The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_switch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  *
   14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   24  * SUCH DAMAGE.
   25  */
   26 
   27 /***
   28 Here is the logic..
   29 
   30 If there are N processors, then there are at most N KSEs (kernel
   31 schedulable entities) working to process threads that belong to a
   32 KSEGROUP (kg). If there are X of these KSEs actually running at the
   33 moment in question, then there are at most M (N-X) of these KSEs on
   34 the run queue, as running KSEs are not on the queue.
   35 
   36 Runnable threads are queued off the KSEGROUP in priority order.
   37 If there are M or more threads runnable, the top M threads
   38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
   39 their priority from those threads and are put on the run queue.
   40 
   41 The last thread that had a priority high enough to have a KSE associated
   42 with it, AND IS ON THE RUN QUEUE is pointed to by
   43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
   44 assigned as all the available KSEs are activly running, or because there
   45 are no threads queued, that pointer is NULL.
   46 
   47 When a KSE is removed from the run queue to become runnable, we know
   48 it was associated with the highest priority thread in the queue (at the head
   49 of the queue). If it is also the last assigned we know M was 1 and must
   50 now be 0. Since the thread is no longer queued that pointer must be
   51 removed from it. Since we know there were no more KSEs available,
   52 (M was 1 and is now 0) and since we are not FREEING our KSE
   53 but using it, we know there are STILL no more KSEs available, we can prove
   54 that the next thread in the ksegrp list will not have a KSE to assign to
   55 it, so we can show that the pointer must be made 'invalid' (NULL).
   56 
   57 The pointer exists so that when a new thread is made runnable, it can
   58 have its priority compared with the last assigned thread to see if
   59 it should 'steal' its KSE or not.. i.e. is it 'earlier'
   60 on the list than that thread or later.. If it's earlier, then the KSE is
   61 removed from the last assigned (which is now not assigned a KSE)
   62 and reassigned to the new thread, which is placed earlier in the list.
   63 The pointer is then backed up to the previous thread (which may or may not
   64 be the new thread).
   65 
   66 When a thread sleeps or is removed, the KSE becomes available and if there 
   67 are queued threads that are not assigned KSEs, the highest priority one of
   68 them is assigned the KSE, which is then placed back on the run queue at
   69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
   70 to point to it.
   71 
   72 The following diagram shows 2 KSEs and 3 threads from a single process.
   73 
   74  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
   75               \    \____   
   76                \        \
   77     KSEGROUP---thread--thread--thread    (queued in priority order)
   78         \                 / 
   79          \_______________/
   80           (last_assigned)
   81 
   82 The result of this scheme is that the M available KSEs are always
   83 queued at the priorities they have inherrited from the M highest priority
   84 threads for that KSEGROUP. If this situation changes, the KSEs are 
   85 reassigned to keep this true.
   86 ***/
   87 
   88 #include <sys/cdefs.h>
   89 __FBSDID("$FreeBSD: releng/6.0/sys/kern/kern_switch.c 148775 2005-08-06 03:06:25Z davidxu $");
   90 
   91 #include "opt_sched.h"
   92 
   93 #ifndef KERN_SWITCH_INCLUDE
   94 #include <sys/param.h>
   95 #include <sys/systm.h>
   96 #include <sys/kdb.h>
   97 #include <sys/kernel.h>
   98 #include <sys/ktr.h>
   99 #include <sys/lock.h>
  100 #include <sys/mutex.h>
  101 #include <sys/proc.h>
  102 #include <sys/queue.h>
  103 #include <sys/sched.h>
  104 #else  /* KERN_SWITCH_INCLUDE */
  105 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
  106 #include <sys/smp.h>
  107 #endif
  108 #if defined(SMP) && defined(SCHED_4BSD)
  109 #include <sys/sysctl.h>
  110 #endif
  111 
  112 #ifdef FULL_PREEMPTION
  113 #ifndef PREEMPTION
  114 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
  115 #endif
  116 #endif
  117 
  118 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
  119 
  120 #define td_kse td_sched
  121 
  122 /*
  123  * kern.sched.preemption allows user space to determine if preemption support
  124  * is compiled in or not.  It is not currently a boot or runtime flag that
  125  * can be changed.
  126  */
  127 #ifdef PREEMPTION
  128 static int kern_sched_preemption = 1;
  129 #else
  130 static int kern_sched_preemption = 0;
  131 #endif
  132 SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
  133     &kern_sched_preemption, 0, "Kernel preemption enabled");
  134 
  135 /************************************************************************
  136  * Functions that manipulate runnability from a thread perspective.     *
  137  ************************************************************************/
  138 /*
  139  * Select the KSE that will be run next.  From that find the thread, and
  140  * remove it from the KSEGRP's run queue.  If there is thread clustering,
  141  * this will be what does it.
  142  */
  143 struct thread *
  144 choosethread(void)
  145 {
  146         struct kse *ke;
  147         struct thread *td;
  148         struct ksegrp *kg;
  149 
  150 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
  151         if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
  152                 /* Shutting down, run idlethread on AP's */
  153                 td = PCPU_GET(idlethread);
  154                 ke = td->td_kse;
  155                 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
  156                 ke->ke_flags |= KEF_DIDRUN;
  157                 TD_SET_RUNNING(td);
  158                 return (td);
  159         }
  160 #endif
  161 
  162 retry:
  163         ke = sched_choose();
  164         if (ke) {
  165                 td = ke->ke_thread;
  166                 KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
  167                 kg = ke->ke_ksegrp;
  168                 if (td->td_proc->p_flag & P_HADTHREADS) {
  169                         if (kg->kg_last_assigned == td) {
  170                                 kg->kg_last_assigned = TAILQ_PREV(td,
  171                                     threadqueue, td_runq);
  172                         }
  173                         TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  174                 }
  175                 CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
  176                     td, td->td_priority);
  177         } else {
  178                 /* Simulate runq_choose() having returned the idle thread */
  179                 td = PCPU_GET(idlethread);
  180                 ke = td->td_kse;
  181                 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
  182         }
  183         ke->ke_flags |= KEF_DIDRUN;
  184 
  185         /*
  186          * If we are in panic, only allow system threads,
  187          * plus the one we are running in, to be run.
  188          */
  189         if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
  190             (td->td_flags & TDF_INPANIC) == 0)) {
  191                 /* note that it is no longer on the run queue */
  192                 TD_SET_CAN_RUN(td);
  193                 goto retry;
  194         }
  195 
  196         TD_SET_RUNNING(td);
  197         return (td);
  198 }
  199 
  200 /*
  201  * Given a surplus system slot, try assign a new runnable thread to it.
  202  * Called from:
  203  *  sched_thread_exit()  (local)
  204  *  sched_switch()  (local)
  205  *  sched_thread_exit()  (local)
  206  *  remrunqueue()  (local)  (not at the moment)
  207  */
  208 static void
  209 slot_fill(struct ksegrp *kg)
  210 {
  211         struct thread *td;
  212 
  213         mtx_assert(&sched_lock, MA_OWNED);
  214         while (kg->kg_avail_opennings > 0) {
  215                 /*
  216                  * Find the first unassigned thread
  217                  */
  218                 if ((td = kg->kg_last_assigned) != NULL)
  219                         td = TAILQ_NEXT(td, td_runq);
  220                 else
  221                         td = TAILQ_FIRST(&kg->kg_runq);
  222 
  223                 /*
  224                  * If we found one, send it to the system scheduler.
  225                  */
  226                 if (td) {
  227                         kg->kg_last_assigned = td;
  228                         sched_add(td, SRQ_YIELDING);
  229                         CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
  230                 } else {
  231                         /* no threads to use up the slots. quit now */
  232                         break;
  233                 }
  234         }
  235 }
  236 
  237 #ifdef  SCHED_4BSD
  238 /*
  239  * Remove a thread from its KSEGRP's run queue.
  240  * This in turn may remove it from a KSE if it was already assigned
  241  * to one, possibly causing a new thread to be assigned to the KSE
  242  * and the KSE getting a new priority.
  243  */
  244 static void
  245 remrunqueue(struct thread *td)
  246 {
  247         struct thread *td2, *td3;
  248         struct ksegrp *kg;
  249         struct kse *ke;
  250 
  251         mtx_assert(&sched_lock, MA_OWNED);
  252         KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
  253         kg = td->td_ksegrp;
  254         ke = td->td_kse;
  255         CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
  256         TD_SET_CAN_RUN(td);
  257         /*
  258          * If it is not a threaded process, take the shortcut.
  259          */
  260         if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
  261                 /* remve from sys run queue and free up a slot */
  262                 sched_rem(td);
  263                 ke->ke_state = KES_THREAD; 
  264                 return;
  265         }
  266         td3 = TAILQ_PREV(td, threadqueue, td_runq);
  267         TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  268         if (ke->ke_state == KES_ONRUNQ) {
  269                 /*
  270                  * This thread has been assigned to the system run queue.
  271                  * We need to dissociate it and try assign the
  272                  * KSE to the next available thread. Then, we should
  273                  * see if we need to move the KSE in the run queues.
  274                  */
  275                 sched_rem(td);
  276                 ke->ke_state = KES_THREAD; 
  277                 td2 = kg->kg_last_assigned;
  278                 KASSERT((td2 != NULL), ("last assigned has wrong value"));
  279                 if (td2 == td) 
  280                         kg->kg_last_assigned = td3;
  281                 /* slot_fill(kg); */ /* will replace it with another */
  282         }
  283 }
  284 #endif
  285 
  286 /*
  287  * Change the priority of a thread that is on the run queue.
  288  */
  289 void
  290 adjustrunqueue( struct thread *td, int newpri) 
  291 {
  292         struct ksegrp *kg;
  293         struct kse *ke;
  294 
  295         mtx_assert(&sched_lock, MA_OWNED);
  296         KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
  297 
  298         ke = td->td_kse;
  299         CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
  300         /*
  301          * If it is not a threaded process, take the shortcut.
  302          */
  303         if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
  304                 /* We only care about the kse in the run queue. */
  305                 td->td_priority = newpri;
  306                 if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
  307                         sched_rem(td);
  308                         sched_add(td, SRQ_BORING);
  309                 }
  310                 return;
  311         }
  312 
  313         /* It is a threaded process */
  314         kg = td->td_ksegrp;
  315         if (ke->ke_state == KES_ONRUNQ
  316 #ifdef SCHED_ULE
  317          || ((ke->ke_flags & KEF_ASSIGNED) != 0 &&
  318              (ke->ke_flags & KEF_REMOVED) == 0)
  319 #endif
  320            ) {
  321                 if (kg->kg_last_assigned == td) {
  322                         kg->kg_last_assigned =
  323                             TAILQ_PREV(td, threadqueue, td_runq);
  324                 }
  325                 sched_rem(td);
  326         }
  327         TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  328         TD_SET_CAN_RUN(td);
  329         td->td_priority = newpri;
  330         setrunqueue(td, SRQ_BORING);
  331 }
  332 
  333 /*
  334  * This function is called when a thread is about to be put on a
  335  * ksegrp run queue because it has been made runnable or its 
  336  * priority has been adjusted and the ksegrp does not have a 
  337  * free kse slot.  It determines if a thread from the same ksegrp
  338  * should be preempted.  If so, it tries to switch threads
  339  * if the thread is on the same cpu or notifies another cpu that
  340  * it should switch threads. 
  341  */
  342 
  343 static void
  344 maybe_preempt_in_ksegrp(struct thread *td)
  345 #if  !defined(SMP)
  346 {
  347         struct thread *running_thread;
  348 
  349         mtx_assert(&sched_lock, MA_OWNED);
  350         running_thread = curthread;
  351 
  352         if (running_thread->td_ksegrp != td->td_ksegrp)
  353                 return;
  354 
  355         if (td->td_priority >= running_thread->td_priority)
  356                 return;
  357 #ifdef PREEMPTION
  358 #ifndef FULL_PREEMPTION
  359         if (td->td_priority > PRI_MAX_ITHD) {
  360                 running_thread->td_flags |= TDF_NEEDRESCHED;
  361                 return;
  362         }
  363 #endif /* FULL_PREEMPTION */
  364 
  365         if (running_thread->td_critnest > 1) 
  366                 running_thread->td_owepreempt = 1;
  367          else           
  368                  mi_switch(SW_INVOL, NULL);
  369         
  370 #else /* PREEMPTION */
  371         running_thread->td_flags |= TDF_NEEDRESCHED;
  372 #endif /* PREEMPTION */
  373         return;
  374 }
  375 
  376 #else /* SMP */
  377 {
  378         struct thread *running_thread;
  379         int worst_pri;
  380         struct ksegrp *kg;
  381         cpumask_t cpumask,dontuse;
  382         struct pcpu *pc;
  383         struct pcpu *best_pcpu;
  384         struct thread *cputhread;
  385 
  386         mtx_assert(&sched_lock, MA_OWNED);
  387 
  388         running_thread = curthread;
  389 
  390 #if !defined(KSEG_PEEMPT_BEST_CPU)
  391         if (running_thread->td_ksegrp != td->td_ksegrp) {
  392 #endif
  393                 kg = td->td_ksegrp;
  394 
  395                 /* if someone is ahead of this thread, wait our turn */
  396                 if (td != TAILQ_FIRST(&kg->kg_runq))  
  397                         return;
  398                 
  399                 worst_pri = td->td_priority;
  400                 best_pcpu = NULL;
  401                 dontuse   = stopped_cpus | idle_cpus_mask;
  402                 
  403                 /* 
  404                  * Find a cpu with the worst priority that runs at thread from
  405                  * the same  ksegrp - if multiple exist give first the last run
  406                  * cpu and then the current cpu priority 
  407                  */
  408                 
  409                 SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
  410                         cpumask   = pc->pc_cpumask;
  411                         cputhread = pc->pc_curthread;
  412 
  413                         if ((cpumask & dontuse)  ||      
  414                             cputhread->td_ksegrp != kg)
  415                                 continue;       
  416 
  417                         if (cputhread->td_priority > worst_pri) {
  418                                 worst_pri = cputhread->td_priority;
  419                                 best_pcpu = pc; 
  420                                 continue;
  421                         }
  422                         
  423                         if (cputhread->td_priority == worst_pri &&
  424                             best_pcpu != NULL &&                        
  425                             (td->td_lastcpu == pc->pc_cpuid ||
  426                                 (PCPU_GET(cpumask) == cpumask &&
  427                                     td->td_lastcpu != best_pcpu->pc_cpuid))) 
  428                             best_pcpu = pc;
  429                 }               
  430                 
  431                 /* Check if we need to preempt someone */
  432                 if (best_pcpu == NULL) 
  433                         return;
  434 
  435 #if defined(IPI_PREEMPTION) && defined(PREEMPTION)
  436 #if !defined(FULL_PREEMPTION)
  437                 if (td->td_priority <= PRI_MAX_ITHD)
  438 #endif /* ! FULL_PREEMPTION */
  439                         {
  440                                 ipi_selected(best_pcpu->pc_cpumask, IPI_PREEMPT);
  441                                 return;
  442                         }
  443 #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
  444 
  445                 if (PCPU_GET(cpuid) != best_pcpu->pc_cpuid) {
  446                         best_pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
  447                         ipi_selected(best_pcpu->pc_cpumask, IPI_AST);
  448                         return;
  449                 }
  450 #if !defined(KSEG_PEEMPT_BEST_CPU)
  451         }       
  452 #endif
  453 
  454         if (td->td_priority >= running_thread->td_priority)
  455                 return;
  456 #ifdef PREEMPTION
  457 
  458 #if !defined(FULL_PREEMPTION)
  459         if (td->td_priority > PRI_MAX_ITHD) {
  460                 running_thread->td_flags |= TDF_NEEDRESCHED;
  461         }
  462 #endif /* ! FULL_PREEMPTION */
  463         
  464         if (running_thread->td_critnest > 1) 
  465                 running_thread->td_owepreempt = 1;
  466          else           
  467                  mi_switch(SW_INVOL, NULL);
  468         
  469 #else /* PREEMPTION */
  470         running_thread->td_flags |= TDF_NEEDRESCHED;
  471 #endif /* PREEMPTION */
  472         return;
  473 }
  474 #endif /* !SMP */
  475 
  476 
  477 int limitcount;
  478 void
  479 setrunqueue(struct thread *td, int flags)
  480 {
  481         struct ksegrp *kg;
  482         struct thread *td2;
  483         struct thread *tda;
  484 
  485         CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
  486             td, td->td_ksegrp, td->td_proc->p_pid);
  487         CTR5(KTR_SCHED, "setrunqueue: %p(%s) prio %d by %p(%s)",
  488             td, td->td_proc->p_comm, td->td_priority, curthread,
  489             curthread->td_proc->p_comm);
  490         mtx_assert(&sched_lock, MA_OWNED);
  491         KASSERT((td->td_inhibitors == 0),
  492                         ("setrunqueue: trying to run inhibitted thread"));
  493         KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
  494             ("setrunqueue: bad thread state"));
  495         TD_SET_RUNQ(td);
  496         kg = td->td_ksegrp;
  497         if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
  498                 /*
  499                  * Common path optimisation: Only one of everything
  500                  * and the KSE is always already attached.
  501                  * Totally ignore the ksegrp run queue.
  502                  */
  503                 if (kg->kg_avail_opennings != 1) {
  504                         if (limitcount < 1) {
  505                                 limitcount++;
  506                                 printf("pid %d: corrected slot count (%d->1)\n",
  507                                     td->td_proc->p_pid, kg->kg_avail_opennings);
  508 
  509                         }
  510                         kg->kg_avail_opennings = 1;
  511                 }
  512                 sched_add(td, flags);
  513                 return;
  514         }
  515 
  516         /* 
  517          * If the concurrency has reduced, and we would go in the 
  518          * assigned section, then keep removing entries from the 
  519          * system run queue, until we are not in that section 
  520          * or there is room for us to be put in that section.
  521          * What we MUST avoid is the case where there are threads of less
  522          * priority than the new one scheduled, but it can not
  523          * be scheduled itself. That would lead to a non contiguous set
  524          * of scheduled threads, and everything would break.
  525          */ 
  526         tda = kg->kg_last_assigned;
  527         while ((kg->kg_avail_opennings <= 0) &&
  528             (tda && (tda->td_priority > td->td_priority))) {
  529                 /*
  530                  * None free, but there is one we can commandeer.
  531                  */
  532                 CTR2(KTR_RUNQ,
  533                     "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
  534                 sched_rem(tda);
  535                 tda = kg->kg_last_assigned =
  536                     TAILQ_PREV(tda, threadqueue, td_runq);
  537         }
  538 
  539         /*
  540          * Add the thread to the ksegrp's run queue at
  541          * the appropriate place.
  542          */
  543         TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
  544                 if (td2->td_priority > td->td_priority) {
  545                         TAILQ_INSERT_BEFORE(td2, td, td_runq);
  546                         break;
  547                 }
  548         }
  549         if (td2 == NULL) {
  550                 /* We ran off the end of the TAILQ or it was empty. */
  551                 TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
  552         }
  553 
  554         /*
  555          * If we have a slot to use, then put the thread on the system
  556          * run queue and if needed, readjust the last_assigned pointer.
  557          * it may be that we need to schedule something anyhow
  558          * even if the availabel slots are -ve so that
  559          * all the items < last_assigned are scheduled.
  560          */
  561         if (kg->kg_avail_opennings > 0) {
  562                 if (tda == NULL) {
  563                         /*
  564                          * No pre-existing last assigned so whoever is first
  565                          * gets the slot.. (maybe us)
  566                          */
  567                         td2 = TAILQ_FIRST(&kg->kg_runq);
  568                         kg->kg_last_assigned = td2;
  569                 } else if (tda->td_priority > td->td_priority) {
  570                         td2 = td;
  571                 } else {
  572                         /* 
  573                          * We are past last_assigned, so 
  574                          * give the next slot to whatever is next,
  575                          * which may or may not be us.
  576                          */
  577                         td2 = TAILQ_NEXT(tda, td_runq);
  578                         kg->kg_last_assigned = td2;
  579                 }
  580                 sched_add(td2, flags);
  581         } else {
  582                 CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
  583                         td, td->td_ksegrp, td->td_proc->p_pid);
  584                 if ((flags & SRQ_YIELDING) == 0)
  585                         maybe_preempt_in_ksegrp(td);
  586         }
  587 }
  588 
  589 /*
  590  * Kernel thread preemption implementation.  Critical sections mark
  591  * regions of code in which preemptions are not allowed.
  592  */
  593 void
  594 critical_enter(void)
  595 {
  596         struct thread *td;
  597 
  598         td = curthread;
  599         td->td_critnest++;
  600         CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
  601             (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
  602 }
  603 
  604 void
  605 critical_exit(void)
  606 {
  607         struct thread *td;
  608 
  609         td = curthread;
  610         KASSERT(td->td_critnest != 0,
  611             ("critical_exit: td_critnest == 0"));
  612 #ifdef PREEMPTION
  613         if (td->td_critnest == 1) {
  614                 td->td_critnest = 0;
  615                 mtx_assert(&sched_lock, MA_NOTOWNED);
  616                 if (td->td_owepreempt) {
  617                         td->td_critnest = 1;
  618                         mtx_lock_spin(&sched_lock);
  619                         td->td_critnest--;
  620                         mi_switch(SW_INVOL, NULL);
  621                         mtx_unlock_spin(&sched_lock);
  622                 }
  623         } else 
  624 #endif
  625                 td->td_critnest--;
  626         
  627         
  628         CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
  629             (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
  630 }
  631 
  632 /*
  633  * This function is called when a thread is about to be put on run queue
  634  * because it has been made runnable or its priority has been adjusted.  It
  635  * determines if the new thread should be immediately preempted to.  If so,
  636  * it switches to it and eventually returns true.  If not, it returns false
  637  * so that the caller may place the thread on an appropriate run queue.
  638  */
  639 int
  640 maybe_preempt(struct thread *td)
  641 {
  642 #ifdef PREEMPTION
  643         struct thread *ctd;
  644         int cpri, pri;
  645 #endif
  646 
  647         mtx_assert(&sched_lock, MA_OWNED);
  648 #ifdef PREEMPTION
  649         /*
  650          * The new thread should not preempt the current thread if any of the
  651          * following conditions are true:
  652          *
  653          *  - The kernel is in the throes of crashing (panicstr).
  654          *  - The current thread has a higher (numerically lower) or
  655          *    equivalent priority.  Note that this prevents curthread from
  656          *    trying to preempt to itself.
  657          *  - It is too early in the boot for context switches (cold is set).
  658          *  - The current thread has an inhibitor set or is in the process of
  659          *    exiting.  In this case, the current thread is about to switch
  660          *    out anyways, so there's no point in preempting.  If we did,
  661          *    the current thread would not be properly resumed as well, so
  662          *    just avoid that whole landmine.
  663          *  - If the new thread's priority is not a realtime priority and
  664          *    the current thread's priority is not an idle priority and
  665          *    FULL_PREEMPTION is disabled.
  666          *
  667          * If all of these conditions are false, but the current thread is in
  668          * a nested critical section, then we have to defer the preemption
  669          * until we exit the critical section.  Otherwise, switch immediately
  670          * to the new thread.
  671          */
  672         ctd = curthread;
  673         KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
  674           ("thread has no (or wrong) sched-private part."));
  675         KASSERT((td->td_inhibitors == 0),
  676                         ("maybe_preempt: trying to run inhibitted thread"));
  677         pri = td->td_priority;
  678         cpri = ctd->td_priority;
  679         if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
  680             TD_IS_INHIBITED(ctd) || td->td_kse->ke_state != KES_THREAD)
  681                 return (0);
  682 #ifndef FULL_PREEMPTION
  683         if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
  684                 return (0);
  685 #endif
  686 
  687         if (ctd->td_critnest > 1) {
  688                 CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
  689                     ctd->td_critnest);
  690                 ctd->td_owepreempt = 1;
  691                 return (0);
  692         }
  693 
  694         /*
  695          * Thread is runnable but not yet put on system run queue.
  696          */
  697         MPASS(TD_ON_RUNQ(td));
  698         MPASS(td->td_sched->ke_state != KES_ONRUNQ);
  699         if (td->td_proc->p_flag & P_HADTHREADS) {
  700                 /*
  701                  * If this is a threaded process we actually ARE on the
  702                  * ksegrp run queue so take it off that first.
  703                  * Also undo any damage done to the last_assigned pointer.
  704                  * XXX Fix setrunqueue so this isn't needed
  705                  */
  706                 struct ksegrp *kg;
  707 
  708                 kg = td->td_ksegrp;
  709                 if (kg->kg_last_assigned == td)
  710                         kg->kg_last_assigned =
  711                             TAILQ_PREV(td, threadqueue, td_runq);
  712                 TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
  713         }
  714                 
  715         TD_SET_RUNNING(td);
  716         CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
  717             td->td_proc->p_pid, td->td_proc->p_comm);
  718         mi_switch(SW_INVOL|SW_PREEMPT, td);
  719         return (1);
  720 #else
  721         return (0);
  722 #endif
  723 }
  724 
  725 #if 0
  726 #ifndef PREEMPTION
  727 /* XXX: There should be a non-static version of this. */
  728 static void
  729 printf_caddr_t(void *data)
  730 {
  731         printf("%s", (char *)data);
  732 }
  733 static char preempt_warning[] =
  734     "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
  735 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
  736     preempt_warning)
  737 #endif
  738 #endif
  739 
  740 /************************************************************************
  741  * SYSTEM RUN QUEUE manipulations and tests                             *
  742  ************************************************************************/
  743 /*
  744  * Initialize a run structure.
  745  */
  746 void
  747 runq_init(struct runq *rq)
  748 {
  749         int i;
  750 
  751         bzero(rq, sizeof *rq);
  752         for (i = 0; i < RQ_NQS; i++)
  753                 TAILQ_INIT(&rq->rq_queues[i]);
  754 }
  755 
  756 /*
  757  * Clear the status bit of the queue corresponding to priority level pri,
  758  * indicating that it is empty.
  759  */
  760 static __inline void
  761 runq_clrbit(struct runq *rq, int pri)
  762 {
  763         struct rqbits *rqb;
  764 
  765         rqb = &rq->rq_status;
  766         CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
  767             rqb->rqb_bits[RQB_WORD(pri)],
  768             rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
  769             RQB_BIT(pri), RQB_WORD(pri));
  770         rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
  771 }
  772 
  773 /*
  774  * Find the index of the first non-empty run queue.  This is done by
  775  * scanning the status bits, a set bit indicates a non-empty queue.
  776  */
  777 static __inline int
  778 runq_findbit(struct runq *rq)
  779 {
  780         struct rqbits *rqb;
  781         int pri;
  782         int i;
  783 
  784         rqb = &rq->rq_status;
  785         for (i = 0; i < RQB_LEN; i++)
  786                 if (rqb->rqb_bits[i]) {
  787                         pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
  788                         CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
  789                             rqb->rqb_bits[i], i, pri);
  790                         return (pri);
  791                 }
  792 
  793         return (-1);
  794 }
  795 
  796 /*
  797  * Set the status bit of the queue corresponding to priority level pri,
  798  * indicating that it is non-empty.
  799  */
  800 static __inline void
  801 runq_setbit(struct runq *rq, int pri)
  802 {
  803         struct rqbits *rqb;
  804 
  805         rqb = &rq->rq_status;
  806         CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
  807             rqb->rqb_bits[RQB_WORD(pri)],
  808             rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
  809             RQB_BIT(pri), RQB_WORD(pri));
  810         rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
  811 }
  812 
  813 /*
  814  * Add the KSE to the queue specified by its priority, and set the
  815  * corresponding status bit.
  816  */
  817 void
  818 runq_add(struct runq *rq, struct kse *ke, int flags)
  819 {
  820         struct rqhead *rqh;
  821         int pri;
  822 
  823         pri = ke->ke_thread->td_priority / RQ_PPQ;
  824         ke->ke_rqindex = pri;
  825         runq_setbit(rq, pri);
  826         rqh = &rq->rq_queues[pri];
  827         CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
  828             ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
  829         if (flags & SRQ_PREEMPTED) {
  830                 TAILQ_INSERT_HEAD(rqh, ke, ke_procq);
  831         } else {
  832                 TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
  833         }
  834 }
  835 
  836 /*
  837  * Return true if there are runnable processes of any priority on the run
  838  * queue, false otherwise.  Has no side effects, does not modify the run
  839  * queue structure.
  840  */
  841 int
  842 runq_check(struct runq *rq)
  843 {
  844         struct rqbits *rqb;
  845         int i;
  846 
  847         rqb = &rq->rq_status;
  848         for (i = 0; i < RQB_LEN; i++)
  849                 if (rqb->rqb_bits[i]) {
  850                         CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
  851                             rqb->rqb_bits[i], i);
  852                         return (1);
  853                 }
  854         CTR0(KTR_RUNQ, "runq_check: empty");
  855 
  856         return (0);
  857 }
  858 
  859 #if defined(SMP) && defined(SCHED_4BSD)
  860 int runq_fuzz = 1;
  861 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
  862 #endif
  863 
  864 /*
  865  * Find the highest priority process on the run queue.
  866  */
  867 struct kse *
  868 runq_choose(struct runq *rq)
  869 {
  870         struct rqhead *rqh;
  871         struct kse *ke;
  872         int pri;
  873 
  874         mtx_assert(&sched_lock, MA_OWNED);
  875         while ((pri = runq_findbit(rq)) != -1) {
  876                 rqh = &rq->rq_queues[pri];
  877 #if defined(SMP) && defined(SCHED_4BSD)
  878                 /* fuzz == 1 is normal.. 0 or less are ignored */
  879                 if (runq_fuzz > 1) {
  880                         /*
  881                          * In the first couple of entries, check if
  882                          * there is one for our CPU as a preference.
  883                          */
  884                         int count = runq_fuzz;
  885                         int cpu = PCPU_GET(cpuid);
  886                         struct kse *ke2;
  887                         ke2 = ke = TAILQ_FIRST(rqh);
  888 
  889                         while (count-- && ke2) {
  890                                 if (ke->ke_thread->td_lastcpu == cpu) {
  891                                         ke = ke2;
  892                                         break;
  893                                 }
  894                                 ke2 = TAILQ_NEXT(ke2, ke_procq);
  895                         }
  896                 } else 
  897 #endif
  898                         ke = TAILQ_FIRST(rqh);
  899                 KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
  900                 CTR3(KTR_RUNQ,
  901                     "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
  902                 return (ke);
  903         }
  904         CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
  905 
  906         return (NULL);
  907 }
  908 
  909 /*
  910  * Remove the KSE from the queue specified by its priority, and clear the
  911  * corresponding status bit if the queue becomes empty.
  912  * Caller must set ke->ke_state afterwards.
  913  */
  914 void
  915 runq_remove(struct runq *rq, struct kse *ke)
  916 {
  917         struct rqhead *rqh;
  918         int pri;
  919 
  920         KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
  921                 ("runq_remove: process swapped out"));
  922         pri = ke->ke_rqindex;
  923         rqh = &rq->rq_queues[pri];
  924         CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
  925             ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
  926         KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
  927         TAILQ_REMOVE(rqh, ke, ke_procq);
  928         if (TAILQ_EMPTY(rqh)) {
  929                 CTR0(KTR_RUNQ, "runq_remove: empty");
  930                 runq_clrbit(rq, pri);
  931         }
  932 }
  933 
  934 /****** functions that are temporarily here ***********/
  935 #include <vm/uma.h>
  936 extern struct mtx kse_zombie_lock;
  937 
  938 /*
  939  *  Allocate scheduler specific per-process resources.
  940  * The thread and ksegrp have already been linked in.
  941  * In this case just set the default concurrency value.
  942  *
  943  * Called from:
  944  *  proc_init() (UMA init method)
  945  */
  946 void
  947 sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
  948 {
  949 
  950         /* This can go in sched_fork */
  951         sched_init_concurrency(kg);
  952 }
  953 
  954 /*
  955  * thread is being either created or recycled.
  956  * Fix up the per-scheduler resources associated with it.
  957  * Called from:
  958  *  sched_fork_thread()
  959  *  thread_dtor()  (*may go away)
  960  *  thread_init()  (*may go away)
  961  */
  962 void
  963 sched_newthread(struct thread *td)
  964 {
  965         struct td_sched *ke;
  966 
  967         ke = (struct td_sched *) (td + 1);
  968         bzero(ke, sizeof(*ke));
  969         td->td_sched     = ke;
  970         ke->ke_thread   = td;
  971         ke->ke_state    = KES_THREAD;
  972 }
  973 
  974 /*
  975  * Set up an initial concurrency of 1
  976  * and set the given thread (if given) to be using that
  977  * concurrency slot.
  978  * May be used "offline"..before the ksegrp is attached to the world
  979  * and thus wouldn't need schedlock in that case.
  980  * Called from:
  981  *  thr_create()
  982  *  proc_init() (UMA) via sched_newproc()
  983  */
  984 void
  985 sched_init_concurrency(struct ksegrp *kg)
  986 {
  987 
  988         CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg);
  989         kg->kg_concurrency = 1;
  990         kg->kg_avail_opennings = 1;
  991 }
  992 
  993 /*
  994  * Change the concurrency of an existing ksegrp to N
  995  * Called from:
  996  *  kse_create()
  997  *  kse_exit()
  998  *  thread_exit()
  999  *  thread_single()
 1000  */
 1001 void
 1002 sched_set_concurrency(struct ksegrp *kg, int concurrency)
 1003 {
 1004 
 1005         CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d",
 1006             kg,
 1007             concurrency,
 1008             kg->kg_avail_opennings,
 1009             kg->kg_avail_opennings + (concurrency - kg->kg_concurrency));
 1010         kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
 1011         kg->kg_concurrency = concurrency;
 1012 }
 1013 
 1014 /*
 1015  * Called from thread_exit() for all exiting thread
 1016  *
 1017  * Not to be confused with sched_exit_thread()
 1018  * that is only called from thread_exit() for threads exiting
 1019  * without the rest of the process exiting because it is also called from
 1020  * sched_exit() and we wouldn't want to call it twice.
 1021  * XXX This can probably be fixed.
 1022  */
 1023 void
 1024 sched_thread_exit(struct thread *td)
 1025 {
 1026 
 1027         SLOT_RELEASE(td->td_ksegrp);
 1028         slot_fill(td->td_ksegrp);
 1029 }
 1030 
 1031 #endif /* KERN_SWITCH_INCLUDE */

Cache object: 061fcd459d72a8993e0b16c60993b5b7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.