The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_softint.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: kern_softint.c,v 1.23.4.3 2010/01/16 17:41:14 bouyer Exp $     */
    2 
    3 /*-
    4  * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to The NetBSD Foundation
    8  * by Andrew Doran.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   29  * POSSIBILITY OF SUCH DAMAGE.
   30  */
   31 
   32 /*
   33  * Generic software interrupt framework.
   34  *
   35  * Overview
   36  *
   37  *      The soft interrupt framework provides a mechanism to schedule a
   38  *      low priority callback that runs with thread context.  It allows
   39  *      for dynamic registration of software interrupts, and for fair
   40  *      queueing and prioritization of those interrupts.  The callbacks
   41  *      can be scheduled to run from nearly any point in the kernel: by
   42  *      code running with thread context, by code running from a
   43  *      hardware interrupt handler, and at any interrupt priority
   44  *      level.
   45  *
   46  * Priority levels
   47  *
   48  *      Since soft interrupt dispatch can be tied to the underlying
   49  *      architecture's interrupt dispatch code, it can be limited
   50  *      both by the capabilities of the hardware and the capabilities
   51  *      of the interrupt dispatch code itself.  The number of priority
   52  *      levels is restricted to four.  In order of priority (lowest to
   53  *      highest) the levels are: clock, bio, net, serial.
   54  *
   55  *      The names are symbolic and in isolation do not have any direct
   56  *      connection with a particular kind of device activity: they are
   57  *      only meant as a guide.
   58  *
   59  *      The four priority levels map directly to scheduler priority
   60  *      levels, and where the architecture implements 'fast' software
   61  *      interrupts, they also map onto interrupt priorities.  The
   62  *      interrupt priorities are intended to be hidden from machine
   63  *      independent code, which should use thread-safe mechanisms to
   64  *      synchronize with software interrupts (for example: mutexes).
   65  *
   66  * Capabilities
   67  *
   68  *      Software interrupts run with limited machine context.  In
   69  *      particular, they do not posess any address space context.  They
   70  *      should not try to operate on user space addresses, or to use
   71  *      virtual memory facilities other than those noted as interrupt
   72  *      safe.
   73  *
   74  *      Unlike hardware interrupts, software interrupts do have thread
   75  *      context.  They may block on synchronization objects, sleep, and
   76  *      resume execution at a later time.
   77  *
   78  *      Since software interrupts are a limited resource and run with
   79  *      higher priority than most other LWPs in the system, all
   80  *      block-and-resume activity by a software interrupt must be kept
   81  *      short to allow futher processing at that level to continue.  By
   82  *      extension, code running with process context must take care to
   83  *      ensure that any lock that may be taken from a software interrupt
   84  *      can not be held for more than a short period of time.
   85  *
   86  *      The kernel does not allow software interrupts to use facilities
   87  *      or perform actions that may block for a significant amount of
   88  *      time.  This means that it's not valid for a software interrupt
   89  *      to sleep on condition variables or wait for resources to become
   90  *      available (for example, memory).
   91  *
   92  * Per-CPU operation
   93  *
   94  *      If a soft interrupt is triggered on a CPU, it can only be
   95  *      dispatched on the same CPU.  Each LWP dedicated to handling a
   96  *      soft interrupt is bound to its home CPU, so if the LWP blocks
   97  *      and needs to run again, it can only run there.  Nearly all data
   98  *      structures used to manage software interrupts are per-CPU.
   99  *
  100  *      The per-CPU requirement is intended to reduce "ping-pong" of
  101  *      cache lines between CPUs: lines occupied by data structures
  102  *      used to manage the soft interrupts, and lines occupied by data
  103  *      items being passed down to the soft interrupt.  As a positive
  104  *      side effect, this also means that the soft interrupt dispatch
  105  *      code does not need to to use spinlocks to synchronize.
  106  *
  107  * Generic implementation
  108  *
  109  *      A generic, low performance implementation is provided that
  110  *      works across all architectures, with no machine-dependent
  111  *      modifications needed.  This implementation uses the scheduler,
  112  *      and so has a number of restrictions:
  113  *
  114  *      1) The software interrupts are not currently preemptive, so
  115  *      must wait for the currently executing LWP to yield the CPU. 
  116  *      This can introduce latency.
  117  *
  118  *      2) An expensive context switch is required for a software
  119  *      interrupt to be handled.
  120  *
  121  * 'Fast' software interrupts
  122  *
  123  *      If an architectures defines __HAVE_FAST_SOFTINTS, it implements
  124  *      the fast mechanism.  Threads running either in the kernel or in
  125  *      userspace will be interrupted, but will not be preempted.  When
  126  *      the soft interrupt completes execution, the interrupted LWP
  127  *      is resumed.  Interrupt dispatch code must provide the minimum
  128  *      level of context necessary for the soft interrupt to block and
  129  *      be resumed at a later time.  The machine-dependent dispatch
  130  *      path looks something like the following:
  131  *
  132  *      softintr()
  133  *      {
  134  *              go to IPL_HIGH if necessary for switch;
  135  *              save any necessary registers in a format that can be
  136  *                  restored by cpu_switchto if the softint blocks;
  137  *              arrange for cpu_switchto() to restore into the
  138  *                  trampoline function;
  139  *              identify LWP to handle this interrupt;
  140  *              switch to the LWP's stack;
  141  *              switch register stacks, if necessary;
  142  *              assign new value of curlwp;
  143  *              call MI softint_dispatch, passing old curlwp and IPL
  144  *                  to execute interrupt at;
  145  *              switch back to old stack;
  146  *              switch back to old register stack, if necessary;
  147  *              restore curlwp;
  148  *              return to interrupted LWP;
  149  *      }
  150  *
  151  *      If the soft interrupt blocks, a trampoline function is returned
  152  *      to in the context of the interrupted LWP, as arranged for by
  153  *      softint():
  154  *
  155  *      softint_ret()
  156  *      {
  157  *              unlock soft interrupt LWP;
  158  *              resume interrupt processing, likely returning to
  159  *                  interrupted LWP or dispatching another, different
  160  *                  interrupt;
  161  *      }
  162  *
  163  *      Once the soft interrupt has fired (and even if it has blocked),
  164  *      no further soft interrupts at that level will be triggered by
  165  *      MI code until the soft interrupt handler has ceased execution. 
  166  *      If a soft interrupt handler blocks and is resumed, it resumes
  167  *      execution as a normal LWP (kthread) and gains VM context.  Only
  168  *      when it has completed and is ready to fire again will it
  169  *      interrupt other threads.
  170  *
  171  * Future directions
  172  *
  173  *      Provide a cheap way to direct software interrupts to remote
  174  *      CPUs.  Provide a way to enqueue work items into the handler
  175  *      record, removing additional spl calls (see subr_workqueue.c). 
  176  */
  177 
  178 #include <sys/cdefs.h>
  179 __KERNEL_RCSID(0, "$NetBSD: kern_softint.c,v 1.23.4.3 2010/01/16 17:41:14 bouyer Exp $");
  180 
  181 #include <sys/param.h>
  182 #include <sys/malloc.h>
  183 #include <sys/proc.h>
  184 #include <sys/intr.h>
  185 #include <sys/mutex.h>
  186 #include <sys/kthread.h>
  187 #include <sys/evcnt.h>
  188 #include <sys/cpu.h>
  189 #include <sys/xcall.h>
  190 
  191 #include <net/netisr.h>
  192 
  193 #include <uvm/uvm_extern.h>
  194 
  195 /* This could overlap with signal info in struct lwp. */
  196 typedef struct softint {
  197         SIMPLEQ_HEAD(, softhand) si_q;
  198         struct lwp              *si_lwp;
  199         struct cpu_info         *si_cpu;
  200         uintptr_t               si_machdep;
  201         struct evcnt            si_evcnt;
  202         struct evcnt            si_evcnt_block;
  203         int                     si_active;
  204         char                    si_name[8];
  205         char                    si_name_block[8+6];
  206 } softint_t;
  207 
  208 typedef struct softhand {
  209         SIMPLEQ_ENTRY(softhand) sh_q;
  210         void                    (*sh_func)(void *);
  211         void                    *sh_arg;
  212         softint_t               *sh_isr;
  213         u_int                   sh_flags;
  214 } softhand_t;
  215 
  216 typedef struct softcpu {
  217         struct cpu_info         *sc_cpu;
  218         softint_t               sc_int[SOFTINT_COUNT];
  219         softhand_t              sc_hand[1];
  220 } softcpu_t;
  221 
  222 static void     softint_thread(void *);
  223 
  224 u_int           softint_bytes = 8192;
  225 u_int           softint_timing;
  226 static u_int    softint_max;
  227 static kmutex_t softint_lock;
  228 static void     *softint_netisrs[NETISR_MAX];
  229 
  230 /*
  231  * softint_init_isr:
  232  *
  233  *      Initialize a single interrupt level for a single CPU.
  234  */
  235 static void
  236 softint_init_isr(softcpu_t *sc, const char *desc, pri_t pri, u_int level)
  237 {
  238         struct cpu_info *ci;
  239         softint_t *si;
  240         int error;
  241 
  242         si = &sc->sc_int[level];
  243         ci = sc->sc_cpu;
  244         si->si_cpu = ci;
  245 
  246         SIMPLEQ_INIT(&si->si_q);
  247 
  248         error = kthread_create(pri, KTHREAD_MPSAFE | KTHREAD_INTR |
  249             KTHREAD_IDLE, ci, softint_thread, si, &si->si_lwp,
  250             "soft%s/%u", desc, ci->ci_index);
  251         if (error != 0)
  252                 panic("softint_init_isr: error %d", error);
  253 
  254         snprintf(si->si_name, sizeof(si->si_name), "%s/%u", desc,
  255             ci->ci_index);
  256         evcnt_attach_dynamic(&si->si_evcnt, EVCNT_TYPE_MISC, NULL,
  257            "softint", si->si_name);
  258         snprintf(si->si_name_block, sizeof(si->si_name_block), "%s block/%u",
  259             desc, ci->ci_index);
  260         evcnt_attach_dynamic(&si->si_evcnt_block, EVCNT_TYPE_MISC, NULL,
  261            "softint", si->si_name_block);
  262 
  263         si->si_lwp->l_private = si;
  264         softint_init_md(si->si_lwp, level, &si->si_machdep);
  265 }
  266 /*
  267  * softint_init:
  268  *
  269  *      Initialize per-CPU data structures.  Called from mi_cpu_attach().
  270  */
  271 void
  272 softint_init(struct cpu_info *ci)
  273 {
  274         static struct cpu_info *first;
  275         softcpu_t *sc, *scfirst;
  276         softhand_t *sh, *shmax;
  277 
  278         if (first == NULL) {
  279                 /* Boot CPU. */
  280                 first = ci;
  281                 mutex_init(&softint_lock, MUTEX_DEFAULT, IPL_NONE);
  282                 softint_bytes = round_page(softint_bytes);
  283                 softint_max = (softint_bytes - sizeof(softcpu_t)) /
  284                     sizeof(softhand_t);
  285         }
  286 
  287         sc = (softcpu_t *)uvm_km_alloc(kernel_map, softint_bytes, 0,
  288             UVM_KMF_WIRED | UVM_KMF_ZERO);
  289         if (sc == NULL)
  290                 panic("softint_init_cpu: cannot allocate memory");
  291 
  292         ci->ci_data.cpu_softcpu = sc;
  293         ci->ci_data.cpu_softints = 0;
  294         sc->sc_cpu = ci;
  295 
  296         softint_init_isr(sc, "net", PRI_SOFTNET, SOFTINT_NET);
  297         softint_init_isr(sc, "bio", PRI_SOFTBIO, SOFTINT_BIO);
  298         softint_init_isr(sc, "clk", PRI_SOFTCLOCK, SOFTINT_CLOCK);
  299         softint_init_isr(sc, "ser", PRI_SOFTSERIAL, SOFTINT_SERIAL);
  300 
  301         if (first != ci) {
  302                 mutex_enter(&softint_lock);
  303                 scfirst = first->ci_data.cpu_softcpu;
  304                 sh = sc->sc_hand;
  305                 memcpy(sh, scfirst->sc_hand, sizeof(*sh) * softint_max);
  306                 /* Update pointers for this CPU. */
  307                 for (shmax = sh + softint_max; sh < shmax; sh++) {
  308                         if (sh->sh_func == NULL)
  309                                 continue;
  310                         sh->sh_isr =
  311                             &sc->sc_int[sh->sh_flags & SOFTINT_LVLMASK];
  312                 }
  313                 mutex_exit(&softint_lock);
  314         } else {
  315                 /*
  316                  * Establish handlers for legacy net interrupts.
  317                  * XXX Needs to go away.
  318                  */
  319 #define DONETISR(n, f)                                                  \
  320     softint_netisrs[(n)] = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,\
  321         (void (*)(void *))(f), NULL)
  322 #include <net/netisr_dispatch.h>
  323         }
  324 }
  325 
  326 /*
  327  * softint_establish:
  328  *
  329  *      Register a software interrupt handler.
  330  */
  331 void *
  332 softint_establish(u_int flags, void (*func)(void *), void *arg)
  333 {
  334         CPU_INFO_ITERATOR cii;
  335         struct cpu_info *ci;
  336         softcpu_t *sc;
  337         softhand_t *sh;
  338         u_int level, index;
  339 
  340         level = (flags & SOFTINT_LVLMASK);
  341         KASSERT(level < SOFTINT_COUNT);
  342         KASSERT((flags & SOFTINT_IMPMASK) == 0);
  343 
  344         mutex_enter(&softint_lock);
  345 
  346         /* Find a free slot. */
  347         sc = curcpu()->ci_data.cpu_softcpu;
  348         for (index = 1; index < softint_max; index++)
  349                 if (sc->sc_hand[index].sh_func == NULL)
  350                         break;
  351         if (index == softint_max) {
  352                 mutex_exit(&softint_lock);
  353                 printf("WARNING: softint_establish: table full, "
  354                     "increase softint_bytes\n");
  355                 return NULL;
  356         }
  357 
  358         /* Set up the handler on each CPU. */
  359         if (ncpu < 2) {
  360                 /* XXX hack for machines with no CPU_INFO_FOREACH() early on */
  361                 sc = curcpu()->ci_data.cpu_softcpu;
  362                 sh = &sc->sc_hand[index];
  363                 sh->sh_isr = &sc->sc_int[level];
  364                 sh->sh_func = func;
  365                 sh->sh_arg = arg;
  366                 sh->sh_flags = flags;
  367         } else for (CPU_INFO_FOREACH(cii, ci)) {
  368                 sc = ci->ci_data.cpu_softcpu;
  369                 sh = &sc->sc_hand[index];
  370                 sh->sh_isr = &sc->sc_int[level];
  371                 sh->sh_func = func;
  372                 sh->sh_arg = arg;
  373                 sh->sh_flags = flags;
  374         }
  375 
  376         mutex_exit(&softint_lock);
  377 
  378         return (void *)((uint8_t *)&sc->sc_hand[index] - (uint8_t *)sc);
  379 }
  380 
  381 /*
  382  * softint_disestablish:
  383  *
  384  *      Unregister a software interrupt handler.  The soft interrupt could
  385  *      still be active at this point, but the caller commits not to try
  386  *      and trigger it again once this call is made.  The caller must not
  387  *      hold any locks that could be taken from soft interrupt context,
  388  *      because we will wait for the softint to complete if it's still
  389  *      running.
  390  */
  391 void
  392 softint_disestablish(void *arg)
  393 {
  394         CPU_INFO_ITERATOR cii;
  395         struct cpu_info *ci;
  396         softcpu_t *sc;
  397         softhand_t *sh;
  398         uintptr_t offset;
  399         uint64_t where;
  400         u_int flags;
  401 
  402         offset = (uintptr_t)arg;
  403         KASSERT(offset != 0 && offset < softint_bytes);
  404 
  405         /*
  406          * Run a cross call so we see up to date values of sh_flags from
  407          * all CPUs.  Once softint_disestablish() is called, the caller
  408          * commits to not trigger the interrupt and set SOFTINT_ACTIVE on
  409          * it again.  So, we are only looking for handler records with
  410          * SOFTINT_ACTIVE alreay set.
  411          */
  412         where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
  413         xc_wait(where);
  414 
  415         for (;;) {
  416                 /* Collect flag values from each CPU. */
  417                 flags = 0;
  418                 for (CPU_INFO_FOREACH(cii, ci)) {
  419                         sc = ci->ci_data.cpu_softcpu;
  420                         sh = (softhand_t *)((uint8_t *)sc + offset);
  421                         KASSERT(sh->sh_func != NULL);
  422                         flags |= sh->sh_flags;
  423                 }
  424                 /* Inactive on all CPUs? */
  425                 if ((flags & SOFTINT_ACTIVE) == 0) {
  426                         break;
  427                 }
  428                 /* Oops, still active.  Wait for it to clear. */
  429                 (void)kpause("softdis", false, 1, NULL);
  430         }
  431 
  432         /* Clear the handler on each CPU. */
  433         mutex_enter(&softint_lock);
  434         for (CPU_INFO_FOREACH(cii, ci)) {
  435                 sc = ci->ci_data.cpu_softcpu;
  436                 sh = (softhand_t *)((uint8_t *)sc + offset);
  437                 KASSERT(sh->sh_func != NULL);
  438                 sh->sh_func = NULL;
  439         }
  440         mutex_exit(&softint_lock);
  441 }
  442 
  443 /*
  444  * softint_schedule:
  445  *
  446  *      Trigger a software interrupt.  Must be called from a hardware
  447  *      interrupt handler, or with preemption disabled (since we are
  448  *      using the value of curcpu()).
  449  */
  450 void
  451 softint_schedule(void *arg)
  452 {
  453         softhand_t *sh;
  454         softint_t *si;
  455         uintptr_t offset;
  456         int s;
  457 
  458         KASSERT(kpreempt_disabled());
  459 
  460         /* Find the handler record for this CPU. */
  461         offset = (uintptr_t)arg;
  462         KASSERT(offset != 0 && offset < softint_bytes);
  463         sh = (softhand_t *)((uint8_t *)curcpu()->ci_data.cpu_softcpu + offset);
  464 
  465         /* If it's already pending there's nothing to do. */
  466         if ((sh->sh_flags & SOFTINT_PENDING) != 0)
  467                 return;
  468 
  469         /*
  470          * Enqueue the handler into the LWP's pending list.
  471          * If the LWP is completely idle, then make it run.
  472          */
  473         s = splhigh();
  474         if ((sh->sh_flags & SOFTINT_PENDING) == 0) {
  475                 si = sh->sh_isr;
  476                 sh->sh_flags |= SOFTINT_PENDING;
  477                 SIMPLEQ_INSERT_TAIL(&si->si_q, sh, sh_q);
  478                 if (si->si_active == 0) {
  479                         si->si_active = 1;
  480                         softint_trigger(si->si_machdep);
  481                 }
  482         }
  483         splx(s);
  484 }
  485 
  486 /*
  487  * softint_execute:
  488  *
  489  *      Invoke handlers for the specified soft interrupt.
  490  *      Must be entered at splhigh.  Will drop the priority
  491  *      to the level specified, but returns back at splhigh.
  492  */
  493 static inline void
  494 softint_execute(softint_t *si, lwp_t *l, int s)
  495 {
  496         softhand_t *sh;
  497         bool havelock;
  498 
  499 #ifdef __HAVE_FAST_SOFTINTS
  500         KASSERT(si->si_lwp == curlwp);
  501 #else
  502         /* May be running in user context. */
  503 #endif
  504         KASSERT(si->si_cpu == curcpu());
  505         KASSERT(si->si_lwp->l_wchan == NULL);
  506         KASSERT(si->si_active);
  507 
  508         havelock = false;
  509 
  510         /*
  511          * Note: due to priority inheritance we may have interrupted a
  512          * higher priority LWP.  Since the soft interrupt must be quick
  513          * and is non-preemptable, we don't bother yielding.
  514          */
  515 
  516         while (!SIMPLEQ_EMPTY(&si->si_q)) {
  517                 /*
  518                  * Pick the longest waiting handler to run.  We block
  519                  * interrupts but do not lock in order to do this, as
  520                  * we are protecting against the local CPU only.
  521                  */
  522                 sh = SIMPLEQ_FIRST(&si->si_q);
  523                 SIMPLEQ_REMOVE_HEAD(&si->si_q, sh_q);
  524                 KASSERT((sh->sh_flags & SOFTINT_PENDING) != 0);
  525                 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) == 0);
  526                 sh->sh_flags ^= (SOFTINT_PENDING | SOFTINT_ACTIVE);
  527                 splx(s);
  528 
  529                 /* Run the handler. */
  530                 if (sh->sh_flags & SOFTINT_MPSAFE) {
  531                         if (havelock) {
  532                                 KERNEL_UNLOCK_ONE(l);
  533                                 havelock = false;
  534                         }
  535                 } else if (!havelock) {
  536                         KERNEL_LOCK(1, l);
  537                         havelock = true;
  538                 }
  539                 (*sh->sh_func)(sh->sh_arg);
  540         
  541                 (void)splhigh();
  542                 KASSERT((sh->sh_flags & SOFTINT_ACTIVE) != 0);
  543                 sh->sh_flags ^= SOFTINT_ACTIVE;
  544         }
  545 
  546         if (havelock) {
  547                 KERNEL_UNLOCK_ONE(l);
  548         }
  549 
  550         /*
  551          * Unlocked, but only for statistics.
  552          * Should be per-CPU to prevent cache ping-pong.
  553          */
  554         uvmexp.softs++;
  555 
  556         KASSERT(si->si_cpu == curcpu());
  557         KASSERT(si->si_lwp->l_wchan == NULL);
  558         KASSERT(si->si_active);
  559         si->si_evcnt.ev_count++;
  560         si->si_active = 0;
  561 }
  562 
  563 /*
  564  * softint_block:
  565  *
  566  *      Update statistics when the soft interrupt blocks.
  567  */
  568 void
  569 softint_block(lwp_t *l)
  570 {
  571         softint_t *si = l->l_private;
  572 
  573         KASSERT((l->l_pflag & LP_INTR) != 0);
  574         si->si_evcnt_block.ev_count++;
  575 }
  576 
  577 /*
  578  * schednetisr:
  579  *
  580  *      Trigger a legacy network interrupt.  XXX Needs to go away.
  581  */
  582 void
  583 schednetisr(int isr)
  584 {
  585 
  586         softint_schedule(softint_netisrs[isr]);
  587 }
  588 
  589 #ifndef __HAVE_FAST_SOFTINTS
  590 
  591 #ifdef __HAVE_PREEMPTION
  592 #error __HAVE_PREEMPTION requires __HAVE_FAST_SOFTINTS
  593 #endif
  594 
  595 /*
  596  * softint_init_md:
  597  *
  598  *      Slow path: perform machine-dependent initialization.
  599  */
  600 void
  601 softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
  602 {
  603         softint_t *si;
  604 
  605         *machdep = (1 << level);
  606         si = l->l_private;
  607 
  608         lwp_lock(l);
  609         lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
  610         lwp_lock(l);
  611         /* Cheat and make the KASSERT in softint_thread() happy. */
  612         si->si_active = 1;
  613         l->l_stat = LSRUN;
  614         sched_enqueue(l, false);
  615         lwp_unlock(l);
  616 }
  617 
  618 /*
  619  * softint_trigger:
  620  *
  621  *      Slow path: cause a soft interrupt handler to begin executing.
  622  *      Called at IPL_HIGH.
  623  */
  624 void
  625 softint_trigger(uintptr_t machdep)
  626 {
  627         struct cpu_info *ci;
  628         lwp_t *l;
  629 
  630         l = curlwp;
  631         ci = l->l_cpu;
  632         ci->ci_data.cpu_softints |= machdep;
  633         if (l == ci->ci_data.cpu_idlelwp) {
  634                 cpu_need_resched(ci, 0);
  635         } else {
  636                 /* MI equivalent of aston() */
  637                 cpu_signotify(l);
  638         }
  639 }
  640 
  641 /*
  642  * softint_thread:
  643  *
  644  *      Slow path: MI software interrupt dispatch.
  645  */
  646 void
  647 softint_thread(void *cookie)
  648 {
  649         softint_t *si;
  650         lwp_t *l;
  651         int s;
  652 
  653         l = curlwp;
  654         si = l->l_private;
  655 
  656         for (;;) {
  657                 /*
  658                  * Clear pending status and run it.  We must drop the
  659                  * spl before mi_switch(), since IPL_HIGH may be higher
  660                  * than IPL_SCHED (and it is not safe to switch at a
  661                  * higher level).
  662                  */
  663                 s = splhigh();
  664                 l->l_cpu->ci_data.cpu_softints &= ~si->si_machdep;
  665                 softint_execute(si, l, s);
  666                 splx(s);
  667 
  668                 lwp_lock(l);
  669                 l->l_stat = LSIDL;
  670                 mi_switch(l);
  671         }
  672 }
  673 
  674 /*
  675  * softint_picklwp:
  676  *
  677  *      Slow path: called from mi_switch() to pick the highest priority
  678  *      soft interrupt LWP that needs to run.
  679  */
  680 lwp_t *
  681 softint_picklwp(void)
  682 {
  683         struct cpu_info *ci;
  684         u_int mask;
  685         softint_t *si;
  686         lwp_t *l;
  687 
  688         ci = curcpu();
  689         si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
  690         mask = ci->ci_data.cpu_softints;
  691 
  692         if ((mask & (1 << SOFTINT_SERIAL)) != 0) {
  693                 l = si[SOFTINT_SERIAL].si_lwp;
  694         } else if ((mask & (1 << SOFTINT_NET)) != 0) {
  695                 l = si[SOFTINT_NET].si_lwp;
  696         } else if ((mask & (1 << SOFTINT_BIO)) != 0) {
  697                 l = si[SOFTINT_BIO].si_lwp;
  698         } else if ((mask & (1 << SOFTINT_CLOCK)) != 0) {
  699                 l = si[SOFTINT_CLOCK].si_lwp;
  700         } else {
  701                 panic("softint_picklwp");
  702         }
  703 
  704         return l;
  705 }
  706 
  707 /*
  708  * softint_overlay:
  709  *
  710  *      Slow path: called from lwp_userret() to run a soft interrupt
  711  *      within the context of a user thread.
  712  */
  713 void
  714 softint_overlay(void)
  715 {
  716         struct cpu_info *ci;
  717         u_int softints, oflag;
  718         softint_t *si;
  719         pri_t obase;
  720         lwp_t *l;
  721         int s;
  722 
  723         l = curlwp;
  724         ci = l->l_cpu;
  725         si = ((softcpu_t *)ci->ci_data.cpu_softcpu)->sc_int;
  726 
  727         KASSERT((l->l_pflag & LP_INTR) == 0);
  728 
  729         /* Arrange to elevate priority if the LWP blocks. */
  730         s = splhigh();
  731         obase = l->l_kpribase;
  732         l->l_kpribase = PRI_KERNEL_RT;
  733         oflag = l->l_pflag;
  734         l->l_pflag = oflag | LP_INTR | LP_BOUND;
  735         while ((softints = ci->ci_data.cpu_softints) != 0) {
  736                 if ((softints & (1 << SOFTINT_SERIAL)) != 0) {
  737                         ci->ci_data.cpu_softints &= ~(1 << SOFTINT_SERIAL);
  738                         softint_execute(&si[SOFTINT_SERIAL], l, s);
  739                         continue;
  740                 }
  741                 if ((softints & (1 << SOFTINT_NET)) != 0) {
  742                         ci->ci_data.cpu_softints &= ~(1 << SOFTINT_NET);
  743                         softint_execute(&si[SOFTINT_NET], l, s);
  744                         continue;
  745                 }
  746                 if ((softints & (1 << SOFTINT_BIO)) != 0) {
  747                         ci->ci_data.cpu_softints &= ~(1 << SOFTINT_BIO);
  748                         softint_execute(&si[SOFTINT_BIO], l, s);
  749                         continue;
  750                 }
  751                 if ((softints & (1 << SOFTINT_CLOCK)) != 0) {
  752                         ci->ci_data.cpu_softints &= ~(1 << SOFTINT_CLOCK);
  753                         softint_execute(&si[SOFTINT_CLOCK], l, s);
  754                         continue;
  755                 }
  756         }
  757         l->l_pflag = oflag;
  758         l->l_kpribase = obase;
  759         splx(s);
  760 }
  761 
  762 #else   /*  !__HAVE_FAST_SOFTINTS */
  763 
  764 /*
  765  * softint_thread:
  766  *
  767  *      Fast path: the LWP is switched to without restoring any state,
  768  *      so we should not arrive here - there is a direct handoff between
  769  *      the interrupt stub and softint_dispatch().
  770  */
  771 void
  772 softint_thread(void *cookie)
  773 {
  774 
  775         panic("softint_thread");
  776 }
  777 
  778 /*
  779  * softint_dispatch:
  780  *
  781  *      Fast path: entry point from machine-dependent code.
  782  */
  783 void
  784 softint_dispatch(lwp_t *pinned, int s)
  785 {
  786         struct bintime now;
  787         softint_t *si;
  788         u_int timing;
  789         lwp_t *l;
  790 
  791         l = curlwp;
  792         si = l->l_private;
  793 
  794         /*
  795          * Note the interrupted LWP, and mark the current LWP as running
  796          * before proceeding.  Although this must as a rule be done with
  797          * the LWP locked, at this point no external agents will want to
  798          * modify the interrupt LWP's state.
  799          */
  800         timing = (softint_timing ? LP_TIMEINTR : 0);
  801         l->l_switchto = pinned;
  802         l->l_stat = LSONPROC;
  803         l->l_pflag |= (LP_RUNNING | timing);
  804 
  805         /*
  806          * Dispatch the interrupt.  If softints are being timed, charge
  807          * for it.
  808          */
  809         if (timing)
  810                 binuptime(&l->l_stime);
  811         softint_execute(si, l, s);
  812         if (timing) {
  813                 binuptime(&now);
  814                 updatertime(l, &now);
  815                 l->l_pflag &= ~LP_TIMEINTR;
  816         }
  817 
  818         /*
  819          * If we blocked while handling the interrupt, the pinned LWP is
  820          * gone so switch to the idle LWP.  It will select a new LWP to
  821          * run.
  822          *
  823          * We must drop the priority level as switching at IPL_HIGH could
  824          * deadlock the system.  We have already set si->si_active = 0,
  825          * which means another interrupt at this level can be triggered. 
  826          * That's not be a problem: we are lowering to level 's' which will
  827          * prevent softint_dispatch() from being reentered at level 's',
  828          * until the priority is finally dropped to IPL_NONE on entry to
  829          * the LWP chosen by lwp_exit_switchaway().
  830          */
  831         l->l_stat = LSIDL;
  832         if (l->l_switchto == NULL) {
  833                 splx(s);
  834                 pmap_deactivate(l);
  835                 lwp_exit_switchaway(l);
  836                 /* NOTREACHED */
  837         }
  838         l->l_switchto = NULL;
  839         l->l_pflag &= ~LP_RUNNING;
  840 }
  841 
  842 #endif  /* !__HAVE_FAST_SOFTINTS */

Cache object: fc97adaa840e8bf2c2bd8f04ca991de9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.