The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_switch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 /***
   28 Here is the logic..
   29 
   30 If there are N processors, then there are at most N KSEs (kernel
   31 schedulable entities) working to process threads that belong to a
   32 KSEGROUP (kg). If there are X of these KSEs actually running at the
   33 moment in question, then there are at most M (N-X) of these KSEs on
   34 the run queue, as running KSEs are not on the queue.
   35 
   36 Runnable threads are queued off the KSEGROUP in priority order.
   37 If there are M or more threads runnable, the top M threads
   38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
   39 their priority from those threads and are put on the run queue.
   40 
   41 The last thread that had a priority high enough to have a KSE associated
   42 with it, AND IS ON THE RUN QUEUE is pointed to by
   43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
   44 assigned as all the available KSEs are activly running, or because there
   45 are no threads queued, that pointer is NULL.
   46 
   47 When a KSE is removed from the run queue to become runnable, we know
   48 it was associated with the highest priority thread in the queue (at the head
   49 of the queue). If it is also the last assigned we know M was 1 and must
   50 now be 0. Since the thread is no longer queued that pointer must be
   51 removed from it. Since we know there were no more KSEs available,
   52 (M was 1 and is now 0) and since we are not FREEING our KSE
   53 but using it, we know there are STILL no more KSEs available, we can prove
   54 that the next thread in the ksegrp list will not have a KSE to assign to
   55 it, so we can show that the pointer must be made 'invalid' (NULL).
   56 
   57 The pointer exists so that when a new thread is made runnable, it can
   58 have its priority compared with the last assigned thread to see if
   59 it should 'steal' its KSE or not.. i.e. is it 'earlier'
   60 on the list than that thread or later.. If it's earlier, then the KSE is
   61 removed from the last assigned (which is now not assigned a KSE)
   62 and reassigned to the new thread, which is placed earlier in the list.
   63 The pointer is then backed up to the previous thread (which may or may not
   64 be the new thread).
   65 
   66 When a thread sleeps or is removed, the KSE becomes available and if there 
   67 are queued threads that are not assigned KSEs, the highest priority one of
   68 them is assigned the KSE, which is then placed back on the run queue at
   69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
   70 to point to it.
   71 
   72 The following diagram shows 2 KSEs and 3 threads from a single process.
   73 
   74  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
   75               \    \____   
   76                \        \
   77     KSEGROUP---thread--thread--thread    (queued in priority order)
   78         \                 / 
   79          \_______________/
   80           (last_assigned)
   81 
   82 The result of this scheme is that the M available KSEs are always
   83 queued at the priorities they have inherrited from the M highest priority
   84 threads for that KSEGROUP. If this situation changes, the KSEs are 
   85 reassigned to keep this true.
   86 ***/
   87 
   88 #include <sys/cdefs.h>
   89 __FBSDID("$FreeBSD: releng/5.3/sys/kern/kern_switch.c 136789 2004-10-22 19:13:07Z scottl $");
   90 
   91 #include "opt_sched.h"
   92 
   93 #ifndef KERN_SWITCH_INCLUDE
   94 #include <sys/param.h>
   95 #include <sys/systm.h>
   96 #include <sys/kdb.h>
   97 #include <sys/kernel.h>
   98 #include <sys/ktr.h>
   99 #include <sys/lock.h>
  100 #include <sys/mutex.h>
  101 #include <sys/proc.h>
  102 #include <sys/queue.h>
  103 #include <sys/sched.h>
  104 #else  /* KERN_SWITCH_INCLUDE */
  105 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
  106 #include <sys/smp.h>
  107 #endif
  108 #include <machine/critical.h>
  109 #if defined(SMP) && defined(SCHED_4BSD)
  110 #include <sys/sysctl.h>
  111 #endif
  112 
  113 #ifdef FULL_PREEMPTION
  114 #ifndef PREEMPTION
  115 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
  116 #endif
  117 #endif
  118 
  119 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
  120 
  121 #define td_kse td_sched
  122 
  123 /************************************************************************
  124  * Functions that manipulate runnability from a thread perspective.     *
  125  ************************************************************************/
  126 /*
  127  * Select the KSE that will be run next.  From that find the thread, and
  128  * remove it from the KSEGRP's run queue.  If there is thread clustering,
  129  * this will be what does it.
  130  */
  131 struct thread *
  132 choosethread(void)
  133 {
  134         struct kse *ke;
  135         struct thread *td;
  136         struct ksegrp *kg;
  137 
  138 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
  139         if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
  140                 /* Shutting down, run idlethread on AP's */
  141                 td = PCPU_GET(idlethread);
  142                 ke = td->td_kse;
  143                 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
  144                 ke->ke_flags |= KEF_DIDRUN;
  145                 TD_SET_RUNNING(td);
  146                 return (td);
  147         }
  148 #endif
  149 
  150 retry:
  151         ke = sched_choose();
  152         if (ke) {
  153                 td = ke->ke_thread;
  154                 KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
  155                 kg = ke->ke_ksegrp;
  156                 if (td->td_proc->p_flag & P_HADTHREADS) {
  157                         if (kg->kg_last_assigned == td) {
  158                                 kg->kg_last_assigned = TAILQ_PREV(td,
  159                                     threadqueue, td_runq);
  160                         }
  161                         TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  162                         kg->kg_runnable--;
  163                 }
  164                 CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
  165                     td, td->td_priority);
  166         } else {
  167                 /* Simulate runq_choose() having returned the idle thread */
  168                 td = PCPU_GET(idlethread);
  169                 ke = td->td_kse;
  170                 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
  171         }
  172         ke->ke_flags |= KEF_DIDRUN;
  173 
  174         /*
  175          * If we are in panic, only allow system threads,
  176          * plus the one we are running in, to be run.
  177          */
  178         if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
  179             (td->td_flags & TDF_INPANIC) == 0)) {
  180                 /* note that it is no longer on the run queue */
  181                 TD_SET_CAN_RUN(td);
  182                 goto retry;
  183         }
  184 
  185         TD_SET_RUNNING(td);
  186         return (td);
  187 }
  188 
  189 /*
  190  * Given a surplus system slot, try assign a new runnable thread to it.
  191  * Called from:
  192  *  sched_thread_exit()  (local)
  193  *  sched_switch()  (local)
  194  *  sched_thread_exit()  (local)
  195  *  remrunqueue()  (local)  (not at the moment)
  196  */
  197 static void
  198 slot_fill(struct ksegrp *kg)
  199 {
  200         struct thread *td;
  201 
  202         mtx_assert(&sched_lock, MA_OWNED);
  203         while (kg->kg_avail_opennings > 0) {
  204                 /*
  205                  * Find the first unassigned thread
  206                  */
  207                 if ((td = kg->kg_last_assigned) != NULL)
  208                         td = TAILQ_NEXT(td, td_runq);
  209                 else
  210                         td = TAILQ_FIRST(&kg->kg_runq);
  211 
  212                 /*
  213                  * If we found one, send it to the system scheduler.
  214                  */
  215                 if (td) {
  216                         kg->kg_last_assigned = td;
  217                         sched_add(td, SRQ_YIELDING);
  218                         CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
  219                 } else {
  220                         /* no threads to use up the slots. quit now */
  221                         break;
  222                 }
  223         }
  224 }
  225 
  226 #ifdef  SCHED_4BSD
  227 /*
  228  * Remove a thread from its KSEGRP's run queue.
  229  * This in turn may remove it from a KSE if it was already assigned
  230  * to one, possibly causing a new thread to be assigned to the KSE
  231  * and the KSE getting a new priority.
  232  */
  233 static void
  234 remrunqueue(struct thread *td)
  235 {
  236         struct thread *td2, *td3;
  237         struct ksegrp *kg;
  238         struct kse *ke;
  239 
  240         mtx_assert(&sched_lock, MA_OWNED);
  241         KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
  242         kg = td->td_ksegrp;
  243         ke = td->td_kse;
  244         CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
  245         TD_SET_CAN_RUN(td);
  246         /*
  247          * If it is not a threaded process, take the shortcut.
  248          */
  249         if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
  250                 /* remve from sys run queue and free up a slot */
  251                 sched_rem(td);
  252                 ke->ke_state = KES_THREAD; 
  253                 return;
  254         }
  255         td3 = TAILQ_PREV(td, threadqueue, td_runq);
  256         TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  257         kg->kg_runnable--;
  258         if (ke->ke_state == KES_ONRUNQ) {
  259                 /*
  260                  * This thread has been assigned to the system run queue.
  261                  * We need to dissociate it and try assign the
  262                  * KSE to the next available thread. Then, we should
  263                  * see if we need to move the KSE in the run queues.
  264                  */
  265                 sched_rem(td);
  266                 ke->ke_state = KES_THREAD; 
  267                 td2 = kg->kg_last_assigned;
  268                 KASSERT((td2 != NULL), ("last assigned has wrong value"));
  269                 if (td2 == td) 
  270                         kg->kg_last_assigned = td3;
  271                 /* slot_fill(kg); */ /* will replace it with another */
  272         }
  273 }
  274 #endif
  275 
  276 /*
  277  * Change the priority of a thread that is on the run queue.
  278  */
  279 void
  280 adjustrunqueue( struct thread *td, int newpri) 
  281 {
  282         struct ksegrp *kg;
  283         struct kse *ke;
  284 
  285         mtx_assert(&sched_lock, MA_OWNED);
  286         KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
  287 
  288         ke = td->td_kse;
  289         CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
  290         /*
  291          * If it is not a threaded process, take the shortcut.
  292          */
  293         if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
  294                 /* We only care about the kse in the run queue. */
  295                 td->td_priority = newpri;
  296                 if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
  297                         sched_rem(td);
  298                         sched_add(td, SRQ_BORING);
  299                 }
  300                 return;
  301         }
  302 
  303         /* It is a threaded process */
  304         kg = td->td_ksegrp;
  305         if (ke->ke_state == KES_ONRUNQ) {
  306                 if (kg->kg_last_assigned == td) {
  307                         kg->kg_last_assigned =
  308                             TAILQ_PREV(td, threadqueue, td_runq);
  309                 }
  310                 sched_rem(td);
  311         }
  312         TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  313         kg->kg_runnable--;
  314         TD_SET_CAN_RUN(td);
  315         td->td_priority = newpri;
  316         setrunqueue(td, SRQ_BORING);
  317 }
  318 
  319 /*
  320  * This function is called when a thread is about to be put on a
  321  * ksegrp run queue because it has been made runnable or its 
  322  * priority has been adjusted and the ksegrp does not have a 
  323  * free kse slot.  It determines if a thread from the same ksegrp
  324  * should be preempted.  If so, it tries to switch threads
  325  * if the thread is on the same cpu or notifies another cpu that
  326  * it should switch threads. 
  327  */
  328 
  329 static void
  330 maybe_preempt_in_ksegrp(struct thread *td)
  331 #if  !defined(SMP)
  332 {
  333         struct thread *running_thread;
  334 
  335 #ifndef FULL_PREEMPTION
  336         int pri;
  337         pri = td->td_priority;
  338         if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD))
  339                 return;
  340 #endif
  341         mtx_assert(&sched_lock, MA_OWNED);
  342         running_thread = curthread;
  343 
  344         if (running_thread->td_ksegrp != td->td_ksegrp)
  345                 return;
  346 
  347         if (td->td_priority > running_thread->td_priority)
  348                 return;
  349 #ifdef PREEMPTION
  350         if (running_thread->td_critnest > 1) 
  351                 running_thread->td_pflags |= TDP_OWEPREEMPT;
  352          else           
  353                  mi_switch(SW_INVOL, NULL);
  354         
  355 #else
  356         running_thread->td_flags |= TDF_NEEDRESCHED;
  357 #endif
  358         return;
  359 }
  360 
  361 #else /* SMP */
  362 {
  363         struct thread *running_thread;
  364         int worst_pri;
  365         struct ksegrp *kg;
  366         cpumask_t cpumask,dontuse;
  367         struct pcpu *pc;
  368         struct pcpu *best_pcpu;
  369         struct thread *cputhread;
  370 
  371 #ifndef FULL_PREEMPTION
  372         int pri;
  373         pri = td->td_priority;
  374         if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD))
  375                 return;
  376 #endif
  377 
  378         mtx_assert(&sched_lock, MA_OWNED);
  379 
  380         running_thread = curthread;
  381 
  382 #if !defined(KSEG_PEEMPT_BEST_CPU)
  383         if (running_thread->td_ksegrp != td->td_ksegrp) {
  384 #endif
  385                 kg = td->td_ksegrp;
  386 
  387                 /* if someone is ahead of this thread, wait our turn */
  388                 if (td != TAILQ_FIRST(&kg->kg_runq))  
  389                         return;
  390                 
  391                 worst_pri = td->td_priority;
  392                 best_pcpu = NULL;
  393                 dontuse   = stopped_cpus | idle_cpus_mask;
  394                 
  395                 /* 
  396                  * Find a cpu with the worst priority that runs at thread from
  397                  * the same  ksegrp - if multiple exist give first the last run
  398                  * cpu and then the current cpu priority 
  399                  */
  400                 
  401                 SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
  402                         cpumask   = pc->pc_cpumask;
  403                         cputhread = pc->pc_curthread;
  404 
  405                         if ((cpumask & dontuse)  ||      
  406                             cputhread->td_ksegrp != kg)
  407                                 continue;       
  408 
  409                         if (cputhread->td_priority > worst_pri) {
  410                                 worst_pri = cputhread->td_priority;
  411                                 best_pcpu = pc; 
  412                                 continue;
  413                         }
  414                         
  415                         if (cputhread->td_priority == worst_pri &&
  416                             best_pcpu != NULL &&                        
  417                             (td->td_lastcpu == pc->pc_cpuid ||
  418                                 (PCPU_GET(cpumask) == cpumask &&
  419                                     td->td_lastcpu != best_pcpu->pc_cpuid))) 
  420                             best_pcpu = pc;
  421                 }               
  422                 
  423                 /* Check if we need to preempt someone */
  424                 if (best_pcpu == NULL) 
  425                         return;
  426 
  427                 if (PCPU_GET(cpuid) != best_pcpu->pc_cpuid) {
  428                         best_pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
  429                         ipi_selected(best_pcpu->pc_cpumask, IPI_AST);
  430                         return;
  431                 }
  432 #if !defined(KSEG_PEEMPT_BEST_CPU)
  433         }       
  434 #endif
  435 
  436         if (td->td_priority > running_thread->td_priority)
  437                 return;
  438 #ifdef PREEMPTION
  439         if (running_thread->td_critnest > 1) 
  440                 running_thread->td_pflags |= TDP_OWEPREEMPT;
  441          else           
  442                  mi_switch(SW_INVOL, NULL);
  443         
  444 #else
  445         running_thread->td_flags |= TDF_NEEDRESCHED;
  446 #endif
  447         return;
  448 }
  449 #endif /* !SMP */
  450 
  451 
  452 int limitcount;
  453 void
  454 setrunqueue(struct thread *td, int flags)
  455 {
  456         struct ksegrp *kg;
  457         struct thread *td2;
  458         struct thread *tda;
  459 
  460         CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
  461             td, td->td_ksegrp, td->td_proc->p_pid);
  462         mtx_assert(&sched_lock, MA_OWNED);
  463         KASSERT((td->td_inhibitors == 0),
  464                         ("setrunqueue: trying to run inhibitted thread"));
  465         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
  466             ("setrunqueue: bad thread state"));
  467         TD_SET_RUNQ(td);
  468         kg = td->td_ksegrp;
  469         if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
  470                 /*
  471                  * Common path optimisation: Only one of everything
  472                  * and the KSE is always already attached.
  473                  * Totally ignore the ksegrp run queue.
  474                  */
  475                 if (kg->kg_avail_opennings != 1) {
  476                         if (limitcount < 1) {
  477                                 limitcount++;
  478                                 printf("pid %d: corrected slot count (%d->1)\n",
  479                                     td->td_proc->p_pid, kg->kg_avail_opennings);
  480 
  481                         }
  482                         kg->kg_avail_opennings = 1;
  483                 }
  484                 sched_add(td, flags);
  485                 return;
  486         }
  487 
  488         /* 
  489          * If the concurrency has reduced, and we would go in the 
  490          * assigned section, then keep removing entries from the 
  491          * system run queue, until we are not in that section 
  492          * or there is room for us to be put in that section.
  493          * What we MUST avoid is the case where there are threads of less
  494          * priority than the new one scheduled, but it can not
  495          * be scheduled itself. That would lead to a non contiguous set
  496          * of scheduled threads, and everything would break.
  497          */ 
  498         tda = kg->kg_last_assigned;
  499         while ((kg->kg_avail_opennings <= 0) &&
  500             (tda && (tda->td_priority > td->td_priority))) {
  501                 /*
  502                  * None free, but there is one we can commandeer.
  503                  */
  504                 CTR2(KTR_RUNQ,
  505                     "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
  506                 sched_rem(tda);
  507                 tda = kg->kg_last_assigned =
  508                     TAILQ_PREV(tda, threadqueue, td_runq);
  509         }
  510 
  511         /*
  512          * Add the thread to the ksegrp's run queue at
  513          * the appropriate place.
  514          */
  515         TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
  516                 if (td2->td_priority > td->td_priority) {
  517                         kg->kg_runnable++;
  518                         TAILQ_INSERT_BEFORE(td2, td, td_runq);
  519                         break;
  520                 }
  521         }
  522         if (td2 == NULL) {
  523                 /* We ran off the end of the TAILQ or it was empty. */
  524                 kg->kg_runnable++;
  525                 TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
  526         }
  527 
  528         /*
  529          * If we have a slot to use, then put the thread on the system
  530          * run queue and if needed, readjust the last_assigned pointer.
  531          * it may be that we need to schedule something anyhow
  532          * even if the availabel slots are -ve so that
  533          * all the items < last_assigned are scheduled.
  534          */
  535         if (kg->kg_avail_opennings > 0) {
  536                 if (tda == NULL) {
  537                         /*
  538                          * No pre-existing last assigned so whoever is first
  539                          * gets the slot.. (maybe us)
  540                          */
  541                         td2 = TAILQ_FIRST(&kg->kg_runq);
  542                         kg->kg_last_assigned = td2;
  543                 } else if (tda->td_priority > td->td_priority) {
  544                         td2 = td;
  545                 } else {
  546                         /* 
  547                          * We are past last_assigned, so 
  548                          * give the next slot to whatever is next,
  549                          * which may or may not be us.
  550                          */
  551                         td2 = TAILQ_NEXT(tda, td_runq);
  552                         kg->kg_last_assigned = td2;
  553                 }
  554                 sched_add(td2, flags);
  555         } else {
  556                 CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
  557                         td, td->td_ksegrp, td->td_proc->p_pid);
  558                 if ((flags & SRQ_YIELDING) == 0)
  559                         maybe_preempt_in_ksegrp(td);
  560         }
  561 }
  562 
  563 /*
  564  * Kernel thread preemption implementation.  Critical sections mark
  565  * regions of code in which preemptions are not allowed.
  566  */
  567 void
  568 critical_enter(void)
  569 {
  570         struct thread *td;
  571 
  572         td = curthread;
  573         if (td->td_critnest == 0)
  574                 cpu_critical_enter(td);
  575         td->td_critnest++;
  576 }
  577 
  578 void
  579 critical_exit(void)
  580 {
  581         struct thread *td;
  582 
  583         td = curthread;
  584         KASSERT(td->td_critnest != 0,
  585             ("critical_exit: td_critnest == 0"));
  586         if (td->td_critnest == 1) {
  587                 if (td->td_pflags & TDP_WAKEPROC0) {
  588                         td->td_pflags &= ~TDP_WAKEPROC0;
  589                         wakeup(&proc0);
  590                 }
  591 #ifdef PREEMPTION
  592                 mtx_assert(&sched_lock, MA_NOTOWNED);
  593                 if (td->td_pflags & TDP_OWEPREEMPT) {
  594                         mtx_lock_spin(&sched_lock);
  595                         mi_switch(SW_INVOL, NULL);
  596                         mtx_unlock_spin(&sched_lock);
  597                 }
  598 #endif
  599                 td->td_critnest = 0;
  600                 cpu_critical_exit(td);
  601         } else {
  602                 td->td_critnest--;
  603         }
  604 }
  605 
  606 /*
  607  * This function is called when a thread is about to be put on run queue
  608  * because it has been made runnable or its priority has been adjusted.  It
  609  * determines if the new thread should be immediately preempted to.  If so,
  610  * it switches to it and eventually returns true.  If not, it returns false
  611  * so that the caller may place the thread on an appropriate run queue.
  612  */
  613 int
  614 maybe_preempt(struct thread *td)
  615 {
  616 #ifdef PREEMPTION
  617         struct thread *ctd;
  618         int cpri, pri;
  619 #endif
  620 
  621         mtx_assert(&sched_lock, MA_OWNED);
  622 #ifdef PREEMPTION
  623         /*
  624          * The new thread should not preempt the current thread if any of the
  625          * following conditions are true:
  626          *
  627          *  - The current thread has a higher (numerically lower) or
  628          *    equivalent priority.  Note that this prevents curthread from
  629          *    trying to preempt to itself.
  630          *  - It is too early in the boot for context switches (cold is set).
  631          *  - The current thread has an inhibitor set or is in the process of
  632          *    exiting.  In this case, the current thread is about to switch
  633          *    out anyways, so there's no point in preempting.  If we did,
  634          *    the current thread would not be properly resumed as well, so
  635          *    just avoid that whole landmine.
  636          *  - If the new thread's priority is not a realtime priority and
  637          *    the current thread's priority is not an idle priority and
  638          *    FULL_PREEMPTION is disabled.
  639          *
  640          * If all of these conditions are false, but the current thread is in
  641          * a nested critical section, then we have to defer the preemption
  642          * until we exit the critical section.  Otherwise, switch immediately
  643          * to the new thread.
  644          */
  645         ctd = curthread;
  646         KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
  647           ("thread has no (or wrong) sched-private part."));
  648         KASSERT((td->td_inhibitors == 0),
  649                         ("maybe_preempt: trying to run inhibitted thread"));
  650         pri = td->td_priority;
  651         cpri = ctd->td_priority;
  652         if (pri >= cpri || cold /* || dumping */ || TD_IS_INHIBITED(ctd) ||
  653             td->td_kse->ke_state != KES_THREAD)
  654                 return (0);
  655 #ifndef FULL_PREEMPTION
  656         if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
  657             !(cpri >= PRI_MIN_IDLE))
  658                 return (0);
  659 #endif
  660         if (ctd->td_critnest > 1) {
  661                 CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
  662                     ctd->td_critnest);
  663                 ctd->td_pflags |= TDP_OWEPREEMPT;
  664                 return (0);
  665         }
  666 
  667         /*
  668          * Thread is runnable but not yet put on system run queue.
  669          */
  670         MPASS(TD_ON_RUNQ(td));
  671         MPASS(td->td_sched->ke_state != KES_ONRUNQ);
  672         if (td->td_proc->p_flag & P_HADTHREADS) {
  673                 /*
  674                  * If this is a threaded process we actually ARE on the
  675                  * ksegrp run queue so take it off that first.
  676                  * Also undo any damage done to the last_assigned pointer.
  677                  * XXX Fix setrunqueue so this isn't needed
  678                  */
  679                 struct ksegrp *kg;
  680 
  681                 kg = td->td_ksegrp;
  682                 if (kg->kg_last_assigned == td)
  683                         kg->kg_last_assigned =
  684                             TAILQ_PREV(td, threadqueue, td_runq);
  685                 TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  686         }
  687                 
  688         TD_SET_RUNNING(td);
  689         CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
  690             td->td_proc->p_pid, td->td_proc->p_comm);
  691         mi_switch(SW_INVOL|SW_PREEMPT, td);
  692         return (1);
  693 #else
  694         return (0);
  695 #endif
  696 }
  697 
  698 #if 0
  699 #ifndef PREEMPTION
  700 /* XXX: There should be a non-static version of this. */
  701 static void
  702 printf_caddr_t(void *data)
  703 {
  704         printf("%s", (char *)data);
  705 }
  706 static char preempt_warning[] =
  707     "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
  708 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
  709     preempt_warning)
  710 #endif
  711 #endif
  712 
  713 /************************************************************************
  714  * SYSTEM RUN QUEUE manipulations and tests                             *
  715  ************************************************************************/
  716 /*
  717  * Initialize a run structure.
  718  */
  719 void
  720 runq_init(struct runq *rq)
  721 {
  722         int i;
  723 
  724         bzero(rq, sizeof *rq);
  725         for (i = 0; i < RQ_NQS; i++)
  726                 TAILQ_INIT(&rq->rq_queues[i]);
  727 }
  728 
  729 /*
  730  * Clear the status bit of the queue corresponding to priority level pri,
  731  * indicating that it is empty.
  732  */
  733 static __inline void
  734 runq_clrbit(struct runq *rq, int pri)
  735 {
  736         struct rqbits *rqb;
  737 
  738         rqb = &rq->rq_status;
  739         CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
  740             rqb->rqb_bits[RQB_WORD(pri)],
  741             rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
  742             RQB_BIT(pri), RQB_WORD(pri));
  743         rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
  744 }
  745 
  746 /*
  747  * Find the index of the first non-empty run queue.  This is done by
  748  * scanning the status bits, a set bit indicates a non-empty queue.
  749  */
  750 static __inline int
  751 runq_findbit(struct runq *rq)
  752 {
  753         struct rqbits *rqb;
  754         int pri;
  755         int i;
  756 
  757         rqb = &rq->rq_status;
  758         for (i = 0; i < RQB_LEN; i++)
  759                 if (rqb->rqb_bits[i]) {
  760                         pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
  761                         CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
  762                             rqb->rqb_bits[i], i, pri);
  763                         return (pri);
  764                 }
  765 
  766         return (-1);
  767 }
  768 
  769 /*
  770  * Set the status bit of the queue corresponding to priority level pri,
  771  * indicating that it is non-empty.
  772  */
  773 static __inline void
  774 runq_setbit(struct runq *rq, int pri)
  775 {
  776         struct rqbits *rqb;
  777 
  778         rqb = &rq->rq_status;
  779         CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
  780             rqb->rqb_bits[RQB_WORD(pri)],
  781             rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
  782             RQB_BIT(pri), RQB_WORD(pri));
  783         rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
  784 }
  785 
  786 /*
  787  * Add the KSE to the queue specified by its priority, and set the
  788  * corresponding status bit.
  789  */
  790 void
  791 runq_add(struct runq *rq, struct kse *ke, int flags)
  792 {
  793         struct rqhead *rqh;
  794         int pri;
  795 
  796         pri = ke->ke_thread->td_priority / RQ_PPQ;
  797         ke->ke_rqindex = pri;
  798         runq_setbit(rq, pri);
  799         rqh = &rq->rq_queues[pri];
  800         CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
  801             ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
  802         if (flags & SRQ_PREEMPTED) {
  803                 TAILQ_INSERT_HEAD(rqh, ke, ke_procq);
  804         } else {
  805                 TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
  806         }
  807 }
  808 
  809 /*
  810  * Return true if there are runnable processes of any priority on the run
  811  * queue, false otherwise.  Has no side effects, does not modify the run
  812  * queue structure.
  813  */
  814 int
  815 runq_check(struct runq *rq)
  816 {
  817         struct rqbits *rqb;
  818         int i;
  819 
  820         rqb = &rq->rq_status;
  821         for (i = 0; i < RQB_LEN; i++)
  822                 if (rqb->rqb_bits[i]) {
  823                         CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
  824                             rqb->rqb_bits[i], i);
  825                         return (1);
  826                 }
  827         CTR0(KTR_RUNQ, "runq_check: empty");
  828 
  829         return (0);
  830 }
  831 
  832 #if defined(SMP) && defined(SCHED_4BSD)
  833 int runq_fuzz = 1;
  834 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
  835 #endif
  836 
  837 /*
  838  * Find the highest priority process on the run queue.
  839  */
  840 struct kse *
  841 runq_choose(struct runq *rq)
  842 {
  843         struct rqhead *rqh;
  844         struct kse *ke;
  845         int pri;
  846 
  847         mtx_assert(&sched_lock, MA_OWNED);
  848         while ((pri = runq_findbit(rq)) != -1) {
  849                 rqh = &rq->rq_queues[pri];
  850 #if defined(SMP) && defined(SCHED_4BSD)
  851                 /* fuzz == 1 is normal.. 0 or less are ignored */
  852                 if (runq_fuzz > 1) {
  853                         /*
  854                          * In the first couple of entries, check if
  855                          * there is one for our CPU as a preference.
  856                          */
  857                         int count = runq_fuzz;
  858                         int cpu = PCPU_GET(cpuid);
  859                         struct kse *ke2;
  860                         ke2 = ke = TAILQ_FIRST(rqh);
  861 
  862                         while (count-- && ke2) {
  863                                 if (ke->ke_thread->td_lastcpu == cpu) {
  864                                         ke = ke2;
  865                                         break;
  866                                 }
  867                                 ke2 = TAILQ_NEXT(ke2, ke_procq);
  868                         }
  869                 } else 
  870 #endif
  871                         ke = TAILQ_FIRST(rqh);
  872                 KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
  873                 CTR3(KTR_RUNQ,
  874                     "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
  875                 return (ke);
  876         }
  877         CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
  878 
  879         return (NULL);
  880 }
  881 
  882 /*
  883  * Remove the KSE from the queue specified by its priority, and clear the
  884  * corresponding status bit if the queue becomes empty.
  885  * Caller must set ke->ke_state afterwards.
  886  */
  887 void
  888 runq_remove(struct runq *rq, struct kse *ke)
  889 {
  890         struct rqhead *rqh;
  891         int pri;
  892 
  893         KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
  894                 ("runq_remove: process swapped out"));
  895         pri = ke->ke_rqindex;
  896         rqh = &rq->rq_queues[pri];
  897         CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
  898             ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
  899         KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
  900         TAILQ_REMOVE(rqh, ke, ke_procq);
  901         if (TAILQ_EMPTY(rqh)) {
  902                 CTR0(KTR_RUNQ, "runq_remove: empty");
  903                 runq_clrbit(rq, pri);
  904         }
  905 }
  906 
  907 /****** functions that are temporarily here ***********/
  908 #include <vm/uma.h>
  909 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
  910 extern struct mtx kse_zombie_lock;
  911 
  912 /*
  913  *  Allocate scheduler specific per-process resources.
  914  * The thread and ksegrp have already been linked in.
  915  * In this case just set the default concurrency value.
  916  *
  917  * Called from:
  918  *  proc_init() (UMA init method)
  919  */
  920 void
  921 sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
  922 {
  923 
  924         /* This can go in sched_fork */
  925         sched_init_concurrency(kg);
  926 }
  927 
  928 /*
  929  * Called by the uma process fini routine..
  930  * undo anything we may have done in the uma_init method.
  931  * Panic if it's not all 1:1:1:1
  932  * Called from:
  933  *  proc_fini() (UMA method)
  934  */
  935 void
  936 sched_destroyproc(struct proc *p)
  937 {
  938 
  939         /* this function slated for destruction */
  940         KASSERT((p->p_numthreads == 1), ("Cached proc with > 1 thread "));
  941         KASSERT((p->p_numksegrps == 1), ("Cached proc with > 1 ksegrp "));
  942 }
  943 
  944 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
  945 /*
  946  * thread is being either created or recycled.
  947  * Fix up the per-scheduler resources associated with it.
  948  * Called from:
  949  *  sched_fork_thread()
  950  *  thread_dtor()  (*may go away)
  951  *  thread_init()  (*may go away)
  952  */
  953 void
  954 sched_newthread(struct thread *td)
  955 {
  956         struct td_sched *ke;
  957 
  958         ke = (struct td_sched *) (td + 1);
  959         bzero(ke, sizeof(*ke));
  960         td->td_sched     = ke;
  961         ke->ke_thread   = td;
  962         ke->ke_oncpu    = NOCPU;
  963         ke->ke_state    = KES_THREAD;
  964 }
  965 
  966 /*
  967  * Set up an initial concurrency of 1
  968  * and set the given thread (if given) to be using that
  969  * concurrency slot.
  970  * May be used "offline"..before the ksegrp is attached to the world
  971  * and thus wouldn't need schedlock in that case.
  972  * Called from:
  973  *  thr_create()
  974  *  proc_init() (UMA) via sched_newproc()
  975  */
  976 void
  977 sched_init_concurrency(struct ksegrp *kg)
  978 {
  979 
  980         CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg);
  981         kg->kg_concurrency = 1;
  982         kg->kg_avail_opennings = 1;
  983 }
  984 
  985 /*
  986  * Change the concurrency of an existing ksegrp to N
  987  * Called from:
  988  *  kse_create()
  989  *  kse_exit()
  990  *  thread_exit()
  991  *  thread_single()
  992  */
  993 void
  994 sched_set_concurrency(struct ksegrp *kg, int concurrency)
  995 {
  996 
  997         CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d",
  998             kg,
  999             concurrency,
 1000             kg->kg_avail_opennings,
 1001             kg->kg_avail_opennings + (concurrency - kg->kg_concurrency));
 1002         kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
 1003         kg->kg_concurrency = concurrency;
 1004 }
 1005 
 1006 /*
 1007  * Called from thread_exit() for all exiting thread
 1008  *
 1009  * Not to be confused with sched_exit_thread()
 1010  * that is only called from thread_exit() for threads exiting
 1011  * without the rest of the process exiting because it is also called from
 1012  * sched_exit() and we wouldn't want to call it twice.
 1013  * XXX This can probably be fixed.
 1014  */
 1015 void
 1016 sched_thread_exit(struct thread *td)
 1017 {
 1018 
 1019         SLOT_RELEASE(td->td_ksegrp);
 1020         slot_fill(td->td_ksegrp);
 1021 }
 1022 
 1023 #endif /* KERN_SWITCH_INCLUDE */

Cache object: 21bf68a9b64b7c8e3e6d1657122b4e38


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.