type tracking structure.
  300  */
  301 void
  302 malloc_init(void *data)
  303 {
  304     struct malloc_type *type = data;
  305     size_t limsize;
  306 
  307     if (type->ks_magic != M_MAGIC)
  308         panic("malloc type lacks magic");
  309                                            
  310     if (type->ks_limit != 0)
  311         return;
  312 
  313     if (vmstats.v_page_count == 0)
  314         panic("malloc_init not allowed before vm init");
  315 
  316     limsize = kmem_lim_size() * (1024 * 1024);
  317     type->ks_limit = limsize / 10;
  318 
  319     type->ks_next = kmemstatistics;
  320     kmemstatistics = type;
  321 }
  322 
  323 void
  324 malloc_uninit(void *data)
  325 {
  326     struct malloc_type *type = data;
  327     struct malloc_type *t;
  328 #ifdef INVARIANTS
  329     int i;
  330     long ttl;
  331 #endif
  332 
  333     if (type->ks_magic != M_MAGIC)
  334         panic("malloc type lacks magic");
  335 
  336     if (vmstats.v_page_count == 0)
  337         panic("malloc_uninit not allowed before vm init");
  338 
  339     if (type->ks_limit == 0)
  340         panic("malloc_uninit on uninitialized type");
  341 
  342     /* Make sure that all pending kfree()s are finished. */
  343     lwkt_synchronize_ipiqs("muninit");
  344 
  345 #ifdef INVARIANTS
  346     /*
  347      * memuse is only correct in aggregation.  Due to memory being allocated
  348      * on one cpu and freed on another individual array entries may be 
  349      * negative or positive (canceling each other out).
  350      */
  351     for (i = ttl = 0; i < ncpus; ++i)
  352         ttl += type->ks_memuse[i];
  353     if (ttl) {
  354         kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
  355             ttl, type->ks_shortdesc, i);
  356     }
  357 #endif
  358     if (type == kmemstatistics) {
  359         kmemstatistics = type->ks_next;
  360     } else {
  361         for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
  362             if (t->ks_next == type) {
  363                 t->ks_next = type->ks_next;
  364                 break;
  365             }
  366         }
  367     }
  368     type->ks_next = NULL;
  369     type->ks_limit = 0;
  370 }
  371 
  372 /*
  373  * Increase the kmalloc pool limit for the specified pool.  No changes
  374  * are the made if the pool would shrink.
  375  */
  376 void
  377 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
  378 {
  379     if (type->ks_limit == 0)
  380         malloc_init(type);
  381     if (bytes == 0)
  382         bytes = KvaSize;
  383     if (type->ks_limit < bytes)
  384         type->ks_limit = bytes;
  385 }
  386 
  387 /*
  388  * Dynamically create a malloc pool.  This function is a NOP if *typep is
  389  * already non-NULL.
  390  */
  391 void
  392 kmalloc_create(struct malloc_type **typep, const char *descr)
  393 {
  394         struct malloc_type *type;
  395 
  396         if (*typep == NULL) {
  397                 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
  398                 type->ks_magic = M_MAGIC;
  399                 type->ks_shortdesc = descr;
  400                 malloc_init(type);
  401                 *typep = type;
  402         }
  403 }
  404 
  405 /*
  406  * Destroy a dynamically created malloc pool.  This function is a NOP if
  407  * the pool has already been destroyed.
  408  */
  409 void
  410 kmalloc_destroy(struct malloc_type **typep)
  411 {
  412         if (*typep != NULL) {
  413                 malloc_uninit(*typep);
  414                 kfree(*typep, M_TEMP);
  415                 *typep = NULL;
  416         }
  417 }
  418 
  419 /*
  420  * Calculate the zone index for the allocation request size and set the
  421  * allocation request size to that particular zone's chunk size.
  422  */
  423 static __inline int
  424 zoneindex(unsigned long *bytes, unsigned long *align)
  425 {
  426     unsigned int n = (unsigned int)*bytes;      /* unsigned for shift opt */
  427     if (n < 128) {
  428         *bytes = n = (n + 7) & ~7;
  429         *align = 8;
  430         return(n / 8 - 1);              /* 8 byte chunks, 16 zones */
  431     }
  432     if (n < 256) {
  433         *bytes = n = (n + 15) & ~15;
  434         *align = 16;
  435         return(n / 16 + 7);
  436     }
  437     if (n < 8192) {
  438         if (n < 512) {
  439             *bytes = n = (n + 31) & ~31;
  440             *align = 32;
  441             return(n / 32 + 15);
  442         }
  443         if (n < 1024) {
  444             *bytes = n = (n + 63) & ~63;
  445             *align = 64;
  446             return(n / 64 + 23);
  447         } 
  448         if (n < 2048) {
  449             *bytes = n = (n + 127) & ~127;
  450             *align = 128;
  451             return(n / 128 + 31);
  452         }
  453         if (n < 4096) {
  454             *bytes = n = (n + 255) & ~255;
  455             *align = 256;
  456             return(n / 256 + 39);
  457         }
  458         *bytes = n = (n + 511) & ~511;
  459         *align = 512;
  460         return(n / 512 + 47);
  461     }
  462 #if ZALLOC_ZONE_LIMIT > 8192
  463     if (n < 16384) {
  464         *bytes = n = (n + 1023) & ~1023;
  465         *align = 1024;
  466         return(n / 1024 + 55);
  467     }
  468 #endif
  469 #if ZALLOC_ZONE_LIMIT > 16384
  470     if (n < 32768) {
  471         *bytes = n = (n + 2047) & ~2047;
  472         *align = 2048;
  473         return(n / 2048 + 63);
  474     }
  475 #endif
  476     panic("Unexpected byte count %d", n);
  477     return(0);
  478 }
  479 
  480 static __inline
  481 void
  482 clean_zone_rchunks(SLZone *z)
  483 {
  484     SLChunk *bchunk;
  485 
  486     while ((bchunk = z->z_RChunks) != NULL) {
  487         cpu_ccfence();
  488         if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
  489             *z->z_LChunksp = bchunk;
  490             while (bchunk) {
  491                 chunk_mark_free(z, bchunk);
  492                 z->z_LChunksp = &bchunk->c_Next;
  493                 bchunk = bchunk->c_Next;
  494                 ++z->z_NFree;
  495             }
  496             break;
  497         }
  498         /* retry */
  499     }
  500 }
  501 
  502 /*
  503  * If the zone becomes totally free, and there are other zones we
  504  * can allocate from, move this zone to the FreeZones list.  Since
  505  * this code can be called from an IPI callback, do *NOT* try to mess
  506  * with kernel_map here.  Hysteresis will be performed at malloc() time.
  507  */
  508 static __inline
  509 SLZone *
  510 check_zone_free(SLGlobalData *slgd, SLZone *z)
  511 {
  512     if (z->z_NFree == z->z_NMax &&
  513         (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
  514         z->z_RCount == 0
  515     ) {
  516         SLZone **pz;
  517         int *kup;
  518 
  519         for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
  520             ;
  521         *pz = z->z_Next;
  522         z->z_Magic = -1;
  523         z->z_Next = slgd->FreeZones;
  524         slgd->FreeZones = z;
  525         ++slgd->NFreeZones;
  526         kup = btokup(z);
  527         *kup = 0;
  528         z = *pz;
  529     } else {
  530         z = z->z_Next;
  531     }
  532     return z;
  533 }
  534 
  535 #ifdef SLAB_DEBUG
  536 /*
  537  * Used to debug memory corruption issues.  Record up to (typically 32)
  538  * allocation sources for this zone (for a particular chunk size).
  539  */
  540 
  541 static void
  542 slab_record_source(SLZone *z, const char *file, int line)
  543 {
  544     int i;
  545     int b = line & (SLAB_DEBUG_ENTRIES - 1);
  546 
  547     i = b;
  548     do {
  549         if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
  550                 return;
  551         if (z->z_Sources[i].file == NULL)
  552                 break;
  553         i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
  554     } while (i != b);
  555     z->z_Sources[i].file = file;
  556     z->z_Sources[i].line = line;
  557 }
  558 
  559 #endif
  560 
  561 static __inline unsigned long
  562 powerof2_size(unsigned long size)
  563 {
  564         int i;
  565 
  566         if (size == 0 || powerof2(size))
  567                 return size;
  568 
  569         i = flsl(size);
  570         return (1UL << i);
  571 }
  572 
  573 /*
  574  * kmalloc()    (SLAB ALLOCATOR)
  575  *
  576  *      Allocate memory via the slab allocator.  If the request is too large,
  577  *      or if it page-aligned beyond a certain size, we fall back to the
  578  *      KMEM subsystem.  A SLAB tracking descriptor must be specified, use
  579  *      &SlabMisc if you don't care.
  580  *
  581  *      M_RNOWAIT       - don't block.
  582  *      M_NULLOK        - return NULL instead of blocking.
  583  *      M_ZERO          - zero the returned memory.
  584  *      M_USE_RESERVE   - allow greater drawdown of the free list
  585  *      M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
  586  *      M_POWEROF2      - roundup size to the nearest power of 2
  587  *
  588  * MPSAFE
  589  */
  590 
  591 #ifdef SLAB_DEBUG
  592 void *
  593 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
  594               const char *file, int line)
  595 #else
  596 void *
  597 kmalloc(unsigned long size, struct malloc_type *type, int flags)
  598 #endif
  599 {
  600     SLZone *z;
  601     SLChunk *chunk;
  602     SLGlobalData *slgd;
  603     struct globaldata *gd;
  604     unsigned long align;
  605     int zi;
  606 #ifdef INVARIANTS
  607     int i;
  608 #endif
  609 
  610     logmemory_quick(malloc_beg);
  611     gd = mycpu;
  612     slgd = &gd->gd_slab;
  613 
  614     /*
  615      * XXX silly to have this in the critical path.
  616      */
  617     if (type->ks_limit == 0) {
  618         crit_enter();
  619         if (type->ks_limit == 0)
  620             malloc_init(type);
  621         crit_exit();
  622     }
  623     ++type->ks_calls;
  624 
  625     if (flags & M_POWEROF2)
  626         size = powerof2_size(size);
  627 
  628     /*
  629      * Handle the case where the limit is reached.  Panic if we can't return
  630      * NULL.  The original malloc code looped, but this tended to
  631      * simply deadlock the computer.
  632      *
  633      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
  634      * to determine if a more complete limit check should be done.  The
  635      * actual memory use is tracked via ks_memuse[cpu].
  636      */
  637     while (type->ks_loosememuse >= type->ks_limit) {
  638         int i;
  639         long ttl;
  640 
  641         for (i = ttl = 0; i < ncpus; ++i)
  642             ttl += type->ks_memuse[i];
  643         type->ks_loosememuse = ttl;     /* not MP synchronized */
  644         if ((ssize_t)ttl < 0)           /* deal with occassional race */
  645                 ttl = 0;
  646         if (ttl >= type->ks_limit) {
  647             if (flags & M_NULLOK) {
  648                 logmemory(malloc_end, NULL, type, size, flags);
  649                 return(NULL);
  650             }
  651             panic("%s: malloc limit exceeded", type->ks_shortdesc);
  652         }
  653     }
  654 
  655     /*
  656      * Handle the degenerate size == 0 case.  Yes, this does happen.
  657      * Return a special pointer.  This is to maintain compatibility with
  658      * the original malloc implementation.  Certain devices, such as the
  659      * adaptec driver, not only allocate 0 bytes, they check for NULL and
  660      * also realloc() later on.  Joy.
  661      */
  662     if (size == 0) {
  663         logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
  664         return(ZERO_LENGTH_PTR);
  665     }
  666 
  667     /*
  668      * Handle hysteresis from prior frees here in malloc().  We cannot
  669      * safely manipulate the kernel_map in free() due to free() possibly
  670      * being called via an IPI message or from sensitive interrupt code.
  671      *
  672      * NOTE: ku_pagecnt must be cleared before we free the slab or we
  673      *       might race another cpu allocating the kva and setting
  674      *       ku_pagecnt.
  675      */
  676     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
  677         crit_enter();
  678         if (slgd->NFreeZones > ZoneRelsThresh) {        /* crit sect race */
  679             int *kup;
  680 
  681             z = slgd->FreeZones;
  682             slgd->FreeZones = z->z_Next;
  683             --slgd->NFreeZones;
  684             kup = btokup(z);
  685             *kup = 0;
  686             kmem_slab_free(z, ZoneSize);        /* may block */
  687             atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
  688         }
  689         crit_exit();
  690     }
  691 
  692     /*
  693      * XXX handle oversized frees that were queued from kfree().
  694      */
  695     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
  696         crit_enter();
  697         if ((z = slgd->FreeOvZones) != NULL) {
  698             vm_size_t tsize;
  699 
  700             KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
  701             slgd->FreeOvZones = z->z_Next;
  702             tsize = z->z_ChunkSize;
  703             kmem_slab_free(z, tsize);   /* may block */
  704             atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
  705         }
  706         crit_exit();
  707     }
  708 
  709     /*
  710      * Handle large allocations directly.  There should not be very many of
  711      * these so performance is not a big issue.
  712      *
  713      * The backend allocator is pretty nasty on a SMP system.   Use the
  714      * slab allocator for one and two page-sized chunks even though we lose
  715      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
  716      */
  717     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
  718         int *kup;
  719 
  720         size = round_page(size);
  721         chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
  722         if (chunk == NULL) {
  723             logmemory(malloc_end, NULL, type, size, flags);
  724             return(NULL);
  725         }
  726         atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
  727         flags &= ~M_ZERO;       /* result already zero'd if M_ZERO was set */
  728         flags |= M_PASSIVE_ZERO;
  729         kup = btokup(chunk);
  730         *kup = size / PAGE_SIZE;
  731         crit_enter();
  732         goto done;
  733     }
  734 
  735     /*
  736      * Attempt to allocate out of an existing zone.  First try the free list,
  737      * then allocate out of unallocated space.  If we find a good zone move
  738      * it to the head of the list so later allocations find it quickly
  739      * (we might have thousands of zones in the list).
  740      *
  741      * Note: zoneindex() will panic of size is too large.
  742      */
  743     zi = zoneindex(&size, &align);
  744     KKASSERT(zi < NZONES);
  745     crit_enter();
  746 
  747     if ((z = slgd->ZoneAry[zi]) != NULL) {
  748         /*
  749          * Locate a chunk - we have to have at least one.  If this is the
  750          * last chunk go ahead and do the work to retrieve chunks freed
  751          * from remote cpus, and if the zone is still empty move it off
  752          * the ZoneAry.
  753          */
  754         if (--z->z_NFree <= 0) {
  755             KKASSERT(z->z_NFree == 0);
  756 
  757             /*
  758              * WARNING! This code competes with other cpus.  It is ok
  759              * for us to not drain RChunks here but we might as well, and
  760              * it is ok if more accumulate after we're done.
  761              *
  762              * Set RSignal before pulling rchunks off, indicating that we
  763              * will be moving ourselves off of the ZoneAry.  Remote ends will
  764              * read RSignal before putting rchunks on thus interlocking
  765              * their IPI signaling.
  766              */
  767             if (z->z_RChunks == NULL)
  768                 atomic_swap_int(&z->z_RSignal, 1);
  769 
  770             clean_zone_rchunks(z);
  771 
  772             /*
  773              * Remove from the zone list if no free chunks remain.
  774              * Clear RSignal
  775              */
  776             if (z->z_NFree == 0) {
  777                 slgd->ZoneAry[zi] = z->z_Next;
  778                 z->z_Next = NULL;
  779             } else {
  780                 z->z_RSignal = 0;
  781             }
  782         }
  783 
  784         /*
  785          * Fast path, we have chunks available in z_LChunks.
  786          */
  787         chunk = z->z_LChunks;
  788         if (chunk) {
  789                 chunk_mark_allocated(z, chunk);
  790                 z->z_LChunks = chunk->c_Next;
  791                 if (z->z_LChunks == NULL)
  792                         z->z_LChunksp = &z->z_LChunks;
  793 #ifdef SLAB_DEBUG
  794                 slab_record_source(z, file, line);
  795 #endif
  796                 goto done;
  797         }
  798 
  799         /*
  800          * No chunks are available in LChunks, the free chunk MUST be
  801          * in the never-before-used memory area, controlled by UIndex.
  802          *
  803          * The consequences are very serious if our zone got corrupted so
  804          * we use an explicit panic rather than a KASSERT.
  805          */
  806         if (z->z_UIndex + 1 != z->z_NMax)
  807             ++z->z_UIndex;
  808         else
  809             z->z_UIndex = 0;
  810 
  811         if (z->z_UIndex == z->z_UEndIndex)
  812             panic("slaballoc: corrupted zone");
  813 
  814         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
  815         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
  816             flags &= ~M_ZERO;
  817             flags |= M_PASSIVE_ZERO;
  818         }
  819         chunk_mark_allocated(z, chunk);
  820 #ifdef SLAB_DEBUG
  821         slab_record_source(z, file, line);
  822 #endif
  823         goto done;
  824     }
  825 
  826     /*
  827      * If all zones are exhausted we need to allocate a new zone for this
  828      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
  829      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
  830      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
  831      * we do not pre-zero it because we do not want to mess up the L1 cache.
  832      *
  833      * At least one subsystem, the tty code (see CROUND) expects power-of-2
  834      * allocations to be power-of-2 aligned.  We maintain compatibility by
  835      * adjusting the base offset below.
  836      */
  837     {
  838         int off;
  839         int *kup;
  840 
  841         if ((z = slgd->FreeZones) != NULL) {
  842             slgd->FreeZones = z->z_Next;
  843             --slgd->NFreeZones;
  844             bzero(z, sizeof(SLZone));
  845             z->z_Flags |= SLZF_UNOTZEROD;
  846         } else {
  847             z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
  848             if (z == NULL)
  849                 goto fail;
  850             atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
  851         }
  852 
  853         /*
  854          * How big is the base structure?
  855          */
  856 #if defined(INVARIANTS)
  857         /*
  858          * Make room for z_Bitmap.  An exact calculation is somewhat more
  859          * complicated so don't make an exact calculation.
  860          */
  861         off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
  862         bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
  863 #else
  864         off = sizeof(SLZone);
  865 #endif
  866 
  867         /*
  868          * Guarentee power-of-2 alignment for power-of-2-sized chunks.
  869          * Otherwise properly align the data according to the chunk size.
  870          */
  871         if (powerof2(size))
  872             align = size;
  873         off = (off + align - 1) & ~(align - 1);
  874 
  875         z->z_Magic = ZALLOC_SLAB_MAGIC;
  876         z->z_ZoneIndex = zi;
  877         z->z_NMax = (ZoneSize - off) / size;
  878         z->z_NFree = z->z_NMax - 1;
  879         z->z_BasePtr = (char *)z + off;
  880         z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
  881         z->z_ChunkSize = size;
  882         z->z_CpuGd = gd;
  883         z->z_Cpu = gd->gd_cpuid;
  884         z->z_LChunksp = &z->z_LChunks;
  885 #ifdef SLAB_DEBUG
  886         bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
  887         bzero(z->z_Sources, sizeof(z->z_Sources));
  888 #endif
  889         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
  890         z->z_Next = slgd->ZoneAry[zi];
  891         slgd->ZoneAry[zi] = z;
  892         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
  893             flags &= ~M_ZERO;   /* already zero'd */
  894             flags |= M_PASSIVE_ZERO;
  895         }
  896         kup = btokup(z);
  897         *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */
  898         chunk_mark_allocated(z, chunk);
  899 #ifdef SLAB_DEBUG
  900         slab_record_source(z, file, line);
  901 #endif
  902 
  903         /*
  904          * Slide the base index for initial allocations out of the next
  905          * zone we create so we do not over-weight the lower part of the
  906          * cpu memory caches.
  907          */
  908         slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
  909                                 & (ZALLOC_MAX_ZONE_SIZE - 1);
  910     }
  911 
  912 done:
  913     ++type->ks_inuse[gd->gd_cpuid];
  914     type->ks_memuse[gd->gd_cpuid] += size;
  915     type->ks_loosememuse += size;       /* not MP synchronized */
  916     crit_exit();
  917 
  918     if (flags & M_ZERO)
  919         bzero(chunk, size);
  920 #ifdef INVARIANTS
  921     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
  922         if (use_malloc_pattern) {
  923             for (i = 0; i < size; i += sizeof(int)) {
  924                 *(int *)((char *)chunk + i) = -1;
  925             }
  926         }
  927         chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
  928     }
  929 #endif
  930     logmemory(malloc_end, chunk, type, size, flags);
  931     return(chunk);
  932 fail:
  933     crit_exit();
  934     logmemory(malloc_end, NULL, type, size, flags);
  935     return(NULL);
  936 }
  937 
  938 /*
  939  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
  940  *
  941  * Generally speaking this routine is not called very often and we do
  942  * not attempt to optimize it beyond reusing the same pointer if the
  943  * new size fits within the chunking of the old pointer's zone.
  944  */
  945 #ifdef SLAB_DEBUG
  946 void *
  947 krealloc_debug(void *ptr, unsigned long size,
  948                struct malloc_type *type, int flags,
  949                const char *file, int line)
  950 #else
  951 void *
  952 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
  953 #endif
  954 {
  955     unsigned long osize;
  956     unsigned long align;
  957     SLZone *z;
  958     void *nptr;
  959     int *kup;
  960 
  961     KKASSERT((flags & M_ZERO) == 0);    /* not supported */
  962 
  963     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
  964         return(kmalloc_debug(size, type, flags, file, line));
  965     if (size == 0) {
  966         kfree(ptr, type);
  967         return(NULL);
  968     }
  969 
  970     /*
  971      * Handle oversized allocations.  XXX we really should require that a
  972      * size be passed to free() instead of this nonsense.
  973      */
  974     kup = btokup(ptr);
  975     if (*kup > 0) {
  976         osize = *kup << PAGE_SHIFT;
  977         if (osize == round_page(size))
  978             return(ptr);
  979         if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
  980             return(NULL);
  981         bcopy(ptr, nptr, min(size, osize));
  982         kfree(ptr, type);
  983         return(nptr);
  984     }
  985 
  986     /*
  987      * Get the original allocation's zone.  If the new request winds up
  988      * using the same chunk size we do not have to do anything.
  989      */
  990     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
  991     kup = btokup(z);
  992     KKASSERT(*kup < 0);
  993     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
  994 
  995     /*
  996      * Allocate memory for the new request size.  Note that zoneindex has
  997      * already adjusted the request size to the appropriate chunk size, which
  998      * should optimize our bcopy().  Then copy and return the new pointer.
  999      *
 1000      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
 1001      * necessary align the result.
 1002      *
 1003      * We can only zoneindex (to align size to the chunk size) if the new
 1004      * size is not too large.
 1005      */
 1006     if (size < ZoneLimit) {
 1007         zoneindex(&size, &align);
 1008         if (z->z_ChunkSize == size)
 1009             return(ptr);
 1010     }
 1011     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
 1012         return(NULL);
 1013     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
 1014     kfree(ptr, type);
 1015     return(nptr);
 1016 }
 1017 
 1018 /*
 1019  * Return the kmalloc limit for this type, in bytes.
 1020  */
 1021 long
 1022 kmalloc_limit(struct malloc_type *type)
 1023 {
 1024     if (type->ks_limit == 0) {
 1025         crit_enter();
 1026         if (type->ks_limit == 0)
 1027             malloc_init(type);
 1028         crit_exit();
 1029     }
 1030     return(type->ks_limit);
 1031 }
 1032 
 1033 /*
 1034  * Allocate a copy of the specified string.
 1035  *
 1036  * (MP SAFE) (MAY BLOCK)
 1037  */
 1038 #ifdef SLAB_DEBUG
 1039 char *
 1040 kstrdup_debug(const char *str, struct malloc_type *type,
 1041               const char *file, int line)
 1042 #else
 1043 char *
 1044 kstrdup(const char *str, struct malloc_type *type)
 1045 #endif
 1046 {
 1047     int zlen;   /* length inclusive of terminating NUL */
 1048     char *nstr;
 1049 
 1050     if (str == NULL)
 1051         return(NULL);
 1052     zlen = strlen(str) + 1;
 1053     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
 1054     bcopy(str, nstr, zlen);
 1055     return(nstr);
 1056 }
 1057 
 1058 /*
 1059  * Notify our cpu that a remote cpu has freed some chunks in a zone that
 1060  * we own.  RCount will be bumped so the memory should be good, but validate
 1061  * that it really is.
 1062  */
 1063 static
 1064 void
 1065 kfree_remote(void *ptr)
 1066 {
 1067     SLGlobalData *slgd;
 1068     SLZone *z;
 1069     int nfree;
 1070     int *kup;
 1071 
 1072     slgd = &mycpu->gd_slab;
 1073     z = ptr;
 1074     kup = btokup(z);
 1075     KKASSERT(*kup == -((int)mycpuid + 1));
 1076     KKASSERT(z->z_RCount > 0);
 1077     atomic_subtract_int(&z->z_RCount, 1);
 1078 
 1079     logmemory(free_rem_beg, z, NULL, 0L, 0);
 1080     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
 1081     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
 1082     nfree = z->z_NFree;
 1083 
 1084     /*
 1085      * Indicate that we will no longer be off of the ZoneAry by
 1086      * clearing RSignal.
 1087      */
 1088     if (z->z_RChunks)
 1089         z->z_RSignal = 0;
 1090 
 1091     /*
 1092      * Atomically extract the bchunks list and then process it back
 1093      * into the lchunks list.  We want to append our bchunks to the
 1094      * lchunks list and not prepend since we likely do not have
 1095      * cache mastership of the related data (not that it helps since
 1096      * we are using c_Next).
 1097      */
 1098     clean_zone_rchunks(z);
 1099     if (z->z_NFree && nfree == 0) {
 1100         z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
 1101         slgd->ZoneAry[z->z_ZoneIndex] = z;
 1102     }
 1103 
 1104     /*
 1105      * If the zone becomes totally free, and there are other zones we
 1106      * can allocate from, move this zone to the FreeZones list.  Since
 1107      * this code can be called from an IPI callback, do *NOT* try to mess
 1108      * with kernel_map here.  Hysteresis will be performed at malloc() time.
 1109      *
 1110      * Do not move the zone if there is an IPI inflight, otherwise MP
 1111      * races can result in our free_remote code accessing a destroyed
 1112      * zone.
 1113      */
 1114     if (z->z_NFree == z->z_NMax &&
 1115         (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
 1116         z->z_RCount == 0
 1117     ) {
 1118         SLZone **pz;
 1119         int *kup;
 1120 
 1121         for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
 1122              z != *pz;
 1123              pz = &(*pz)->z_Next) {
 1124             ;
 1125         }
 1126         *pz = z->z_Next;
 1127         z->z_Magic = -1;
 1128         z->z_Next = slgd->FreeZones;
 1129         slgd->FreeZones = z;
 1130         ++slgd->NFreeZones;
 1131         kup = btokup(z);
 1132         *kup = 0;
 1133     }
 1134     logmemory(free_rem_end, z, NULL, 0L, 0);
 1135 }
 1136 
 1137 /*
 1138  * free (SLAB ALLOCATOR)
 1139  *
 1140  * Free a memory block previously allocated by malloc.  Note that we do not
 1141  * attempt to update ks_loosememuse as MP races could prevent us from
 1142  * checking memory limits in malloc.
 1143  *
 1144  * MPSAFE
 1145  */
 1146 void
 1147 kfree(void *ptr, struct malloc_type *type)
 1148 {
 1149     SLZone *z;
 1150     SLChunk *chunk;
 1151     SLGlobalData *slgd;
 1152     struct globaldata *gd;
 1153     int *kup;
 1154     unsigned long size;
 1155     SLChunk *bchunk;
 1156     int rsignal;
 1157 
 1158     logmemory_quick(free_beg);
 1159     gd = mycpu;
 1160     slgd = &gd->gd_slab;
 1161 
 1162     if (ptr == NULL)
 1163         panic("trying to free NULL pointer");
 1164 
 1165     /*
 1166      * Handle special 0-byte allocations
 1167      */
 1168     if (ptr == ZERO_LENGTH_PTR) {
 1169         logmemory(free_zero, ptr, type, -1UL, 0);
 1170         logmemory_quick(free_end);
 1171         return;
 1172     }
 1173 
 1174     /*
 1175      * Panic on bad malloc type
 1176      */
 1177     if (type->ks_magic != M_MAGIC)
 1178         panic("free: malloc type lacks magic");
 1179 
 1180     /*
 1181      * Handle oversized allocations.  XXX we really should require that a
 1182      * size be passed to free() instead of this nonsense.
 1183      *
 1184      * This code is never called via an ipi.
 1185      */
 1186     kup = btokup(ptr);
 1187     if (*kup > 0) {
 1188         size = *kup << PAGE_SHIFT;
 1189         *kup = 0;
 1190 #ifdef INVARIANTS
 1191         KKASSERT(sizeof(weirdary) <= size);
 1192         bcopy(weirdary, ptr, sizeof(weirdary));
 1193 #endif
 1194         /*
 1195          * NOTE: For oversized allocations we do not record the
 1196          *           originating cpu.  It gets freed on the cpu calling
 1197          *           kfree().  The statistics are in aggregate.
 1198          *
 1199          * note: XXX we have still inherited the interrupts-can't-block
 1200          * assumption.  An interrupt thread does not bump
 1201          * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
 1202          * primarily until we can fix softupdate's assumptions about free().
 1203          */
 1204         crit_enter();
 1205         --type->ks_inuse[gd->gd_cpuid];
 1206         type->ks_memuse[gd->gd_cpuid] -= size;
 1207         if (mycpu->gd_intr_nesting_level ||
 1208             (gd->gd_curthread->td_flags & TDF_INTTHREAD))
 1209         {
 1210             logmemory(free_ovsz_delayed, ptr, type, size, 0);
 1211             z = (SLZone *)ptr;
 1212             z->z_Magic = ZALLOC_OVSZ_MAGIC;
 1213             z->z_Next = slgd->FreeOvZones;
 1214             z->z_ChunkSize = size;
 1215             slgd->FreeOvZones = z;
 1216             crit_exit();
 1217         } else {
 1218             crit_exit();
 1219             logmemory(free_ovsz, ptr, type, size, 0);
 1220             kmem_slab_free(ptr, size);  /* may block */
 1221             atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
 1222         }
 1223         logmemory_quick(free_end);
 1224         return;
 1225     }
 1226 
 1227     /*
 1228      * Zone case.  Figure out the zone based on the fact that it is
 1229      * ZoneSize aligned. 
 1230      */
 1231     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
 1232     kup = btokup(z);
 1233     KKASSERT(*kup < 0);
 1234     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
 1235 
 1236     /*
 1237      * If we do not own the zone then use atomic ops to free to the
 1238      * remote cpu linked list and notify the target zone using a
 1239      * passive message.
 1240      *
 1241      * The target zone cannot be deallocated while we own a chunk of it,
 1242      * so the zone header's storage is stable until the very moment
 1243      * we adjust z_RChunks.  After that we cannot safely dereference (z).
 1244      *
 1245      * (no critical section needed)
 1246      */
 1247     if (z->z_CpuGd != gd) {
 1248         /*
 1249          * Making these adjustments now allow us to avoid passing (type)
 1250          * to the remote cpu.  Note that ks_inuse/ks_memuse is being
 1251          * adjusted on OUR cpu, not the zone cpu, but it should all still
 1252          * sum up properly and cancel out.
 1253          */
 1254         crit_enter();
 1255         --type->ks_inuse[gd->gd_cpuid];
 1256         type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
 1257         crit_exit();
 1258 
 1259         /*
 1260          * WARNING! This code competes with other cpus.  Once we
 1261          *          successfully link the chunk to RChunks the remote
 1262          *          cpu can rip z's storage out from under us.
 1263          *
 1264          *          Bumping RCount prevents z's storage from getting
 1265          *          ripped out.
 1266          */
 1267         rsignal = z->z_RSignal;
 1268         cpu_lfence();
 1269         if (rsignal)
 1270                 atomic_add_int(&z->z_RCount, 1);
 1271 
 1272         chunk = ptr;
 1273         for (;;) {
 1274             bchunk = z->z_RChunks;
 1275             cpu_ccfence();
 1276             chunk->c_Next = bchunk;
 1277             cpu_sfence();
 1278 
 1279             if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
 1280                 break;
 1281         }
 1282 
 1283         /*
 1284          * We have to signal the remote cpu if our actions will cause
 1285          * the remote zone to be placed back on ZoneAry so it can
 1286          * move the zone back on.
 1287          *
 1288          * We only need to deal with NULL->non-NULL RChunk transitions
 1289          * and only if z_RSignal is set.  We interlock by reading rsignal
 1290          * before adding our chunk to RChunks.  This should result in
 1291          * virtually no IPI traffic.
 1292          *
 1293          * We can use a passive IPI to reduce overhead even further.
 1294          */
 1295         if (bchunk == NULL && rsignal) {
 1296                 logmemory(free_request, ptr, type,
 1297                           (unsigned long)z->z_ChunkSize, 0);
 1298             lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
 1299             /* z can get ripped out from under us from this point on */
 1300         } else if (rsignal) {
 1301             atomic_subtract_int(&z->z_RCount, 1);
 1302             /* z can get ripped out from under us from this point on */
 1303         }
 1304         logmemory_quick(free_end);
 1305         return;
 1306     }
 1307 
 1308     /*
 1309      * kfree locally
 1310      */
 1311     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
 1312 
 1313     crit_enter();
 1314     chunk = ptr;
 1315     chunk_mark_free(z, chunk);
 1316 
 1317     /*
 1318      * Put weird data into the memory to detect modifications after freeing,
 1319      * illegal pointer use after freeing (we should fault on the odd address),
 1320      * and so forth.  XXX needs more work, see the old malloc code.
 1321      */
 1322 #ifdef INVARIANTS
 1323     if (z->z_ChunkSize < sizeof(weirdary))
 1324         bcopy(weirdary, chunk, z->z_ChunkSize);
 1325     else
 1326         bcopy(weirdary, chunk, sizeof(weirdary));
 1327 #endif
 1328 
 1329     /*
 1330      * Add this free non-zero'd chunk to a linked list for reuse.  Add
 1331      * to the front of the linked list so it is more likely to be
 1332      * reallocated, since it is already in our L1 cache.
 1333      */
 1334 #ifdef INVARIANTS
 1335     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
 1336         panic("BADFREE %p", chunk);
 1337 #endif
 1338     chunk->c_Next = z->z_LChunks;
 1339     z->z_LChunks = chunk;
 1340     if (chunk->c_Next == NULL)
 1341             z->z_LChunksp = &chunk->c_Next;
 1342 
 1343 #ifdef INVARIANTS
 1344     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
 1345         panic("BADFREE2");
 1346 #endif
 1347 
 1348     /*
 1349      * Bump the number of free chunks.  If it becomes non-zero the zone
 1350      * must be added back onto the appropriate list.
 1351      */
 1352     if (z->z_NFree++ == 0) {
 1353         z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
 1354         slgd->ZoneAry[z->z_ZoneIndex] = z;
 1355     }
 1356 
 1357     --type->ks_inuse[z->z_Cpu];
 1358     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
 1359 
 1360     check_zone_free(slgd, z);
 1361     logmemory_quick(free_end);
 1362     crit_exit();
 1363 }
 1364 
 1365 /*
 1366  * Cleanup slabs which are hanging around due to RChunks.  Called once every
 1367  * 10 seconds on all cpus.
 1368  */
 1369 void
 1370 slab_cleanup(void)
 1371 {
 1372     SLGlobalData *slgd = &mycpu->gd_slab;
 1373     SLZone *z;
 1374     int i;
 1375 
 1376     crit_enter();
 1377     for (i = 0; i < NZONES; ++i) {
 1378         if ((z = slgd->ZoneAry[i]) == NULL)
 1379                 continue;
 1380         z = z->z_Next;
 1381 
 1382         /*
 1383          * Scan zones starting with the second zone in each list.
 1384          */
 1385         while (z) {
 1386             /*
 1387              * Shift all RChunks to the end of the LChunks list.  This is
 1388              * an O(1) operation.
 1389              */
 1390             clean_zone_rchunks(z);
 1391             z = check_zone_free(slgd, z);
 1392         }
 1393     }
 1394     crit_exit();
 1395 }
 1396 
 1397 #if defined(INVARIANTS)
 1398 
 1399 /*
 1400  * Helper routines for sanity checks
 1401  */
 1402 static
 1403 void
 1404 chunk_mark_allocated(SLZone *z, void *chunk)
 1405 {
 1406     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
 1407     __uint32_t *bitptr;
 1408 
 1409     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
 1410     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
 1411             ("memory chunk %p bit index %d is illegal", chunk, bitdex));
 1412     bitptr = &z->z_Bitmap[bitdex >> 5];
 1413     bitdex &= 31;
 1414     KASSERT((*bitptr & (1 << bitdex)) == 0,
 1415             ("memory chunk %p is already allocated!", chunk));
 1416     *bitptr |= 1 << bitdex;
 1417 }
 1418 
 1419 static
 1420 void
 1421 chunk_mark_free(SLZone *z, void *chunk)
 1422 {
 1423     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
 1424     __uint32_t *bitptr;
 1425 
 1426     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
 1427     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
 1428             ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
 1429     bitptr = &z->z_Bitmap[bitdex >> 5];
 1430     bitdex &= 31;
 1431     KASSERT((*bitptr & (1 << bitdex)) != 0,
 1432             ("memory chunk %p is already free!", chunk));
 1433     *bitptr &= ~(1 << bitdex);
 1434 }
 1435 
 1436 #endif
 1437 
 1438 /*
 1439  * kmem_slab_alloc()
 1440  *
 1441  *      Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
 1442  *      specified alignment.  M_* flags are expected in the flags field.
 1443  *
 1444  *      Alignment must be a multiple of PAGE_SIZE.
 1445  *
 1446  *      NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
 1447  *      but when we move zalloc() over to use this function as its backend
 1448  *      we will have to switch to kreserve/krelease and call reserve(0)
 1449  *      after the new space is made available.
 1450  *
 1451  *      Interrupt code which has preempted other code is not allowed to
 1452  *      use PQ_CACHE pages.  However, if an interrupt thread is run
 1453  *      non-preemptively or blocks and then runs non-preemptively, then
 1454  *      it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
 1455  */
 1456 static void *
 1457 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
 1458 {
 1459     vm_size_t i;
 1460     vm_offset_t addr;
 1461     int count, vmflags, base_vmflags;
 1462     vm_page_t mbase = NULL;
 1463     vm_page_t m;
 1464     thread_t td;
 1465 
 1466     size = round_page(size);
 1467     addr = vm_map_min(&kernel_map);
 1468 
 1469     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
 1470     crit_enter();
 1471     vm_map_lock(&kernel_map);
 1472     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
 1473         vm_map_unlock(&kernel_map);
 1474         if ((flags & M_NULLOK) == 0)
 1475             panic("kmem_slab_alloc(): kernel_map ran out of space!");
 1476         vm_map_entry_release(count);
 1477         crit_exit();
 1478         return(NULL);
 1479     }
 1480 
 1481     /*
 1482      * kernel_object maps 1:1 to kernel_map.
 1483      */
 1484     vm_object_hold(&kernel_object);
 1485     vm_object_reference_locked(&kernel_object);
 1486     vm_map_insert(&kernel_map, &count, 
 1487                     &kernel_object, addr, addr, addr + size,
 1488                     VM_MAPTYPE_NORMAL,
 1489                     VM_PROT_ALL, VM_PROT_ALL,
 1490                     0);
 1491     vm_object_drop(&kernel_object);
 1492     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
 1493     vm_map_unlock(&kernel_map);
 1494 
 1495     td = curthread;
 1496 
 1497     base_vmflags = 0;
 1498     if (flags & M_ZERO)
 1499         base_vmflags |= VM_ALLOC_ZERO;
 1500     if (flags & M_USE_RESERVE)
 1501         base_vmflags |= VM_ALLOC_SYSTEM;
 1502     if (flags & M_USE_INTERRUPT_RESERVE)
 1503         base_vmflags |= VM_ALLOC_INTERRUPT;
 1504     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
 1505         panic("kmem_slab_alloc: bad flags %08x (%p)",
 1506               flags, ((int **)&size)[-1]);
 1507     }
 1508 
 1509     /*
 1510      * Allocate the pages.  Do not mess with the PG_ZERO flag or map
 1511      * them yet.  VM_ALLOC_NORMAL can only be set if we are not preempting.
 1512      *
 1513      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
 1514      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
 1515      * implied in this case), though I'm not sure if we really need to
 1516      * do that.
 1517      */
 1518     vmflags = base_vmflags;
 1519     if (flags & M_WAITOK) {
 1520         if (td->td_preempted)
 1521             vmflags |= VM_ALLOC_SYSTEM;
 1522         else
 1523             vmflags |= VM_ALLOC_NORMAL;
 1524     }
 1525 
 1526     vm_object_hold(&kernel_object);
 1527     for (i = 0; i < size; i += PAGE_SIZE) {
 1528         m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
 1529         if (i == 0)
 1530                 mbase = m;
 1531 
 1532         /*
 1533          * If the allocation failed we either return NULL or we retry.
 1534          *
 1535          * If M_WAITOK is specified we wait for more memory and retry.
 1536          * If M_WAITOK is specified from a preemption we yield instead of
 1537          * wait.  Livelock will not occur because the interrupt thread
 1538          * will not be preempting anyone the second time around after the
 1539          * yield.
 1540          */
 1541         if (m == NULL) {
 1542             if (flags & M_WAITOK) {
 1543                 if (td->td_preempted) {
 1544                     lwkt_switch();
 1545                 } else {
 1546                     vm_wait(0);
 1547                 }
 1548                 i -= PAGE_SIZE; /* retry */
 1549                 continue;
 1550             }
 1551             break;
 1552         }
 1553     }
 1554 
 1555     /*
 1556      * Check and deal with an allocation failure
 1557      */
 1558     if (i != size) {
 1559         while (i != 0) {
 1560             i -= PAGE_SIZE;
 1561             m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
 1562             /* page should already be busy */
 1563             vm_page_free(m);
 1564         }
 1565         vm_map_lock(&kernel_map);
 1566         vm_map_delete(&kernel_map, addr, addr + size, &count);
 1567         vm_map_unlock(&kernel_map);
 1568         vm_object_drop(&kernel_object);
 1569 
 1570         vm_map_entry_release(count);
 1571         crit_exit();
 1572         return(NULL);
 1573     }
 1574 
 1575     /*
 1576      * Success!
 1577      *
 1578      * NOTE: The VM pages are still busied.  mbase points to the first one
 1579      *       but we have to iterate via vm_page_next()
 1580      */
 1581     vm_object_drop(&kernel_object);
 1582     crit_exit();
 1583 
 1584     /*
 1585      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
 1586      */
 1587     m = mbase;
 1588     i = 0;
 1589 
 1590     while (i < size) {
 1591         /*
 1592          * page should already be busy
 1593          */
 1594         m->valid = VM_PAGE_BITS_ALL;
 1595         vm_page_wire(m);
 1596         pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC,
 1597                    1, NULL);
 1598         if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
 1599             bzero((char *)addr + i, PAGE_SIZE);
 1600         vm_page_flag_clear(m, PG_ZERO);
 1601         KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
 1602         vm_page_flag_set(m, PG_REFERENCED);
 1603         vm_page_wakeup(m);
 1604 
 1605         i += PAGE_SIZE;
 1606         vm_object_hold(&kernel_object);
 1607         m = vm_page_next(m);
 1608         vm_object_drop(&kernel_object);
 1609     }
 1610     smp_invltlb();
 1611     vm_map_entry_release(count);
 1612     atomic_add_long(&SlabsAllocated, 1);
 1613     return((void *)addr);
 1614 }
 1615 
 1616 /*
 1617  * kmem_slab_free()
 1618  */
 1619 static void
 1620 kmem_slab_free(void *ptr, vm_size_t size)
 1621 {
 1622     crit_enter();
 1623     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
 1624     atomic_add_long(&SlabsFreed, 1);
 1625     crit_exit();
 1626 }
 1627 
 1628 void *
 1629 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
 1630     int flags)
 1631 {
 1632 #if (__VM_CACHELINE_SIZE == 32)
 1633 #define CAN_CACHEALIGN(sz)      ((sz) >= 256)
 1634 #elif (__VM_CACHELINE_SIZE == 64)
 1635 #define CAN_CACHEALIGN(sz)      ((sz) >= 512)
 1636 #elif (__VM_CACHELINE_SIZE == 128)
 1637 #define CAN_CACHEALIGN(sz)      ((sz) >= 1024)
 1638 #else
 1639 #error "unsupported cacheline size"
 1640 #endif
 1641 
 1642         void *ret;
 1643 
 1644         if (size_alloc < __VM_CACHELINE_SIZE)
 1645                 size_alloc = __VM_CACHELINE_SIZE;
 1646         else if (!CAN_CACHEALIGN(size_alloc))
 1647                 flags |= M_POWEROF2;
 1648 
 1649         ret = kmalloc(size_alloc, type, flags);
 1650         KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0,
 1651             ("%p(%lu) not cacheline %d aligned",
 1652              ret, size_alloc, __VM_CACHELINE_SIZE));
 1653         return ret;
 1654 
 1655 #undef CAN_CACHEALIGN
 1656 }

Cache object: 0054c033b9c87450685ba1f4afdbfa60


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.