The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_synch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)kern_synch.c        8.9 (Berkeley) 5/19/95
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD$");
   41 
   42 #include "opt_ktrace.h"
   43 #include "opt_sched.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/blockcount.h>
   48 #include <sys/condvar.h>
   49 #include <sys/kdb.h>
   50 #include <sys/kernel.h>
   51 #include <sys/ktr.h>
   52 #include <sys/lock.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/resourcevar.h>
   56 #include <sys/sched.h>
   57 #include <sys/sdt.h>
   58 #include <sys/signalvar.h>
   59 #include <sys/sleepqueue.h>
   60 #include <sys/smp.h>
   61 #include <sys/sx.h>
   62 #include <sys/sysctl.h>
   63 #include <sys/sysproto.h>
   64 #include <sys/vmmeter.h>
   65 #ifdef KTRACE
   66 #include <sys/uio.h>
   67 #include <sys/ktrace.h>
   68 #endif
   69 #ifdef EPOCH_TRACE
   70 #include <sys/epoch.h>
   71 #endif
   72 
   73 #include <machine/cpu.h>
   74 
   75 static void synch_setup(void *dummy);
   76 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
   77     NULL);
   78 
   79 int     hogticks;
   80 static const char pause_wchan[MAXCPU];
   81 
   82 static struct callout loadav_callout;
   83 
   84 struct loadavg averunnable =
   85         { {0, 0, 0}, FSCALE };  /* load average, of runnable procs */
   86 /*
   87  * Constants for averages over 1, 5, and 15 minutes
   88  * when sampling at 5 second intervals.
   89  */
   90 static uint64_t cexp[3] = {
   91         0.9200444146293232 * FSCALE,    /* exp(-1/12) */
   92         0.9834714538216174 * FSCALE,    /* exp(-1/60) */
   93         0.9944598480048967 * FSCALE,    /* exp(-1/180) */
   94 };
   95 
   96 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
   97 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE,
   98     "Fixed-point scale factor used for calculating load average values");
   99 
  100 static void     loadav(void *arg);
  101 
  102 SDT_PROVIDER_DECLARE(sched);
  103 SDT_PROBE_DEFINE(sched, , , preempt);
  104 
  105 static void
  106 sleepinit(void *unused)
  107 {
  108 
  109         hogticks = (hz / 10) * 2;       /* Default only. */
  110         init_sleepqueues();
  111 }
  112 
  113 /*
  114  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
  115  * it is available.
  116  */
  117 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, NULL);
  118 
  119 /*
  120  * General sleep call.  Suspends the current thread until a wakeup is
  121  * performed on the specified identifier.  The thread will then be made
  122  * runnable with the specified priority.  Sleeps at most sbt units of time
  123  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
  124  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
  125  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
  126  * signal becomes pending, ERESTART is returned if the current system
  127  * call should be restarted if possible, and EINTR is returned if the system
  128  * call should be interrupted by the signal (return EINTR).
  129  *
  130  * The lock argument is unlocked before the caller is suspended, and
  131  * re-locked before _sleep() returns.  If priority includes the PDROP
  132  * flag the lock is not re-locked before returning.
  133  */
  134 int
  135 _sleep(const void *ident, struct lock_object *lock, int priority,
  136     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
  137 {
  138         struct thread *td;
  139         struct lock_class *class;
  140         uintptr_t lock_state;
  141         int catch, pri, rval, sleepq_flags;
  142         WITNESS_SAVE_DECL(lock_witness);
  143 
  144         TSENTER();
  145         td = curthread;
  146 #ifdef KTRACE
  147         if (KTRPOINT(td, KTR_CSW))
  148                 ktrcsw(1, 0, wmesg);
  149 #endif
  150         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
  151             "Sleeping on \"%s\"", wmesg);
  152         KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL ||
  153             (priority & PNOLOCK) != 0,
  154             ("sleeping without a lock"));
  155         KASSERT(ident != NULL, ("_sleep: NULL ident"));
  156         KASSERT(TD_IS_RUNNING(td), ("_sleep: curthread not running"));
  157         if (priority & PDROP)
  158                 KASSERT(lock != NULL && lock != &Giant.lock_object,
  159                     ("PDROP requires a non-Giant lock"));
  160         if (lock != NULL)
  161                 class = LOCK_CLASS(lock);
  162         else
  163                 class = NULL;
  164 
  165         if (SCHEDULER_STOPPED_TD(td)) {
  166                 if (lock != NULL && priority & PDROP)
  167                         class->lc_unlock(lock);
  168                 return (0);
  169         }
  170         catch = priority & PCATCH;
  171         pri = priority & PRIMASK;
  172 
  173         KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));
  174 
  175         if ((uintptr_t)ident >= (uintptr_t)&pause_wchan[0] &&
  176             (uintptr_t)ident <= (uintptr_t)&pause_wchan[MAXCPU - 1])
  177                 sleepq_flags = SLEEPQ_PAUSE;
  178         else
  179                 sleepq_flags = SLEEPQ_SLEEP;
  180         if (catch)
  181                 sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
  182 
  183         sleepq_lock(ident);
  184         CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
  185             td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);
  186 
  187         if (lock == &Giant.lock_object)
  188                 mtx_assert(&Giant, MA_OWNED);
  189         DROP_GIANT();
  190         if (lock != NULL && lock != &Giant.lock_object &&
  191             !(class->lc_flags & LC_SLEEPABLE)) {
  192                 KASSERT(!(class->lc_flags & LC_SPINLOCK),
  193                     ("spin locks can only use msleep_spin"));
  194                 WITNESS_SAVE(lock, lock_witness);
  195                 lock_state = class->lc_unlock(lock);
  196         } else
  197                 /* GCC needs to follow the Yellow Brick Road */
  198                 lock_state = -1;
  199 
  200         /*
  201          * We put ourselves on the sleep queue and start our timeout
  202          * before calling thread_suspend_check, as we could stop there,
  203          * and a wakeup or a SIGCONT (or both) could occur while we were
  204          * stopped without resuming us.  Thus, we must be ready for sleep
  205          * when cursig() is called.  If the wakeup happens while we're
  206          * stopped, then td will no longer be on a sleep queue upon
  207          * return from cursig().
  208          */
  209         sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
  210         if (sbt != 0)
  211                 sleepq_set_timeout_sbt(ident, sbt, pr, flags);
  212         if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
  213                 sleepq_release(ident);
  214                 WITNESS_SAVE(lock, lock_witness);
  215                 lock_state = class->lc_unlock(lock);
  216                 sleepq_lock(ident);
  217         }
  218         if (sbt != 0 && catch)
  219                 rval = sleepq_timedwait_sig(ident, pri);
  220         else if (sbt != 0)
  221                 rval = sleepq_timedwait(ident, pri);
  222         else if (catch)
  223                 rval = sleepq_wait_sig(ident, pri);
  224         else {
  225                 sleepq_wait(ident, pri);
  226                 rval = 0;
  227         }
  228 #ifdef KTRACE
  229         if (KTRPOINT(td, KTR_CSW))
  230                 ktrcsw(0, 0, wmesg);
  231 #endif
  232         PICKUP_GIANT();
  233         if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
  234                 class->lc_lock(lock, lock_state);
  235                 WITNESS_RESTORE(lock, lock_witness);
  236         }
  237         TSEXIT();
  238         return (rval);
  239 }
  240 
  241 int
  242 msleep_spin_sbt(const void *ident, struct mtx *mtx, const char *wmesg,
  243     sbintime_t sbt, sbintime_t pr, int flags)
  244 {
  245         struct thread *td;
  246         int rval;
  247         WITNESS_SAVE_DECL(mtx);
  248 
  249         td = curthread;
  250         KASSERT(mtx != NULL, ("sleeping without a mutex"));
  251         KASSERT(ident != NULL, ("msleep_spin_sbt: NULL ident"));
  252         KASSERT(TD_IS_RUNNING(td), ("msleep_spin_sbt: curthread not running"));
  253 
  254         if (SCHEDULER_STOPPED_TD(td))
  255                 return (0);
  256 
  257         sleepq_lock(ident);
  258         CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
  259             td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);
  260 
  261         DROP_GIANT();
  262         mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
  263         WITNESS_SAVE(&mtx->lock_object, mtx);
  264         mtx_unlock_spin(mtx);
  265 
  266         /*
  267          * We put ourselves on the sleep queue and start our timeout.
  268          */
  269         sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
  270         if (sbt != 0)
  271                 sleepq_set_timeout_sbt(ident, sbt, pr, flags);
  272 
  273         /*
  274          * Can't call ktrace with any spin locks held so it can lock the
  275          * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
  276          * any spin lock.  Thus, we have to drop the sleepq spin lock while
  277          * we handle those requests.  This is safe since we have placed our
  278          * thread on the sleep queue already.
  279          */
  280 #ifdef KTRACE
  281         if (KTRPOINT(td, KTR_CSW)) {
  282                 sleepq_release(ident);
  283                 ktrcsw(1, 0, wmesg);
  284                 sleepq_lock(ident);
  285         }
  286 #endif
  287 #ifdef WITNESS
  288         sleepq_release(ident);
  289         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
  290             wmesg);
  291         sleepq_lock(ident);
  292 #endif
  293         if (sbt != 0)
  294                 rval = sleepq_timedwait(ident, 0);
  295         else {
  296                 sleepq_wait(ident, 0);
  297                 rval = 0;
  298         }
  299 #ifdef KTRACE
  300         if (KTRPOINT(td, KTR_CSW))
  301                 ktrcsw(0, 0, wmesg);
  302 #endif
  303         PICKUP_GIANT();
  304         mtx_lock_spin(mtx);
  305         WITNESS_RESTORE(&mtx->lock_object, mtx);
  306         return (rval);
  307 }
  308 
  309 /*
  310  * pause_sbt() delays the calling thread by the given signed binary
  311  * time. During cold bootup, pause_sbt() uses the DELAY() function
  312  * instead of the _sleep() function to do the waiting. The "sbt"
  313  * argument must be greater than or equal to zero. A "sbt" value of
  314  * zero is equivalent to a "sbt" value of one tick.
  315  */
  316 int
  317 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
  318 {
  319         KASSERT(sbt >= 0, ("pause_sbt: timeout must be >= 0"));
  320 
  321         /* silently convert invalid timeouts */
  322         if (sbt == 0)
  323                 sbt = tick_sbt;
  324 
  325         if ((cold && curthread == &thread0) || kdb_active ||
  326             SCHEDULER_STOPPED()) {
  327                 /*
  328                  * We delay one second at a time to avoid overflowing the
  329                  * system specific DELAY() function(s):
  330                  */
  331                 while (sbt >= SBT_1S) {
  332                         DELAY(1000000);
  333                         sbt -= SBT_1S;
  334                 }
  335                 /* Do the delay remainder, if any */
  336                 sbt = howmany(sbt, SBT_1US);
  337                 if (sbt > 0)
  338                         DELAY(sbt);
  339                 return (EWOULDBLOCK);
  340         }
  341         return (_sleep(&pause_wchan[curcpu], NULL,
  342             (flags & C_CATCH) ? PCATCH : 0, wmesg, sbt, pr, flags));
  343 }
  344 
  345 /*
  346  * Make all threads sleeping on the specified identifier runnable.
  347  */
  348 void
  349 wakeup(const void *ident)
  350 {
  351         int wakeup_swapper;
  352 
  353         sleepq_lock(ident);
  354         wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
  355         sleepq_release(ident);
  356         if (wakeup_swapper) {
  357                 KASSERT(ident != &proc0,
  358                     ("wakeup and wakeup_swapper and proc0"));
  359                 kick_proc0();
  360         }
  361 }
  362 
  363 /*
  364  * Make a thread sleeping on the specified identifier runnable.
  365  * May wake more than one thread if a target thread is currently
  366  * swapped out.
  367  */
  368 void
  369 wakeup_one(const void *ident)
  370 {
  371         int wakeup_swapper;
  372 
  373         sleepq_lock(ident);
  374         wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_DROP, 0, 0);
  375         if (wakeup_swapper)
  376                 kick_proc0();
  377 }
  378 
  379 void
  380 wakeup_any(const void *ident)
  381 {
  382         int wakeup_swapper;
  383 
  384         sleepq_lock(ident);
  385         wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_UNFAIR |
  386             SLEEPQ_DROP, 0, 0);
  387         if (wakeup_swapper)
  388                 kick_proc0();
  389 }
  390 
  391 /*
  392  * Signal sleeping waiters after the counter has reached zero.
  393  */
  394 void
  395 _blockcount_wakeup(blockcount_t *bc, u_int old)
  396 {
  397 
  398         KASSERT(_BLOCKCOUNT_WAITERS(old),
  399             ("%s: no waiters on %p", __func__, bc));
  400 
  401         if (atomic_cmpset_int(&bc->__count, _BLOCKCOUNT_WAITERS_FLAG, 0))
  402                 wakeup(bc);
  403 }
  404 
  405 /*
  406  * Wait for a wakeup or a signal.  This does not guarantee that the count is
  407  * still zero on return.  Callers wanting a precise answer should use
  408  * blockcount_wait() with an interlock.
  409  *
  410  * If there is no work to wait for, return 0.  If the sleep was interrupted by a
  411  * signal, return EINTR or ERESTART, and return EAGAIN otherwise.
  412  */
  413 int
  414 _blockcount_sleep(blockcount_t *bc, struct lock_object *lock, const char *wmesg,
  415     int prio)
  416 {
  417         void *wchan;
  418         uintptr_t lock_state;
  419         u_int old;
  420         int ret;
  421         bool catch, drop;
  422 
  423         KASSERT(lock != &Giant.lock_object,
  424             ("%s: cannot use Giant as the interlock", __func__));
  425 
  426         catch = (prio & PCATCH) != 0;
  427         drop = (prio & PDROP) != 0;
  428         prio &= PRIMASK;
  429 
  430         /*
  431          * Synchronize with the fence in blockcount_release().  If we end up
  432          * waiting, the sleepqueue lock acquisition will provide the required
  433          * side effects.
  434          *
  435          * If there is no work to wait for, but waiters are present, try to put
  436          * ourselves to sleep to avoid jumping ahead.
  437          */
  438         if (atomic_load_acq_int(&bc->__count) == 0) {
  439                 if (lock != NULL && drop)
  440                         LOCK_CLASS(lock)->lc_unlock(lock);
  441                 return (0);
  442         }
  443         lock_state = 0;
  444         wchan = bc;
  445         sleepq_lock(wchan);
  446         DROP_GIANT();
  447         if (lock != NULL)
  448                 lock_state = LOCK_CLASS(lock)->lc_unlock(lock);
  449         old = blockcount_read(bc);
  450         ret = 0;
  451         do {
  452                 if (_BLOCKCOUNT_COUNT(old) == 0) {
  453                         sleepq_release(wchan);
  454                         goto out;
  455                 }
  456                 if (_BLOCKCOUNT_WAITERS(old))
  457                         break;
  458         } while (!atomic_fcmpset_int(&bc->__count, &old,
  459             old | _BLOCKCOUNT_WAITERS_FLAG));
  460         sleepq_add(wchan, NULL, wmesg, catch ? SLEEPQ_INTERRUPTIBLE : 0, 0);
  461         if (catch)
  462                 ret = sleepq_wait_sig(wchan, prio);
  463         else
  464                 sleepq_wait(wchan, prio);
  465         if (ret == 0)
  466                 ret = EAGAIN;
  467 
  468 out:
  469         PICKUP_GIANT();
  470         if (lock != NULL && !drop)
  471                 LOCK_CLASS(lock)->lc_lock(lock, lock_state);
  472 
  473         return (ret);
  474 }
  475 
  476 static void
  477 kdb_switch(void)
  478 {
  479         thread_unlock(curthread);
  480         kdb_backtrace();
  481         kdb_reenter();
  482         panic("%s: did not reenter debugger", __func__);
  483 }
  484 
  485 /*
  486  * The machine independent parts of context switching.
  487  *
  488  * The thread lock is required on entry and is no longer held on return.
  489  */
  490 void
  491 mi_switch(int flags)
  492 {
  493         uint64_t runtime, new_switchtime;
  494         struct thread *td;
  495 
  496         td = curthread;                 /* XXX */
  497         THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
  498         KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
  499 #ifdef INVARIANTS
  500         if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
  501                 mtx_assert(&Giant, MA_NOTOWNED);
  502 #endif
  503         KASSERT(td->td_critnest == 1 || KERNEL_PANICKED(),
  504                 ("mi_switch: switch in a critical section"));
  505         KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
  506             ("mi_switch: switch must be voluntary or involuntary"));
  507 
  508         /*
  509          * Don't perform context switches from the debugger.
  510          */
  511         if (kdb_active)
  512                 kdb_switch();
  513         if (SCHEDULER_STOPPED_TD(td))
  514                 return;
  515         if (flags & SW_VOL) {
  516                 td->td_ru.ru_nvcsw++;
  517                 td->td_swvoltick = ticks;
  518         } else {
  519                 td->td_ru.ru_nivcsw++;
  520                 td->td_swinvoltick = ticks;
  521         }
  522 #ifdef SCHED_STATS
  523         SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
  524 #endif
  525         /*
  526          * Compute the amount of time during which the current
  527          * thread was running, and add that to its total so far.
  528          */
  529         new_switchtime = cpu_ticks();
  530         runtime = new_switchtime - PCPU_GET(switchtime);
  531         td->td_runtime += runtime;
  532         td->td_incruntime += runtime;
  533         PCPU_SET(switchtime, new_switchtime);
  534         td->td_generation++;    /* bump preempt-detect counter */
  535         VM_CNT_INC(v_swtch);
  536         PCPU_SET(switchticks, ticks);
  537         CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
  538             td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
  539 #ifdef KDTRACE_HOOKS
  540         if (SDT_PROBES_ENABLED() &&
  541             ((flags & SW_PREEMPT) != 0 || ((flags & SW_INVOL) != 0 &&
  542             (flags & SW_TYPE_MASK) == SWT_NEEDRESCHED)))
  543                 SDT_PROBE0(sched, , , preempt);
  544 #endif
  545         sched_switch(td, flags);
  546         CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
  547             td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
  548 
  549         /* 
  550          * If the last thread was exiting, finish cleaning it up.
  551          */
  552         if ((td = PCPU_GET(deadthread))) {
  553                 PCPU_SET(deadthread, NULL);
  554                 thread_stash(td);
  555         }
  556         spinlock_exit();
  557 }
  558 
  559 /*
  560  * Change thread state to be runnable, placing it on the run queue if
  561  * it is in memory.  If it is swapped out, return true so our caller
  562  * will know to awaken the swapper.
  563  *
  564  * Requires the thread lock on entry, drops on exit.
  565  */
  566 int
  567 setrunnable(struct thread *td, int srqflags)
  568 {
  569         int swapin;
  570 
  571         THREAD_LOCK_ASSERT(td, MA_OWNED);
  572         KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
  573             ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
  574 
  575         swapin = 0;
  576         switch (TD_GET_STATE(td)) {
  577         case TDS_RUNNING:
  578         case TDS_RUNQ:
  579                 break;
  580         case TDS_CAN_RUN:
  581                 KASSERT((td->td_flags & TDF_INMEM) != 0,
  582                     ("setrunnable: td %p not in mem, flags 0x%X inhibit 0x%X",
  583                     td, td->td_flags, td->td_inhibitors));
  584                 /* unlocks thread lock according to flags */
  585                 sched_wakeup(td, srqflags);
  586                 return (0);
  587         case TDS_INHIBITED:
  588                 /*
  589                  * If we are only inhibited because we are swapped out
  590                  * arrange to swap in this process.
  591                  */
  592                 if (td->td_inhibitors == TDI_SWAPPED &&
  593                     (td->td_flags & TDF_SWAPINREQ) == 0) {
  594                         td->td_flags |= TDF_SWAPINREQ;
  595                         swapin = 1;
  596                 }
  597                 break;
  598         default:
  599                 panic("setrunnable: state 0x%x", TD_GET_STATE(td));
  600         }
  601         if ((srqflags & (SRQ_HOLD | SRQ_HOLDTD)) == 0)
  602                 thread_unlock(td);
  603 
  604         return (swapin);
  605 }
  606 
  607 /*
  608  * Compute a tenex style load average of a quantity on
  609  * 1, 5 and 15 minute intervals.
  610  */
  611 static void
  612 loadav(void *arg)
  613 {
  614         int i;
  615         uint64_t nrun;
  616         struct loadavg *avg;
  617 
  618         nrun = (uint64_t)sched_load();
  619         avg = &averunnable;
  620 
  621         for (i = 0; i < 3; i++)
  622                 avg->ldavg[i] = (cexp[i] * (uint64_t)avg->ldavg[i] +
  623                     nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
  624 
  625         /*
  626          * Schedule the next update to occur after 5 seconds, but add a
  627          * random variation to avoid synchronisation with processes that
  628          * run at regular intervals.
  629          */
  630         callout_reset_sbt(&loadav_callout,
  631             SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
  632             loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
  633 }
  634 
  635 static void
  636 ast_scheduler(struct thread *td, int tda __unused)
  637 {
  638 #ifdef KTRACE
  639         if (KTRPOINT(td, KTR_CSW))
  640                 ktrcsw(1, 1, __func__);
  641 #endif
  642         thread_lock(td);
  643         sched_prio(td, td->td_user_pri);
  644         mi_switch(SW_INVOL | SWT_NEEDRESCHED);
  645 #ifdef KTRACE
  646         if (KTRPOINT(td, KTR_CSW))
  647                 ktrcsw(0, 1, __func__);
  648 #endif
  649 }
  650 
  651 static void
  652 synch_setup(void *dummy __unused)
  653 {
  654         callout_init(&loadav_callout, 1);
  655         ast_register(TDA_SCHED, ASTR_ASTF_REQUIRED, 0, ast_scheduler);
  656 
  657         /* Kick off timeout driven events by calling first time. */
  658         loadav(NULL);
  659 }
  660 
  661 int
  662 should_yield(void)
  663 {
  664 
  665         return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
  666 }
  667 
  668 void
  669 maybe_yield(void)
  670 {
  671 
  672         if (should_yield())
  673                 kern_yield(PRI_USER);
  674 }
  675 
  676 void
  677 kern_yield(int prio)
  678 {
  679         struct thread *td;
  680 
  681         td = curthread;
  682         DROP_GIANT();
  683         thread_lock(td);
  684         if (prio == PRI_USER)
  685                 prio = td->td_user_pri;
  686         if (prio >= 0)
  687                 sched_prio(td, prio);
  688         mi_switch(SW_VOL | SWT_RELINQUISH);
  689         PICKUP_GIANT();
  690 }
  691 
  692 /*
  693  * General purpose yield system call.
  694  */
  695 int
  696 sys_yield(struct thread *td, struct yield_args *uap)
  697 {
  698 
  699         thread_lock(td);
  700         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  701                 sched_prio(td, PRI_MAX_TIMESHARE);
  702         mi_switch(SW_VOL | SWT_RELINQUISH);
  703         td->td_retval[0] = 0;
  704         return (0);
  705 }
  706 
  707 int
  708 sys_sched_getcpu(struct thread *td, struct sched_getcpu_args *uap)
  709 {
  710         td->td_retval[0] = td->td_oncpu;
  711         return (0);
  712 }

Cache object: 16770df97c762ca291014f4ad3756f20


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.