The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_switch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  *
   26  * $FreeBSD: releng/5.0/sys/kern/kern_switch.c 105129 2002-10-14 20:43:02Z julian $
   27  */
   28 
   29 /***
   30 
   31 Here is the logic..
   32 
   33 If there are N processors, then there are at most N KSEs (kernel
   34 schedulable entities) working to process threads that belong to a
   35 KSEGOUP (kg). If there are X of these KSEs actually running at the
   36 moment in question, then there are at most M (N-X) of these KSEs on
   37 the run queue, as running KSEs are not on the queue.
   38 
   39 Runnable threads are queued off the KSEGROUP in priority order.
   40 If there are M or more threads runnable, the top M threads
   41 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
   42 their priority from those threads and are put on the run queue.
   43 
   44 The last thread that had a priority high enough to have a KSE associated
   45 with it, AND IS ON THE RUN QUEUE is pointed to by
   46 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
   47 assigned as all the available KSEs are activly running, or because there
   48 are no threads queued, that pointer is NULL.
   49 
   50 When a KSE is removed from the run queue to become runnable, we know
   51 it was associated with the highest priority thread in the queue (at the head
   52 of the queue). If it is also the last assigned we know M was 1 and must
   53 now be 0. Since the thread is no longer queued that pointer must be
   54 removed from it. Since we know there were no more KSEs available,
   55 (M was 1 and is now 0) and since we are not FREEING our KSE
   56 but using it, we know there are STILL no more KSEs available, we can prove
   57 that the next thread in the ksegrp list will not have a KSE to assign to
   58 it, so we can show that the pointer must be made 'invalid' (NULL).
   59 
   60 The pointer exists so that when a new thread is made runnable, it can
   61 have its priority compared with the last assigned thread to see if
   62 it should 'steal' its KSE or not.. i.e. is it 'earlier'
   63 on the list than that thread or later.. If it's earlier, then the KSE is
   64 removed from the last assigned (which is now not assigned a KSE)
   65 and reassigned to the new thread, which is placed earlier in the list.
   66 The pointer is then backed up to the previous thread (which may or may not
   67 be the new thread).
   68 
   69 When a thread sleeps or is removed, the KSE becomes available and if there 
   70 are queued threads that are not assigned KSEs, the highest priority one of
   71 them is assigned the KSE, which is then placed back on the run queue at
   72 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
   73 to point to it.
   74 
   75 The following diagram shows 2 KSEs and 3 threads from a single process.
   76 
   77  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
   78               \    \____   
   79                \        \
   80     KSEGROUP---thread--thread--thread    (queued in priority order)
   81         \                 / 
   82          \_______________/
   83           (last_assigned)
   84 
   85 The result of this scheme is that the M available KSEs are always
   86 queued at the priorities they have inherrited from the M highest priority
   87 threads for that KSEGROUP. If this situation changes, the KSEs are 
   88 reassigned to keep this true.
   89    
   90 */
   91 
   92 #include <sys/param.h>
   93 #include <sys/systm.h>
   94 #include <sys/kernel.h>
   95 #include <sys/ktr.h>
   96 #include <sys/lock.h>
   97 #include <sys/mutex.h>
   98 #include <sys/proc.h>
   99 #include <sys/queue.h>
  100 #include <sys/sched.h>
  101 #include <machine/critical.h>
  102 
  103 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
  104 
  105 void panc(char *string1, char *string2);
  106 
  107 #if 0
  108 static void runq_readjust(struct runq *rq, struct kse *ke);
  109 #endif
  110 /************************************************************************
  111  * Functions that manipulate runnability from a thread perspective.     *
  112  ************************************************************************/
  113 
  114 /*
  115  * Select the KSE that will be run next.  From that find the thread, and x
  116  * remove it from the KSEGRP's run queue.  If there is thread clustering,
  117  * this will be what does it.
  118  */
  119 struct thread *
  120 choosethread(void)
  121 {
  122         struct kse *ke;
  123         struct thread *td;
  124         struct ksegrp *kg;
  125 
  126 retry:
  127         if ((ke = sched_choose())) {
  128                 td = ke->ke_thread;
  129                 KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
  130                 kg = ke->ke_ksegrp;
  131                 if (td->td_flags & TDF_UNBOUND) {
  132                         TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  133                         if (kg->kg_last_assigned == td) {
  134                                 if (TAILQ_PREV(td, threadqueue, td_runq)
  135                                     != NULL)
  136                                         printf("Yo MAMA!\n");
  137                                 kg->kg_last_assigned = TAILQ_PREV(td,
  138                                     threadqueue, td_runq);
  139                         }
  140                         /*
  141                          *  If we have started running an upcall,
  142                          * Then TDF_UNBOUND WAS set because the thread was 
  143                          * created without a KSE. Now that we have one,
  144                          * and it is our time to run, we make sure
  145                          * that BOUND semantics apply for the rest of
  146                          * the journey to userland, and into the UTS.
  147                          */
  148 #ifdef  NOTYET
  149                         if (td->td_flags & TDF_UPCALLING) 
  150                                 tdf->td_flags &= ~TDF_UNBOUND;
  151 #endif
  152                 }
  153                 kg->kg_runnable--;
  154                 CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
  155                     td, td->td_priority);
  156         } else {
  157                 /* Simulate runq_choose() having returned the idle thread */
  158                 td = PCPU_GET(idlethread);
  159                 ke = td->td_kse;
  160                 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
  161         }
  162         ke->ke_flags |= KEF_DIDRUN;
  163         if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
  164             (td->td_flags & TDF_INPANIC) == 0))
  165                 goto retry;
  166         TD_SET_RUNNING(td);
  167         return (td);
  168 }
  169 
  170 /*
  171  * Given a KSE (now surplus or at least loanable), either assign a new
  172  * runable thread to it
  173  * (and put it in the run queue) or put it in the ksegrp's idle KSE list.
  174  * Or aybe give it back to its owner if it's been loaned.
  175  */
  176 void
  177 kse_reassign(struct kse *ke)
  178 {
  179         struct ksegrp *kg;
  180         struct thread *td;
  181         struct thread *owner;
  182         struct thread *original;
  183 
  184         mtx_assert(&sched_lock, MA_OWNED);
  185         kg = ke->ke_ksegrp;
  186         owner = ke->ke_bound;
  187         original = ke->ke_thread;
  188         KASSERT(!(owner && ((owner->td_kse != ke) || 
  189                     (owner->td_flags & TDF_UNBOUND))), 
  190                 ("kse_reassign: bad thread bound state"));
  191 
  192         /*
  193          * Find the first unassigned thread
  194          * If there is a 'last assigned' then see what's next.
  195          * otherwise look at what is first.
  196          */
  197         if ((td = kg->kg_last_assigned)) {
  198                 td = TAILQ_NEXT(td, td_runq);
  199         } else {
  200                 td = TAILQ_FIRST(&kg->kg_runq);
  201         }
  202 
  203         /*
  204          * If we found one assign it the kse, otherwise idle the kse.
  205          */
  206         if (td) {
  207                 /*
  208                  * If the original is bound to us we can only be lent out so
  209                  * make a loan, otherwise we just drop the 
  210                  * original thread.
  211                  */
  212                 if (original) {
  213                         if (((original->td_flags & TDF_UNBOUND) == 0)) {
  214                                 /*
  215                                  * Put the owner on the side
  216                                  */
  217                                 ke->ke_bound = original;
  218                                 TD_SET_LOAN(original);
  219                         } else {
  220                                 original->td_kse = NULL;
  221                         }
  222                 }
  223                 kg->kg_last_assigned = td;
  224                 td->td_kse = ke;
  225                 ke->ke_thread = td;
  226                 sched_add(ke);
  227                 /*
  228                  * if we have already borrowed this,
  229                  * just pass it to the new thread,
  230                  * otherwise, enact the loan.
  231                  */
  232                 CTR2(KTR_RUNQ, "kse_reassign: ke%p -> td%p", ke, td);
  233                 return;
  234         }
  235         if (owner) { /* already loaned out */
  236                 /* effectivly unloan it */
  237                 TD_CLR_LOAN(owner);
  238                 ke->ke_thread = owner;
  239                 ke->ke_bound = NULL;
  240                 if (original)
  241                         original->td_kse = NULL;
  242                 original = owner;
  243 
  244                 if (TD_CAN_RUN(owner)) {
  245                         /*
  246                          * If the owner thread is now runnable,  run it..
  247                          * Let it have its KSE back.
  248                          */
  249                         setrunqueue(owner);
  250                         CTR2(KTR_RUNQ, "kse_reassign: ke%p -> td%p (give back)",
  251                             ke, owner);
  252                         return;
  253                 }
  254         }
  255         /*
  256          * Presetly NOT loaned out.
  257          * If we are bound, we go on the loanable queue
  258          * otherwise onto the free queue.
  259          */
  260         if (original) {
  261                 if (((original->td_flags & TDF_UNBOUND) == 0)) {
  262                         ke->ke_state = KES_THREAD;
  263                         ke->ke_flags |= KEF_ONLOANQ;
  264                         ke->ke_bound = NULL;
  265                         TAILQ_INSERT_HEAD(&kg->kg_lq, ke, ke_kgrlist);
  266                         kg->kg_loan_kses++;
  267                         CTR1(KTR_RUNQ, "kse_reassign: ke%p on loan queue", ke);
  268                         return;
  269                 } else {
  270                         original->td_kse = NULL;
  271                 }
  272         }
  273         ke->ke_state = KES_IDLE;
  274         ke->ke_thread = NULL;
  275         TAILQ_INSERT_HEAD(&kg->kg_iq, ke, ke_kgrlist);
  276         kg->kg_idle_kses++;
  277         CTR1(KTR_RUNQ, "kse_reassign: ke%p idled", ke);
  278 }
  279 
  280 #if 0
  281 /*
  282  * Remove a thread from its KSEGRP's run queue.
  283  * This in turn may remove it from a KSE if it was already assigned
  284  * to one, possibly causing a new thread to be assigned to the KSE
  285  * and the KSE getting a new priority (unless it's a BOUND thread/KSE pair).
  286  */
  287 static void
  288 remrunqueue(struct thread *td)
  289 {
  290         struct thread *td2, *td3;
  291         struct ksegrp *kg;
  292         struct kse *ke;
  293 
  294         mtx_assert(&sched_lock, MA_OWNED);
  295         KASSERT ((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
  296         kg = td->td_ksegrp;
  297         ke = td->td_kse;
  298         /*
  299          * If it's a bound thread/KSE pair, take the shortcut. All non-KSE
  300          * threads are BOUND.
  301          */
  302         CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
  303         kg->kg_runnable--;
  304         TD_SET_CAN_RUN(td);
  305         if ((td->td_flags & TDF_UNBOUND) == 0)  {
  306                 /* Bring its kse with it, leave the thread attached */
  307                 sched_rem(ke);
  308                 ke->ke_state = KES_THREAD; 
  309                 return;
  310         }
  311         td3 = TAILQ_PREV(td, threadqueue, td_runq);
  312         TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  313         if (ke) {
  314                 /*
  315                  * This thread has been assigned to a KSE.
  316                  * We need to dissociate it and try assign the
  317                  * KSE to the next available thread. Then, we should
  318                  * see if we need to move the KSE in the run queues.
  319                  */
  320                 td2 = kg->kg_last_assigned;
  321                 KASSERT((td2 != NULL), ("last assigned has wrong value "));
  322                 if (td2 == td) 
  323                         kg->kg_last_assigned = td3;
  324                 td->td_kse = NULL;
  325                 ke->ke_thread = NULL;
  326                 kse_reassign(ke);
  327         }
  328 }
  329 #endif
  330 
  331 /*
  332  * Change the priority of a thread that is on the run queue.
  333  */
  334 void
  335 adjustrunqueue( struct thread *td, int newpri) 
  336 {
  337         struct ksegrp *kg;
  338         struct kse *ke;
  339 
  340         mtx_assert(&sched_lock, MA_OWNED);
  341         KASSERT ((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
  342         /*
  343          * If it's a bound thread/KSE pair, take the shortcut. All non-KSE
  344          * threads are BOUND.
  345          */
  346         ke = td->td_kse;
  347         CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
  348         if ((td->td_flags & TDF_UNBOUND) == 0)  {
  349                 /* We only care about the kse in the run queue. */
  350                 td->td_priority = newpri;
  351                 if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
  352                         sched_rem(ke);
  353                         sched_add(ke);
  354                 }
  355                 return;
  356         }
  357         /*
  358          * An unbound thread. This is not optimised yet.
  359          */
  360         kg = td->td_ksegrp;
  361         kg->kg_runnable--;
  362         TD_SET_CAN_RUN(td);
  363         if (ke) {
  364                 if (kg->kg_last_assigned == td) {
  365                         kg->kg_last_assigned =
  366                             TAILQ_PREV(td, threadqueue, td_runq);
  367                 }
  368                 sched_rem(ke);
  369         }
  370         TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  371         td->td_priority = newpri;
  372         setrunqueue(td);
  373 }
  374 
  375 void
  376 setrunqueue(struct thread *td)
  377 {
  378         struct kse *ke;
  379         struct ksegrp *kg;
  380         struct thread *td2;
  381         struct thread *tda;
  382 
  383         CTR1(KTR_RUNQ, "setrunqueue: td%p", td);
  384         mtx_assert(&sched_lock, MA_OWNED);
  385         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
  386             ("setrunqueue: bad thread state"));
  387         TD_SET_RUNQ(td);
  388         kg = td->td_ksegrp;
  389         kg->kg_runnable++;
  390         if ((td->td_proc->p_flag & P_KSES) == 0) {
  391                 /*
  392                  * Common path optimisation: Only one of everything
  393                  * and the KSE is always already attached.
  394                  * Totally ignore the ksegrp run queue.
  395                  */
  396                 sched_add(td->td_kse);
  397                 return;
  398         }
  399         if ((td->td_flags & TDF_UNBOUND) == 0) {
  400                 KASSERT((td->td_kse != NULL),
  401                     ("queueing BAD thread to run queue"));
  402                 ke = td->td_kse;
  403                 ke->ke_bound = NULL;
  404                 if (ke->ke_flags & KEF_ONLOANQ) {
  405                         ke->ke_flags &= ~KEF_ONLOANQ;
  406                         TAILQ_REMOVE(&kg->kg_lq, ke, ke_kgrlist);
  407                         kg->kg_loan_kses--;
  408                 }
  409                 sched_add(td->td_kse);
  410                 return;
  411         }
  412 
  413         /* 
  414          * Ok, so we are threading with this thread.
  415          * We don't have a KSE, see if we can get one..
  416          */
  417         tda = kg->kg_last_assigned;
  418         if ((ke = td->td_kse) == NULL) {
  419                 /*
  420                  * We will need a KSE, see if there is one..
  421                  * First look for a free one, before getting desperate.
  422                  * If we can't get one, our priority is not high enough..
  423                  * that's ok..
  424                  */
  425                 if (kg->kg_idle_kses) {
  426                         /*
  427                          * There is a free one so it's ours for the asking..
  428                          */
  429                         ke = TAILQ_FIRST(&kg->kg_iq);
  430                         TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
  431                         ke->ke_state = KES_THREAD;
  432                         kg->kg_idle_kses--;
  433                 } else if (kg->kg_loan_kses) {
  434                         /*
  435                          * Failing that see if we can borrow one.
  436                          */
  437                         ke = TAILQ_FIRST(&kg->kg_lq);
  438                         TAILQ_REMOVE(&kg->kg_lq, ke, ke_kgrlist);
  439                         ke->ke_flags &= ~KEF_ONLOANQ;
  440                         ke->ke_state = KES_THREAD;
  441                         TD_SET_LOAN(ke->ke_thread);
  442                         ke->ke_bound = ke->ke_thread;
  443                         ke->ke_thread  = NULL;
  444                         kg->kg_loan_kses--;
  445                 } else if (tda && (tda->td_priority > td->td_priority)) {
  446                         /*
  447                          * None free, but there is one we can commandeer.
  448                          */
  449                         ke = tda->td_kse;
  450                         tda->td_kse = NULL;
  451                         ke->ke_thread = NULL;
  452                         tda = kg->kg_last_assigned =
  453                             TAILQ_PREV(tda, threadqueue, td_runq);
  454                         sched_rem(ke);
  455                 }
  456         } else {
  457                 /* 
  458                  * Temporarily disassociate so it looks like the other cases.
  459                  */
  460                 ke->ke_thread = NULL;
  461                 td->td_kse = NULL;
  462         }
  463 
  464         /*
  465          * Add the thread to the ksegrp's run queue at
  466          * the appropriate place.
  467          */
  468         TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
  469                 if (td2->td_priority > td->td_priority) {
  470                         TAILQ_INSERT_BEFORE(td2, td, td_runq);
  471                         break;
  472                 }
  473         }
  474         if (td2 == NULL) {
  475                 /* We ran off the end of the TAILQ or it was empty. */
  476                 TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
  477         }
  478 
  479         /*
  480          * If we have a ke to use, then put it on the run queue and
  481          * If needed, readjust the last_assigned pointer.
  482          */
  483         if (ke) {
  484                 if (tda == NULL) {
  485                         /*
  486                          * No pre-existing last assigned so whoever is first
  487                          * gets the KSE we brought in.. (maybe us)
  488                          */
  489                         td2 = TAILQ_FIRST(&kg->kg_runq);
  490                         KASSERT((td2->td_kse == NULL),
  491                             ("unexpected ke present"));
  492                         td2->td_kse = ke;
  493                         ke->ke_thread = td2;
  494                         kg->kg_last_assigned = td2;
  495                 } else if (tda->td_priority > td->td_priority) {
  496                         /*
  497                          * It's ours, grab it, but last_assigned is past us
  498                          * so don't change it.
  499                          */
  500                         td->td_kse = ke;
  501                         ke->ke_thread = td;
  502                 } else {
  503                         /* 
  504                          * We are past last_assigned, so 
  505                          * put the new kse on whatever is next,
  506                          * which may or may not be us.
  507                          */
  508                         td2 = TAILQ_NEXT(tda, td_runq);
  509                         kg->kg_last_assigned = td2;
  510                         td2->td_kse = ke;
  511                         ke->ke_thread = td2;
  512                 }
  513                 sched_add(ke);
  514         }
  515 }
  516 
  517 /************************************************************************
  518  * Critical section marker functions                                    *
  519  ************************************************************************/
  520 /* Critical sections that prevent preemption. */
  521 void
  522 critical_enter(void)
  523 {
  524         struct thread *td;
  525 
  526         td = curthread;
  527         if (td->td_critnest == 0)
  528                 cpu_critical_enter();
  529         td->td_critnest++;
  530 }
  531 
  532 void
  533 critical_exit(void)
  534 {
  535         struct thread *td;
  536 
  537         td = curthread;
  538         if (td->td_critnest == 1) {
  539                 td->td_critnest = 0;
  540                 cpu_critical_exit();
  541         } else {
  542                 td->td_critnest--;
  543         }
  544 }
  545 
  546 
  547 /************************************************************************
  548  * SYSTEM RUN QUEUE manipulations and tests                             *
  549  ************************************************************************/
  550 /*
  551  * Initialize a run structure.
  552  */
  553 void
  554 runq_init(struct runq *rq)
  555 {
  556         int i;
  557 
  558         bzero(rq, sizeof *rq);
  559         for (i = 0; i < RQ_NQS; i++)
  560                 TAILQ_INIT(&rq->rq_queues[i]);
  561 }
  562 
  563 /*
  564  * Clear the status bit of the queue corresponding to priority level pri,
  565  * indicating that it is empty.
  566  */
  567 static __inline void
  568 runq_clrbit(struct runq *rq, int pri)
  569 {
  570         struct rqbits *rqb;
  571 
  572         rqb = &rq->rq_status;
  573         CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
  574             rqb->rqb_bits[RQB_WORD(pri)],
  575             rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
  576             RQB_BIT(pri), RQB_WORD(pri));
  577         rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
  578 }
  579 
  580 /*
  581  * Find the index of the first non-empty run queue.  This is done by
  582  * scanning the status bits, a set bit indicates a non-empty queue.
  583  */
  584 static __inline int
  585 runq_findbit(struct runq *rq)
  586 {
  587         struct rqbits *rqb;
  588         int pri;
  589         int i;
  590 
  591         rqb = &rq->rq_status;
  592         for (i = 0; i < RQB_LEN; i++)
  593                 if (rqb->rqb_bits[i]) {
  594                         pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
  595                         CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
  596                             rqb->rqb_bits[i], i, pri);
  597                         return (pri);
  598                 }
  599 
  600         return (-1);
  601 }
  602 
  603 /*
  604  * Set the status bit of the queue corresponding to priority level pri,
  605  * indicating that it is non-empty.
  606  */
  607 static __inline void
  608 runq_setbit(struct runq *rq, int pri)
  609 {
  610         struct rqbits *rqb;
  611 
  612         rqb = &rq->rq_status;
  613         CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
  614             rqb->rqb_bits[RQB_WORD(pri)],
  615             rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
  616             RQB_BIT(pri), RQB_WORD(pri));
  617         rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
  618 }
  619 
  620 /*
  621  * Add the KSE to the queue specified by its priority, and set the
  622  * corresponding status bit.
  623  */
  624 void
  625 runq_add(struct runq *rq, struct kse *ke)
  626 {
  627         struct rqhead *rqh;
  628         int pri;
  629 
  630         pri = ke->ke_thread->td_priority / RQ_PPQ;
  631         ke->ke_rqindex = pri;
  632         runq_setbit(rq, pri);
  633         rqh = &rq->rq_queues[pri];
  634         CTR4(KTR_RUNQ, "runq_add: p=%p pri=%d %d rqh=%p",
  635             ke->ke_proc, ke->ke_thread->td_priority, pri, rqh);
  636         TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
  637 }
  638 
  639 /*
  640  * Return true if there are runnable processes of any priority on the run
  641  * queue, false otherwise.  Has no side effects, does not modify the run
  642  * queue structure.
  643  */
  644 int
  645 runq_check(struct runq *rq)
  646 {
  647         struct rqbits *rqb;
  648         int i;
  649 
  650         rqb = &rq->rq_status;
  651         for (i = 0; i < RQB_LEN; i++)
  652                 if (rqb->rqb_bits[i]) {
  653                         CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
  654                             rqb->rqb_bits[i], i);
  655                         return (1);
  656                 }
  657         CTR0(KTR_RUNQ, "runq_check: empty");
  658 
  659         return (0);
  660 }
  661 
  662 /*
  663  * Find the highest priority process on the run queue.
  664  */
  665 struct kse *
  666 runq_choose(struct runq *rq)
  667 {
  668         struct rqhead *rqh;
  669         struct kse *ke;
  670         int pri;
  671 
  672         mtx_assert(&sched_lock, MA_OWNED);
  673         while ((pri = runq_findbit(rq)) != -1) {
  674                 rqh = &rq->rq_queues[pri];
  675                 ke = TAILQ_FIRST(rqh);
  676                 KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
  677                 CTR3(KTR_RUNQ,
  678                     "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
  679                 return (ke);
  680         }
  681         CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
  682 
  683         return (NULL);
  684 }
  685 
  686 /*
  687  * Remove the KSE from the queue specified by its priority, and clear the
  688  * corresponding status bit if the queue becomes empty.
  689  * Caller must set ke->ke_state afterwards.
  690  */
  691 void
  692 runq_remove(struct runq *rq, struct kse *ke)
  693 {
  694         struct rqhead *rqh;
  695         int pri;
  696 
  697         KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
  698                 ("runq_remove: process swapped out"));
  699         pri = ke->ke_rqindex;
  700         rqh = &rq->rq_queues[pri];
  701         CTR4(KTR_RUNQ, "runq_remove: p=%p pri=%d %d rqh=%p",
  702             ke, ke->ke_thread->td_priority, pri, rqh);
  703         KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
  704         TAILQ_REMOVE(rqh, ke, ke_procq);
  705         if (TAILQ_EMPTY(rqh)) {
  706                 CTR0(KTR_RUNQ, "runq_remove: empty");
  707                 runq_clrbit(rq, pri);
  708         }
  709 }
  710 
  711 #if 0
  712 void
  713 panc(char *string1, char *string2)
  714 {
  715         printf("%s", string1);
  716         Debugger(string2);
  717 }
  718 
  719 void
  720 thread_sanity_check(struct thread *td, char *string)
  721 {
  722         struct proc *p;
  723         struct ksegrp *kg;
  724         struct kse *ke;
  725         struct thread *td2 = NULL;
  726         unsigned int prevpri;
  727         int     saw_lastassigned = 0;
  728         int unassigned = 0;
  729         int assigned = 0;
  730 
  731         p = td->td_proc;
  732         kg = td->td_ksegrp;
  733         ke = td->td_kse;
  734 
  735 
  736         if (ke) {
  737                 if (p != ke->ke_proc) {
  738                         panc(string, "wrong proc");
  739                 }
  740                 if (ke->ke_thread != td) {
  741                         panc(string, "wrong thread");
  742                 }
  743         }
  744         
  745         if ((p->p_flag & P_KSES) == 0) {
  746                 if (ke == NULL) {
  747                         panc(string, "non KSE thread lost kse");
  748                 }
  749         } else {
  750                 prevpri = 0;
  751                 saw_lastassigned = 0;
  752                 unassigned = 0;
  753                 assigned = 0;
  754                 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
  755                         if (td2->td_priority < prevpri) {
  756                                 panc(string, "thread runqueue unosorted");
  757                         }
  758                         if ((td2->td_state == TDS_RUNQ) &&
  759                             td2->td_kse &&
  760                             (td2->td_kse->ke_state != KES_ONRUNQ)) {
  761                                 panc(string, "KSE wrong state");
  762                         }
  763                         prevpri = td2->td_priority;
  764                         if (td2->td_kse) {
  765                                 assigned++;
  766                                 if (unassigned) {
  767                                         panc(string, "unassigned before assigned");
  768                                 }
  769                                 if  (kg->kg_last_assigned == NULL) {
  770                                         panc(string, "lastassigned corrupt");
  771                                 }
  772                                 if (saw_lastassigned) {
  773                                         panc(string, "last assigned not last");
  774                                 }
  775                                 if (td2->td_kse->ke_thread != td2) {
  776                                         panc(string, "mismatched kse/thread");
  777                                 }
  778                         } else {
  779                                 unassigned++;
  780                         }
  781                         if (td2 == kg->kg_last_assigned) {
  782                                 saw_lastassigned = 1;
  783                                 if (td2->td_kse == NULL) {
  784                                         panc(string, "last assigned not assigned");
  785                                 }
  786                         }
  787                 }
  788                 if (kg->kg_last_assigned && (saw_lastassigned == 0)) {
  789                         panc(string, "where on earth does lastassigned point?");
  790                 }
  791                 FOREACH_THREAD_IN_GROUP(kg, td2) {
  792                         if (((td2->td_flags & TDF_UNBOUND) == 0) && 
  793                             (TD_ON_RUNQ(td2))) {
  794                                 assigned++;
  795                                 if (td2->td_kse == NULL) {
  796                                         panc(string, "BOUND thread with no KSE");
  797                                 }
  798                         }
  799                 }
  800 #if 0
  801                 if ((unassigned + assigned) != kg->kg_runnable) {
  802                         panc(string, "wrong number in runnable");
  803                 }
  804 #endif
  805         }
  806         if (assigned == 12345) {
  807                 printf("%p %p %p %p %p %d, %d",
  808                     td, td2, ke, kg, p, assigned, saw_lastassigned);
  809         }
  810 }
  811 #endif
  812 

Cache object: c96a448e8d8b4775fb73fe0102965061


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.