The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_switch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 /***
   28 Here is the logic..
   29 
   30 If there are N processors, then there are at most N KSEs (kernel
   31 schedulable entities) working to process threads that belong to a
   32 KSEGOUP (kg). If there are X of these KSEs actually running at the
   33 moment in question, then there are at most M (N-X) of these KSEs on
   34 the run queue, as running KSEs are not on the queue.
   35 
   36 Runnable threads are queued off the KSEGROUP in priority order.
   37 If there are M or more threads runnable, the top M threads
   38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
   39 their priority from those threads and are put on the run queue.
   40 
   41 The last thread that had a priority high enough to have a KSE associated
   42 with it, AND IS ON THE RUN QUEUE is pointed to by
   43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
   44 assigned as all the available KSEs are activly running, or because there
   45 are no threads queued, that pointer is NULL.
   46 
   47 When a KSE is removed from the run queue to become runnable, we know
   48 it was associated with the highest priority thread in the queue (at the head
   49 of the queue). If it is also the last assigned we know M was 1 and must
   50 now be 0. Since the thread is no longer queued that pointer must be
   51 removed from it. Since we know there were no more KSEs available,
   52 (M was 1 and is now 0) and since we are not FREEING our KSE
   53 but using it, we know there are STILL no more KSEs available, we can prove
   54 that the next thread in the ksegrp list will not have a KSE to assign to
   55 it, so we can show that the pointer must be made 'invalid' (NULL).
   56 
   57 The pointer exists so that when a new thread is made runnable, it can
   58 have its priority compared with the last assigned thread to see if
   59 it should 'steal' its KSE or not.. i.e. is it 'earlier'
   60 on the list than that thread or later.. If it's earlier, then the KSE is
   61 removed from the last assigned (which is now not assigned a KSE)
   62 and reassigned to the new thread, which is placed earlier in the list.
   63 The pointer is then backed up to the previous thread (which may or may not
   64 be the new thread).
   65 
   66 When a thread sleeps or is removed, the KSE becomes available and if there 
   67 are queued threads that are not assigned KSEs, the highest priority one of
   68 them is assigned the KSE, which is then placed back on the run queue at
   69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
   70 to point to it.
   71 
   72 The following diagram shows 2 KSEs and 3 threads from a single process.
   73 
   74  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
   75               \    \____   
   76                \        \
   77     KSEGROUP---thread--thread--thread    (queued in priority order)
   78         \                 / 
   79          \_______________/
   80           (last_assigned)
   81 
   82 The result of this scheme is that the M available KSEs are always
   83 queued at the priorities they have inherrited from the M highest priority
   84 threads for that KSEGROUP. If this situation changes, the KSEs are 
   85 reassigned to keep this true.
   86 ***/
   87 
   88 #include <sys/cdefs.h>
   89 __FBSDID("$FreeBSD: releng/5.2/sys/kern/kern_switch.c 122849 2003-11-17 08:58:16Z peter $");
   90 
   91 #include <sys/param.h>
   92 #include <sys/systm.h>
   93 #include <sys/kernel.h>
   94 #include <sys/ktr.h>
   95 #include <sys/lock.h>
   96 #include <sys/mutex.h>
   97 #include <sys/proc.h>
   98 #include <sys/queue.h>
   99 #include <sys/sched.h>
  100 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
  101 #include <sys/smp.h>
  102 #endif
  103 #include <machine/critical.h>
  104 
  105 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
  106 
  107 void panc(char *string1, char *string2);
  108 
  109 #if 0
  110 static void runq_readjust(struct runq *rq, struct kse *ke);
  111 #endif
  112 /************************************************************************
  113  * Functions that manipulate runnability from a thread perspective.     *
  114  ************************************************************************/
  115 /*
  116  * Select the KSE that will be run next.  From that find the thread, and
  117  * remove it from the KSEGRP's run queue.  If there is thread clustering,
  118  * this will be what does it.
  119  */
  120 struct thread *
  121 choosethread(void)
  122 {
  123         struct kse *ke;
  124         struct thread *td;
  125         struct ksegrp *kg;
  126 
  127 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
  128         if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
  129                 /* Shutting down, run idlethread on AP's */
  130                 td = PCPU_GET(idlethread);
  131                 ke = td->td_kse;
  132                 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
  133                 ke->ke_flags |= KEF_DIDRUN;
  134                 TD_SET_RUNNING(td);
  135                 return (td);
  136         }
  137 #endif
  138 
  139 retry:
  140         ke = sched_choose();
  141         if (ke) {
  142                 td = ke->ke_thread;
  143                 KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
  144                 kg = ke->ke_ksegrp;
  145                 if (td->td_proc->p_flag & P_SA) {
  146                         if (kg->kg_last_assigned == td) {
  147                                 kg->kg_last_assigned = TAILQ_PREV(td,
  148                                     threadqueue, td_runq);
  149                         }
  150                         TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  151                 }
  152                 kg->kg_runnable--;
  153                 CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
  154                     td, td->td_priority);
  155         } else {
  156                 /* Simulate runq_choose() having returned the idle thread */
  157                 td = PCPU_GET(idlethread);
  158                 ke = td->td_kse;
  159                 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
  160         }
  161         ke->ke_flags |= KEF_DIDRUN;
  162 
  163         /*
  164          * If we are in panic, only allow system threads,
  165          * plus the one we are running in, to be run.
  166          */
  167         if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
  168             (td->td_flags & TDF_INPANIC) == 0)) {
  169                 /* note that it is no longer on the run queue */
  170                 TD_SET_CAN_RUN(td);
  171                 goto retry;
  172         }
  173 
  174         TD_SET_RUNNING(td);
  175         return (td);
  176 }
  177 
  178 /*
  179  * Given a surplus KSE, either assign a new runable thread to it
  180  * (and put it in the run queue) or put it in the ksegrp's idle KSE list.
  181  * Assumes that the original thread is not runnable.
  182  */
  183 void
  184 kse_reassign(struct kse *ke)
  185 {
  186         struct ksegrp *kg;
  187         struct thread *td;
  188         struct thread *original;
  189 
  190         mtx_assert(&sched_lock, MA_OWNED);
  191         original = ke->ke_thread;
  192         KASSERT(original == NULL || TD_IS_INHIBITED(original),
  193             ("reassigning KSE with runnable thread"));
  194         kg = ke->ke_ksegrp;
  195         if (original)
  196                 original->td_kse = NULL;
  197 
  198         /*
  199          * Find the first unassigned thread
  200          */
  201         if ((td = kg->kg_last_assigned) != NULL)
  202                 td = TAILQ_NEXT(td, td_runq);
  203         else 
  204                 td = TAILQ_FIRST(&kg->kg_runq);
  205 
  206         /*
  207          * If we found one, assign it the kse, otherwise idle the kse.
  208          */
  209         if (td) {
  210                 kg->kg_last_assigned = td;
  211                 td->td_kse = ke;
  212                 ke->ke_thread = td;
  213                 sched_add(td);
  214                 CTR2(KTR_RUNQ, "kse_reassign: ke%p -> td%p", ke, td);
  215                 return;
  216         }
  217 
  218         ke->ke_state = KES_IDLE;
  219         ke->ke_thread = NULL;
  220         TAILQ_INSERT_TAIL(&kg->kg_iq, ke, ke_kgrlist);
  221         kg->kg_idle_kses++;
  222         CTR1(KTR_RUNQ, "kse_reassign: ke%p on idle queue", ke);
  223         return;
  224 }
  225 
  226 #if 0
  227 /*
  228  * Remove a thread from its KSEGRP's run queue.
  229  * This in turn may remove it from a KSE if it was already assigned
  230  * to one, possibly causing a new thread to be assigned to the KSE
  231  * and the KSE getting a new priority.
  232  */
  233 static void
  234 remrunqueue(struct thread *td)
  235 {
  236         struct thread *td2, *td3;
  237         struct ksegrp *kg;
  238         struct kse *ke;
  239 
  240         mtx_assert(&sched_lock, MA_OWNED);
  241         KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
  242         kg = td->td_ksegrp;
  243         ke = td->td_kse;
  244         CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
  245         kg->kg_runnable--;
  246         TD_SET_CAN_RUN(td);
  247         /*
  248          * If it is not a threaded process, take the shortcut.
  249          */
  250         if ((td->td_proc->p_flag & P_SA) == 0) {
  251                 /* Bring its kse with it, leave the thread attached */
  252                 sched_rem(td);
  253                 ke->ke_state = KES_THREAD; 
  254                 return;
  255         }
  256         td3 = TAILQ_PREV(td, threadqueue, td_runq);
  257         TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  258         if (ke) {
  259                 /*
  260                  * This thread has been assigned to a KSE.
  261                  * We need to dissociate it and try assign the
  262                  * KSE to the next available thread. Then, we should
  263                  * see if we need to move the KSE in the run queues.
  264                  */
  265                 sched_rem(td);
  266                 ke->ke_state = KES_THREAD; 
  267                 td2 = kg->kg_last_assigned;
  268                 KASSERT((td2 != NULL), ("last assigned has wrong value"));
  269                 if (td2 == td) 
  270                         kg->kg_last_assigned = td3;
  271                 kse_reassign(ke);
  272         }
  273 }
  274 #endif
  275 
  276 /*
  277  * Change the priority of a thread that is on the run queue.
  278  */
  279 void
  280 adjustrunqueue( struct thread *td, int newpri) 
  281 {
  282         struct ksegrp *kg;
  283         struct kse *ke;
  284 
  285         mtx_assert(&sched_lock, MA_OWNED);
  286         KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
  287 
  288         ke = td->td_kse;
  289         CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
  290         /*
  291          * If it is not a threaded process, take the shortcut.
  292          */
  293         if ((td->td_proc->p_flag & P_SA) == 0) {
  294                 /* We only care about the kse in the run queue. */
  295                 td->td_priority = newpri;
  296                 if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
  297                         sched_rem(td);
  298                         sched_add(td);
  299                 }
  300                 return;
  301         }
  302 
  303         /* It is a threaded process */
  304         kg = td->td_ksegrp;
  305         kg->kg_runnable--;
  306         TD_SET_CAN_RUN(td);
  307         if (ke) {
  308                 if (kg->kg_last_assigned == td) {
  309                         kg->kg_last_assigned =
  310                             TAILQ_PREV(td, threadqueue, td_runq);
  311                 }
  312                 sched_rem(td);
  313         }
  314         TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  315         td->td_priority = newpri;
  316         setrunqueue(td);
  317 }
  318 
  319 void
  320 setrunqueue(struct thread *td)
  321 {
  322         struct kse *ke;
  323         struct ksegrp *kg;
  324         struct thread *td2;
  325         struct thread *tda;
  326 
  327         CTR1(KTR_RUNQ, "setrunqueue: td%p", td);
  328         mtx_assert(&sched_lock, MA_OWNED);
  329         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
  330             ("setrunqueue: bad thread state"));
  331         TD_SET_RUNQ(td);
  332         kg = td->td_ksegrp;
  333         kg->kg_runnable++;
  334         if ((td->td_proc->p_flag & P_SA) == 0) {
  335                 /*
  336                  * Common path optimisation: Only one of everything
  337                  * and the KSE is always already attached.
  338                  * Totally ignore the ksegrp run queue.
  339                  */
  340                 sched_add(td);
  341                 return;
  342         }
  343 
  344         tda = kg->kg_last_assigned;
  345         if ((ke = td->td_kse) == NULL) {
  346                 if (kg->kg_idle_kses) {
  347                         /*
  348                          * There is a free one so it's ours for the asking..
  349                          */
  350                         ke = TAILQ_FIRST(&kg->kg_iq);
  351                         TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
  352                         ke->ke_state = KES_THREAD;
  353                         kg->kg_idle_kses--;
  354                 } else if (tda && (tda->td_priority > td->td_priority)) {
  355                         /*
  356                          * None free, but there is one we can commandeer.
  357                          */
  358                         ke = tda->td_kse;
  359                         sched_rem(tda);
  360                         tda->td_kse = NULL;
  361                         ke->ke_thread = NULL;
  362                         tda = kg->kg_last_assigned =
  363                             TAILQ_PREV(tda, threadqueue, td_runq);
  364                 }
  365         } else {
  366                 /* 
  367                  * Temporarily disassociate so it looks like the other cases.
  368                  */
  369                 ke->ke_thread = NULL;
  370                 td->td_kse = NULL;
  371         }
  372 
  373         /*
  374          * Add the thread to the ksegrp's run queue at
  375          * the appropriate place.
  376          */
  377         TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
  378                 if (td2->td_priority > td->td_priority) {
  379                         TAILQ_INSERT_BEFORE(td2, td, td_runq);
  380                         break;
  381                 }
  382         }
  383         if (td2 == NULL) {
  384                 /* We ran off the end of the TAILQ or it was empty. */
  385                 TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
  386         }
  387 
  388         /*
  389          * If we have a ke to use, then put it on the run queue and
  390          * If needed, readjust the last_assigned pointer.
  391          */
  392         if (ke) {
  393                 if (tda == NULL) {
  394                         /*
  395                          * No pre-existing last assigned so whoever is first
  396                          * gets the KSE we brought in.. (maybe us)
  397                          */
  398                         td2 = TAILQ_FIRST(&kg->kg_runq);
  399                         KASSERT((td2->td_kse == NULL),
  400                             ("unexpected ke present"));
  401                         td2->td_kse = ke;
  402                         ke->ke_thread = td2;
  403                         kg->kg_last_assigned = td2;
  404                 } else if (tda->td_priority > td->td_priority) {
  405                         /*
  406                          * It's ours, grab it, but last_assigned is past us
  407                          * so don't change it.
  408                          */
  409                         td->td_kse = ke;
  410                         ke->ke_thread = td;
  411                 } else {
  412                         /* 
  413                          * We are past last_assigned, so 
  414                          * put the new kse on whatever is next,
  415                          * which may or may not be us.
  416                          */
  417                         td2 = TAILQ_NEXT(tda, td_runq);
  418                         kg->kg_last_assigned = td2;
  419                         td2->td_kse = ke;
  420                         ke->ke_thread = td2;
  421                 }
  422                 sched_add(ke->ke_thread);
  423         }
  424 }
  425 
  426 /************************************************************************
  427  * Critical section marker functions                                    *
  428  ************************************************************************/
  429 /* Critical sections that prevent preemption. */
  430 void
  431 critical_enter(void)
  432 {
  433         struct thread *td;
  434 
  435         td = curthread;
  436         if (td->td_critnest == 0)
  437                 cpu_critical_enter();
  438         td->td_critnest++;
  439 }
  440 
  441 void
  442 critical_exit(void)
  443 {
  444         struct thread *td;
  445 
  446         td = curthread;
  447         if (td->td_critnest == 1) {
  448                 td->td_critnest = 0;
  449                 cpu_critical_exit();
  450         } else {
  451                 td->td_critnest--;
  452         }
  453 }
  454 
  455 
  456 /************************************************************************
  457  * SYSTEM RUN QUEUE manipulations and tests                             *
  458  ************************************************************************/
  459 /*
  460  * Initialize a run structure.
  461  */
  462 void
  463 runq_init(struct runq *rq)
  464 {
  465         int i;
  466 
  467         bzero(rq, sizeof *rq);
  468         for (i = 0; i < RQ_NQS; i++)
  469                 TAILQ_INIT(&rq->rq_queues[i]);
  470 }
  471 
  472 /*
  473  * Clear the status bit of the queue corresponding to priority level pri,
  474  * indicating that it is empty.
  475  */
  476 static __inline void
  477 runq_clrbit(struct runq *rq, int pri)
  478 {
  479         struct rqbits *rqb;
  480 
  481         rqb = &rq->rq_status;
  482         CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
  483             rqb->rqb_bits[RQB_WORD(pri)],
  484             rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
  485             RQB_BIT(pri), RQB_WORD(pri));
  486         rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
  487 }
  488 
  489 /*
  490  * Find the index of the first non-empty run queue.  This is done by
  491  * scanning the status bits, a set bit indicates a non-empty queue.
  492  */
  493 static __inline int
  494 runq_findbit(struct runq *rq)
  495 {
  496         struct rqbits *rqb;
  497         int pri;
  498         int i;
  499 
  500         rqb = &rq->rq_status;
  501         for (i = 0; i < RQB_LEN; i++)
  502                 if (rqb->rqb_bits[i]) {
  503                         pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
  504                         CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
  505                             rqb->rqb_bits[i], i, pri);
  506                         return (pri);
  507                 }
  508 
  509         return (-1);
  510 }
  511 
  512 /*
  513  * Set the status bit of the queue corresponding to priority level pri,
  514  * indicating that it is non-empty.
  515  */
  516 static __inline void
  517 runq_setbit(struct runq *rq, int pri)
  518 {
  519         struct rqbits *rqb;
  520 
  521         rqb = &rq->rq_status;
  522         CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
  523             rqb->rqb_bits[RQB_WORD(pri)],
  524             rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
  525             RQB_BIT(pri), RQB_WORD(pri));
  526         rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
  527 }
  528 
  529 /*
  530  * Add the KSE to the queue specified by its priority, and set the
  531  * corresponding status bit.
  532  */
  533 void
  534 runq_add(struct runq *rq, struct kse *ke)
  535 {
  536         struct rqhead *rqh;
  537         int pri;
  538 
  539         pri = ke->ke_thread->td_priority / RQ_PPQ;
  540         ke->ke_rqindex = pri;
  541         runq_setbit(rq, pri);
  542         rqh = &rq->rq_queues[pri];
  543         CTR4(KTR_RUNQ, "runq_add: p=%p pri=%d %d rqh=%p",
  544             ke->ke_proc, ke->ke_thread->td_priority, pri, rqh);
  545         TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
  546 }
  547 
  548 /*
  549  * Return true if there are runnable processes of any priority on the run
  550  * queue, false otherwise.  Has no side effects, does not modify the run
  551  * queue structure.
  552  */
  553 int
  554 runq_check(struct runq *rq)
  555 {
  556         struct rqbits *rqb;
  557         int i;
  558 
  559         rqb = &rq->rq_status;
  560         for (i = 0; i < RQB_LEN; i++)
  561                 if (rqb->rqb_bits[i]) {
  562                         CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
  563                             rqb->rqb_bits[i], i);
  564                         return (1);
  565                 }
  566         CTR0(KTR_RUNQ, "runq_check: empty");
  567 
  568         return (0);
  569 }
  570 
  571 /*
  572  * Find the highest priority process on the run queue.
  573  */
  574 struct kse *
  575 runq_choose(struct runq *rq)
  576 {
  577         struct rqhead *rqh;
  578         struct kse *ke;
  579         int pri;
  580 
  581         mtx_assert(&sched_lock, MA_OWNED);
  582         while ((pri = runq_findbit(rq)) != -1) {
  583                 rqh = &rq->rq_queues[pri];
  584                 ke = TAILQ_FIRST(rqh);
  585                 KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
  586                 CTR3(KTR_RUNQ,
  587                     "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
  588                 return (ke);
  589         }
  590         CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
  591 
  592         return (NULL);
  593 }
  594 
  595 /*
  596  * Remove the KSE from the queue specified by its priority, and clear the
  597  * corresponding status bit if the queue becomes empty.
  598  * Caller must set ke->ke_state afterwards.
  599  */
  600 void
  601 runq_remove(struct runq *rq, struct kse *ke)
  602 {
  603         struct rqhead *rqh;
  604         int pri;
  605 
  606         KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
  607                 ("runq_remove: process swapped out"));
  608         pri = ke->ke_rqindex;
  609         rqh = &rq->rq_queues[pri];
  610         CTR4(KTR_RUNQ, "runq_remove: p=%p pri=%d %d rqh=%p",
  611             ke, ke->ke_thread->td_priority, pri, rqh);
  612         KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
  613         TAILQ_REMOVE(rqh, ke, ke_procq);
  614         if (TAILQ_EMPTY(rqh)) {
  615                 CTR0(KTR_RUNQ, "runq_remove: empty");
  616                 runq_clrbit(rq, pri);
  617         }
  618 }
  619 
  620 #if 0
  621 void
  622 panc(char *string1, char *string2)
  623 {
  624         printf("%s", string1);
  625         Debugger(string2);
  626 }
  627 
  628 void
  629 thread_sanity_check(struct thread *td, char *string)
  630 {
  631         struct proc *p;
  632         struct ksegrp *kg;
  633         struct kse *ke;
  634         struct thread *td2 = NULL;
  635         unsigned int prevpri;
  636         int     saw_lastassigned = 0;
  637         int unassigned = 0;
  638         int assigned = 0;
  639 
  640         p = td->td_proc;
  641         kg = td->td_ksegrp;
  642         ke = td->td_kse;
  643 
  644 
  645         if (ke) {
  646                 if (p != ke->ke_proc) {
  647                         panc(string, "wrong proc");
  648                 }
  649                 if (ke->ke_thread != td) {
  650                         panc(string, "wrong thread");
  651                 }
  652         }
  653         
  654         if ((p->p_flag & P_SA) == 0) {
  655                 if (ke == NULL) {
  656                         panc(string, "non KSE thread lost kse");
  657                 }
  658         } else {
  659                 prevpri = 0;
  660                 saw_lastassigned = 0;
  661                 unassigned = 0;
  662                 assigned = 0;
  663                 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
  664                         if (td2->td_priority < prevpri) {
  665                                 panc(string, "thread runqueue unosorted");
  666                         }
  667                         if ((td2->td_state == TDS_RUNQ) &&
  668                             td2->td_kse &&
  669                             (td2->td_kse->ke_state != KES_ONRUNQ)) {
  670                                 panc(string, "KSE wrong state");
  671                         }
  672                         prevpri = td2->td_priority;
  673                         if (td2->td_kse) {
  674                                 assigned++;
  675                                 if (unassigned) {
  676                                         panc(string, "unassigned before assigned");
  677                                 }
  678                                 if  (kg->kg_last_assigned == NULL) {
  679                                         panc(string, "lastassigned corrupt");
  680                                 }
  681                                 if (saw_lastassigned) {
  682                                         panc(string, "last assigned not last");
  683                                 }
  684                                 if (td2->td_kse->ke_thread != td2) {
  685                                         panc(string, "mismatched kse/thread");
  686                                 }
  687                         } else {
  688                                 unassigned++;
  689                         }
  690                         if (td2 == kg->kg_last_assigned) {
  691                                 saw_lastassigned = 1;
  692                                 if (td2->td_kse == NULL) {
  693                                         panc(string, "last assigned not assigned");
  694                                 }
  695                         }
  696                 }
  697                 if (kg->kg_last_assigned && (saw_lastassigned == 0)) {
  698                         panc(string, "where on earth does lastassigned point?");
  699                 }
  700 #if 0
  701                 FOREACH_THREAD_IN_GROUP(kg, td2) {
  702                         if (((td2->td_flags & TDF_UNBOUND) == 0) && 
  703                             (TD_ON_RUNQ(td2))) {
  704                                 assigned++;
  705                                 if (td2->td_kse == NULL) {
  706                                         panc(string, "BOUND thread with no KSE");
  707                                 }
  708                         }
  709                 }
  710 #endif
  711 #if 0
  712                 if ((unassigned + assigned) != kg->kg_runnable) {
  713                         panc(string, "wrong number in runnable");
  714                 }
  715 #endif
  716         }
  717         if (assigned == 12345) {
  718                 printf("%p %p %p %p %p %d, %d",
  719                     td, td2, ke, kg, p, assigned, saw_lastassigned);
  720         }
  721 }
  722 #endif
  723 

Cache object: 5856309db4c3c36079b49908945a4727


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.