The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_sleepq.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: kern_sleepq.c,v 1.73 2022/06/29 22:27:01 riastradh Exp $       */
    2 
    3 /*-
    4  * Copyright (c) 2006, 2007, 2008, 2009, 2019, 2020 The NetBSD Foundation, Inc.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to The NetBSD Foundation
    8  * by Andrew Doran.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   29  * POSSIBILITY OF SUCH DAMAGE.
   30  */
   31 
   32 /*
   33  * Sleep queue implementation, used by turnstiles and general sleep/wakeup
   34  * interfaces.
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __KERNEL_RCSID(0, "$NetBSD: kern_sleepq.c,v 1.73 2022/06/29 22:27:01 riastradh Exp $");
   39 
   40 #include <sys/param.h>
   41 #include <sys/kernel.h>
   42 #include <sys/cpu.h>
   43 #include <sys/intr.h>
   44 #include <sys/pool.h>
   45 #include <sys/proc.h> 
   46 #include <sys/resourcevar.h>
   47 #include <sys/sched.h>
   48 #include <sys/systm.h>
   49 #include <sys/sleepq.h>
   50 #include <sys/ktrace.h>
   51 
   52 /*
   53  * for sleepq_abort:
   54  * During autoconfiguration or after a panic, a sleep will simply lower the
   55  * priority briefly to allow interrupts, then return.  The priority to be
   56  * used (IPL_SAFEPRI) is machine-dependent, thus this value is initialized and
   57  * maintained in the machine-dependent layers.  This priority will typically
   58  * be 0, or the lowest priority that is safe for use on the interrupt stack;
   59  * it can be made higher to block network software interrupts after panics.
   60  */
   61 #ifndef IPL_SAFEPRI
   62 #define IPL_SAFEPRI     0
   63 #endif
   64 
   65 static int      sleepq_sigtoerror(lwp_t *, int);
   66 
   67 /* General purpose sleep table, used by mtsleep() and condition variables. */
   68 sleeptab_t      sleeptab __cacheline_aligned;
   69 sleepqlock_t    sleepq_locks[SLEEPTAB_HASH_SIZE] __cacheline_aligned;
   70 
   71 /*
   72  * sleeptab_init:
   73  *
   74  *      Initialize a sleep table.
   75  */
   76 void
   77 sleeptab_init(sleeptab_t *st)
   78 {
   79         static bool again;
   80         int i;
   81 
   82         for (i = 0; i < SLEEPTAB_HASH_SIZE; i++) {
   83                 if (!again) {
   84                         mutex_init(&sleepq_locks[i].lock, MUTEX_DEFAULT,
   85                             IPL_SCHED);
   86                 }
   87                 sleepq_init(&st->st_queue[i]);
   88         }
   89         again = true;
   90 }
   91 
   92 /*
   93  * sleepq_init:
   94  *
   95  *      Prepare a sleep queue for use.
   96  */
   97 void
   98 sleepq_init(sleepq_t *sq)
   99 {
  100 
  101         LIST_INIT(sq);
  102 }
  103 
  104 /*
  105  * sleepq_remove:
  106  *
  107  *      Remove an LWP from a sleep queue and wake it up.
  108  */
  109 void
  110 sleepq_remove(sleepq_t *sq, lwp_t *l)
  111 {
  112         struct schedstate_percpu *spc;
  113         struct cpu_info *ci;
  114 
  115         KASSERT(lwp_locked(l, NULL));
  116 
  117         if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_NULL) == 0) {
  118                 KASSERT(sq != NULL);
  119                 LIST_REMOVE(l, l_sleepchain);
  120         } else {
  121                 KASSERT(sq == NULL);
  122         }
  123 
  124         l->l_syncobj = &sched_syncobj;
  125         l->l_wchan = NULL;
  126         l->l_sleepq = NULL;
  127         l->l_flag &= ~LW_SINTR;
  128 
  129         ci = l->l_cpu;
  130         spc = &ci->ci_schedstate;
  131 
  132         /*
  133          * If not sleeping, the LWP must have been suspended.  Let whoever
  134          * holds it stopped set it running again.
  135          */
  136         if (l->l_stat != LSSLEEP) {
  137                 KASSERT(l->l_stat == LSSTOP || l->l_stat == LSSUSPENDED);
  138                 lwp_setlock(l, spc->spc_lwplock);
  139                 return;
  140         }
  141 
  142         /*
  143          * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
  144          * about to call mi_switch(), in which case it will yield.
  145          */
  146         if ((l->l_pflag & LP_RUNNING) != 0) {
  147                 l->l_stat = LSONPROC;
  148                 l->l_slptime = 0;
  149                 lwp_setlock(l, spc->spc_lwplock);
  150                 return;
  151         }
  152 
  153         /* Update sleep time delta, call the wake-up handler of scheduler */
  154         l->l_slpticksum += (getticks() - l->l_slpticks);
  155         sched_wakeup(l);
  156 
  157         /* Look for a CPU to wake up */
  158         l->l_cpu = sched_takecpu(l);
  159         ci = l->l_cpu;
  160         spc = &ci->ci_schedstate;
  161 
  162         /*
  163          * Set it running.
  164          */
  165         spc_lock(ci);
  166         lwp_setlock(l, spc->spc_mutex);
  167         sched_setrunnable(l);
  168         l->l_stat = LSRUN;
  169         l->l_slptime = 0;
  170         sched_enqueue(l);
  171         sched_resched_lwp(l, true);
  172         /* LWP & SPC now unlocked, but we still hold sleep queue lock. */
  173 }
  174 
  175 /*
  176  * sleepq_insert:
  177  *
  178  *      Insert an LWP into the sleep queue, optionally sorting by priority.
  179  */
  180 static void
  181 sleepq_insert(sleepq_t *sq, lwp_t *l, syncobj_t *sobj)
  182 {
  183 
  184         if ((sobj->sobj_flag & SOBJ_SLEEPQ_NULL) != 0) {
  185                 KASSERT(sq == NULL); 
  186                 return;
  187         }
  188         KASSERT(sq != NULL);
  189 
  190         if ((sobj->sobj_flag & SOBJ_SLEEPQ_SORTED) != 0) {
  191                 lwp_t *l2, *l_last = NULL;
  192                 const pri_t pri = lwp_eprio(l);
  193 
  194                 LIST_FOREACH(l2, sq, l_sleepchain) {
  195                         l_last = l2;
  196                         if (lwp_eprio(l2) < pri) {
  197                                 LIST_INSERT_BEFORE(l2, l, l_sleepchain);
  198                                 return;
  199                         }
  200                 }
  201                 /*
  202                  * Ensure FIFO ordering if no waiters are of lower priority.
  203                  */
  204                 if (l_last != NULL) {
  205                         LIST_INSERT_AFTER(l_last, l, l_sleepchain);
  206                         return;
  207                 }
  208         }
  209 
  210         LIST_INSERT_HEAD(sq, l, l_sleepchain);
  211 }
  212 
  213 /*
  214  * sleepq_enqueue:
  215  *
  216  *      Enter an LWP into the sleep queue and prepare for sleep.  The sleep
  217  *      queue must already be locked, and any interlock (such as the kernel
  218  *      lock) must have be released (see sleeptab_lookup(), sleepq_enter()).
  219  */
  220 void
  221 sleepq_enqueue(sleepq_t *sq, wchan_t wchan, const char *wmesg, syncobj_t *sobj,
  222     bool catch_p)
  223 {
  224         lwp_t *l = curlwp;
  225 
  226         KASSERT(lwp_locked(l, NULL));
  227         KASSERT(l->l_stat == LSONPROC);
  228         KASSERT(l->l_wchan == NULL && l->l_sleepq == NULL);
  229         KASSERT((l->l_flag & LW_SINTR) == 0);
  230 
  231         l->l_syncobj = sobj;
  232         l->l_wchan = wchan;
  233         l->l_sleepq = sq;
  234         l->l_wmesg = wmesg;
  235         l->l_slptime = 0;
  236         l->l_stat = LSSLEEP;
  237         if (catch_p)
  238                 l->l_flag |= LW_SINTR;
  239 
  240         sleepq_insert(sq, l, sobj);
  241 
  242         /* Save the time when thread has slept */
  243         l->l_slpticks = getticks();
  244         sched_slept(l);
  245 }
  246 
  247 /*
  248  * sleepq_transfer:
  249  *
  250  *      Move an LWP from one sleep queue to another.  Both sleep queues
  251  *      must already be locked.
  252  *
  253  *      The LWP will be updated with the new sleepq, wchan, wmesg,
  254  *      sobj, and mutex.  The interruptible flag will also be updated.
  255  */
  256 void
  257 sleepq_transfer(lwp_t *l, sleepq_t *from_sq, sleepq_t *sq, wchan_t wchan,
  258     const char *wmesg, syncobj_t *sobj, kmutex_t *mp, bool catch_p)
  259 {
  260 
  261         KASSERT(l->l_sleepq == from_sq);
  262 
  263         LIST_REMOVE(l, l_sleepchain);
  264         l->l_syncobj = sobj;
  265         l->l_wchan = wchan;
  266         l->l_sleepq = sq;
  267         l->l_wmesg = wmesg;
  268 
  269         if (catch_p)
  270                 l->l_flag = LW_SINTR | LW_CATCHINTR;
  271         else
  272                 l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
  273 
  274         /*
  275          * This allows the transfer from one sleepq to another where
  276          * it is known that they're both protected by the same lock.
  277          */
  278         if (mp != NULL)
  279                 lwp_setlock(l, mp);
  280 
  281         sleepq_insert(sq, l, sobj);
  282 }
  283 
  284 /*
  285  * sleepq_uncatch:
  286  *
  287  *      Mark the LWP as no longer sleeping interruptibly.
  288  */
  289 void
  290 sleepq_uncatch(lwp_t *l)
  291 {
  292         l->l_flag = ~(LW_SINTR | LW_CATCHINTR);
  293 }
  294 
  295 /*
  296  * sleepq_block:
  297  *
  298  *      After any intermediate step such as releasing an interlock, switch.
  299  *      sleepq_block() may return early under exceptional conditions, for
  300  *      example if the LWP's containing process is exiting.
  301  *
  302  *      timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
  303  */
  304 int
  305 sleepq_block(int timo, bool catch_p, struct syncobj *syncobj)
  306 {
  307         int error = 0, sig;
  308         struct proc *p;
  309         lwp_t *l = curlwp;
  310         bool early = false;
  311         int biglocks = l->l_biglocks;
  312 
  313         ktrcsw(1, 0, syncobj);
  314 
  315         /*
  316          * If sleeping interruptably, check for pending signals, exits or
  317          * core dump events.
  318          *
  319          * Note the usage of LW_CATCHINTR.  This expresses our intent
  320          * to catch or not catch sleep interruptions, which might change
  321          * while we are sleeping.  It is independent from LW_SINTR because
  322          * we don't want to leave LW_SINTR set when the LWP is not asleep.
  323          */
  324         if (catch_p) {
  325                 if ((l->l_flag & (LW_CANCELLED|LW_WEXIT|LW_WCORE)) != 0) {
  326                         l->l_flag &= ~LW_CANCELLED;
  327                         error = EINTR;
  328                         early = true;
  329                 } else if ((l->l_flag & LW_PENDSIG) != 0 && sigispending(l, 0))
  330                         early = true;
  331                 l->l_flag |= LW_CATCHINTR;
  332         } else
  333                 l->l_flag &= ~LW_CATCHINTR;
  334 
  335         if (early) {
  336                 /* lwp_unsleep() will release the lock */
  337                 lwp_unsleep(l, true);
  338         } else {
  339                 /*
  340                  * The LWP may have already been awoken if the caller
  341                  * dropped the sleep queue lock between sleepq_enqueue() and
  342                  * sleepq_block().  If that happens l_stat will be LSONPROC
  343                  * and mi_switch() will treat this as a preemption.  No need
  344                  * to do anything special here.
  345                  */
  346                 if (timo) {
  347                         l->l_flag &= ~LW_STIMO;
  348                         callout_schedule(&l->l_timeout_ch, timo);
  349                 }
  350                 spc_lock(l->l_cpu);
  351                 mi_switch(l);
  352 
  353                 /* The LWP and sleep queue are now unlocked. */
  354                 if (timo) {
  355                         /*
  356                          * Even if the callout appears to have fired, we
  357                          * need to stop it in order to synchronise with
  358                          * other CPUs.  It's important that we do this in
  359                          * this LWP's context, and not during wakeup, in
  360                          * order to keep the callout & its cache lines
  361                          * co-located on the CPU with the LWP.
  362                          */
  363                         (void)callout_halt(&l->l_timeout_ch, NULL);
  364                         error = (l->l_flag & LW_STIMO) ? EWOULDBLOCK : 0;
  365                 }
  366         }
  367 
  368         /*
  369          * LW_CATCHINTR is only modified in this function OR when we
  370          * are asleep (with the sleepq locked).  We can therefore safely
  371          * test it unlocked here as it is guaranteed to be stable by
  372          * virtue of us running.
  373          *
  374          * We do not bother clearing it if set; that would require us
  375          * to take the LWP lock, and it doesn't seem worth the hassle
  376          * considering it is only meaningful here inside this function,
  377          * and is set to reflect intent upon entry.
  378          */
  379         if ((l->l_flag & LW_CATCHINTR) != 0 && error == 0) {
  380                 p = l->l_proc;
  381                 if ((l->l_flag & (LW_CANCELLED | LW_WEXIT | LW_WCORE)) != 0)
  382                         error = EINTR;
  383                 else if ((l->l_flag & LW_PENDSIG) != 0) {
  384                         /*
  385                          * Acquiring p_lock may cause us to recurse
  386                          * through the sleep path and back into this
  387                          * routine, but is safe because LWPs sleeping
  388                          * on locks are non-interruptable and we will
  389                          * not recurse again.
  390                          */
  391                         mutex_enter(p->p_lock);
  392                         if (((sig = sigispending(l, 0)) != 0 &&
  393                             (sigprop[sig] & SA_STOP) == 0) ||
  394                             (sig = issignal(l)) != 0)
  395                                 error = sleepq_sigtoerror(l, sig);
  396                         mutex_exit(p->p_lock);
  397                 }
  398         }
  399 
  400         ktrcsw(0, 0, syncobj);
  401         if (__predict_false(biglocks != 0)) {
  402                 KERNEL_LOCK(biglocks, NULL);
  403         }
  404         return error;
  405 }
  406 
  407 /*
  408  * sleepq_wake:
  409  *
  410  *      Wake zero or more LWPs blocked on a single wait channel.
  411  */
  412 void
  413 sleepq_wake(sleepq_t *sq, wchan_t wchan, u_int expected, kmutex_t *mp)
  414 {
  415         lwp_t *l, *next;
  416 
  417         KASSERT(mutex_owned(mp));
  418 
  419         for (l = LIST_FIRST(sq); l != NULL; l = next) {
  420                 KASSERT(l->l_sleepq == sq);
  421                 KASSERT(l->l_mutex == mp);
  422                 next = LIST_NEXT(l, l_sleepchain);
  423                 if (l->l_wchan != wchan)
  424                         continue;
  425                 sleepq_remove(sq, l);
  426                 if (--expected == 0)
  427                         break;
  428         }
  429 
  430         mutex_spin_exit(mp);
  431 }
  432 
  433 /*
  434  * sleepq_unsleep:
  435  *
  436  *      Remove an LWP from its sleep queue and set it runnable again. 
  437  *      sleepq_unsleep() is called with the LWP's mutex held, and will
  438  *      release it if "unlock" is true.
  439  */
  440 void
  441 sleepq_unsleep(lwp_t *l, bool unlock)
  442 {
  443         sleepq_t *sq = l->l_sleepq;
  444         kmutex_t *mp = l->l_mutex;
  445 
  446         KASSERT(lwp_locked(l, mp));
  447         KASSERT(l->l_wchan != NULL);
  448 
  449         sleepq_remove(sq, l);
  450         if (unlock) {
  451                 mutex_spin_exit(mp);
  452         }
  453 }
  454 
  455 /*
  456  * sleepq_timeout:
  457  *
  458  *      Entered via the callout(9) subsystem to time out an LWP that is on a
  459  *      sleep queue.
  460  */
  461 void
  462 sleepq_timeout(void *arg)
  463 {
  464         lwp_t *l = arg;
  465 
  466         /*
  467          * Lock the LWP.  Assuming it's still on the sleep queue, its
  468          * current mutex will also be the sleep queue mutex.
  469          */
  470         lwp_lock(l);
  471 
  472         if (l->l_wchan == NULL) {
  473                 /* Somebody beat us to it. */
  474                 lwp_unlock(l);
  475                 return;
  476         }
  477 
  478         l->l_flag |= LW_STIMO;
  479         lwp_unsleep(l, true);
  480 }
  481 
  482 /*
  483  * sleepq_sigtoerror:
  484  *
  485  *      Given a signal number, interpret and return an error code.
  486  */
  487 static int
  488 sleepq_sigtoerror(lwp_t *l, int sig)
  489 {
  490         struct proc *p = l->l_proc;
  491         int error;
  492 
  493         KASSERT(mutex_owned(p->p_lock));
  494 
  495         /*
  496          * If this sleep was canceled, don't let the syscall restart.
  497          */
  498         if ((SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
  499                 error = EINTR;
  500         else
  501                 error = ERESTART;
  502 
  503         return error;
  504 }
  505 
  506 /*
  507  * sleepq_abort:
  508  *
  509  *      After a panic or during autoconfiguration, lower the interrupt
  510  *      priority level to give pending interrupts a chance to run, and
  511  *      then return.  Called if sleepq_dontsleep() returns non-zero, and
  512  *      always returns zero.
  513  */
  514 int
  515 sleepq_abort(kmutex_t *mtx, int unlock)
  516 { 
  517         int s;
  518 
  519         s = splhigh();
  520         splx(IPL_SAFEPRI);
  521         splx(s);
  522         if (mtx != NULL && unlock != 0)
  523                 mutex_exit(mtx);
  524 
  525         return 0;
  526 }
  527 
  528 /*
  529  * sleepq_reinsert:
  530  *
  531  *      Move the position of the lwp in the sleep queue after a possible
  532  *      change of the lwp's effective priority.
  533  */
  534 static void
  535 sleepq_reinsert(sleepq_t *sq, lwp_t *l)
  536 {
  537 
  538         KASSERT(l->l_sleepq == sq);
  539         if ((l->l_syncobj->sobj_flag & SOBJ_SLEEPQ_SORTED) == 0) { 
  540                 return;
  541         }
  542 
  543         /*
  544          * Don't let the sleep queue become empty, even briefly.
  545          * cv_signal() and cv_broadcast() inspect it without the
  546          * sleep queue lock held and need to see a non-empty queue
  547          * head if there are waiters.
  548          */
  549         if (LIST_FIRST(sq) == l && LIST_NEXT(l, l_sleepchain) == NULL) {
  550                 return;
  551         }
  552         LIST_REMOVE(l, l_sleepchain);
  553         sleepq_insert(sq, l, l->l_syncobj);
  554 }
  555 
  556 /*
  557  * sleepq_changepri:
  558  *
  559  *      Adjust the priority of an LWP residing on a sleepq.
  560  */
  561 void
  562 sleepq_changepri(lwp_t *l, pri_t pri)
  563 {
  564         sleepq_t *sq = l->l_sleepq;
  565 
  566         KASSERT(lwp_locked(l, NULL));
  567 
  568         l->l_priority = pri;
  569         sleepq_reinsert(sq, l);
  570 }
  571 
  572 /*
  573  * sleepq_changepri:
  574  *
  575  *      Adjust the lended priority of an LWP residing on a sleepq.
  576  */
  577 void
  578 sleepq_lendpri(lwp_t *l, pri_t pri)
  579 {
  580         sleepq_t *sq = l->l_sleepq;
  581 
  582         KASSERT(lwp_locked(l, NULL));
  583 
  584         l->l_inheritedprio = pri;
  585         l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
  586         sleepq_reinsert(sq, l);
  587 }

Cache object: d593b244ac32c34c474f6745dcba621e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.