The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_synch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_synch.c        8.9 (Berkeley) 5/19/95
   35  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
   36  */
   37 
   38 #include "opt_ktrace.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/proc.h>
   43 #include <sys/kernel.h>
   44 #include <sys/signalvar.h>
   45 #include <sys/resourcevar.h>
   46 #include <sys/vmmeter.h>
   47 #include <sys/sysctl.h>
   48 #include <sys/lock.h>
   49 #include <sys/uio.h>
   50 #ifdef KTRACE
   51 #include <sys/ktrace.h>
   52 #endif
   53 #include <sys/xwait.h>
   54 #include <sys/ktr.h>
   55 #include <sys/serialize.h>
   56 
   57 #include <sys/signal2.h>
   58 #include <sys/thread2.h>
   59 #include <sys/spinlock2.h>
   60 #include <sys/mutex2.h>
   61 
   62 #include <machine/cpu.h>
   63 #include <machine/smp.h>
   64 
   65 TAILQ_HEAD(tslpque, thread);
   66 
   67 static void sched_setup (void *dummy);
   68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
   69 
   70 int     hogticks;
   71 int     lbolt;
   72 void    *lbolt_syncer;
   73 int     sched_quantum;          /* Roundrobin scheduling quantum in ticks. */
   74 int     ncpus;
   75 int     ncpus2, ncpus2_shift, ncpus2_mask;      /* note: mask not cpumask_t */
   76 int     ncpus_fit, ncpus_fit_mask;              /* note: mask not cpumask_t */
   77 int     safepri;
   78 int     tsleep_now_works;
   79 int     tsleep_crypto_dump = 0;
   80 
   81 static struct callout loadav_callout;
   82 static struct callout schedcpu_callout;
   83 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
   84 
   85 #define __DEALL(ident)  __DEQUALIFY(void *, ident)
   86 
   87 #if !defined(KTR_TSLEEP)
   88 #define KTR_TSLEEP      KTR_ALL
   89 #endif
   90 KTR_INFO_MASTER(tsleep);
   91 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
   92 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
   93 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
   94 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
   95 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", const volatile void *ident);
   96 
   97 #define logtsleep1(name)        KTR_LOG(tsleep_ ## name)
   98 #define logtsleep2(name, val)   KTR_LOG(tsleep_ ## name, val)
   99 
  100 struct loadavg averunnable =
  101         { {0, 0, 0}, FSCALE };  /* load average, of runnable procs */
  102 /*
  103  * Constants for averages over 1, 5, and 15 minutes
  104  * when sampling at 5 second intervals.
  105  */
  106 static fixpt_t cexp[3] = {
  107         0.9200444146293232 * FSCALE,    /* exp(-1/12) */
  108         0.9834714538216174 * FSCALE,    /* exp(-1/60) */
  109         0.9944598480048967 * FSCALE,    /* exp(-1/180) */
  110 };
  111 
  112 static void     endtsleep (void *);
  113 static void     loadav (void *arg);
  114 static void     schedcpu (void *arg);
  115 
  116 /*
  117  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
  118  * Note that 'tick' is in microseconds per tick.
  119  */
  120 static int
  121 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
  122 {
  123         int error, new_val;
  124 
  125         new_val = sched_quantum * ustick;
  126         error = sysctl_handle_int(oidp, &new_val, 0, req);
  127         if (error != 0 || req->newptr == NULL)
  128                 return (error);
  129         if (new_val < ustick)
  130                 return (EINVAL);
  131         sched_quantum = new_val / ustick;
  132         hogticks = 2 * sched_quantum;
  133         return (0);
  134 }
  135 
  136 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
  137         0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
  138 
  139 static int pctcpu_decay = 10;
  140 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW, &pctcpu_decay, 0, "");
  141 
  142 /*
  143  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale 
  144  */
  145 int     fscale __unused = FSCALE;       /* exported to systat */
  146 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
  147 
  148 /*
  149  * Recompute process priorities, once a second.
  150  *
  151  * Since the userland schedulers are typically event oriented, if the
  152  * estcpu calculation at wakeup() time is not sufficient to make a
  153  * process runnable relative to other processes in the system we have
  154  * a 1-second recalc to help out.
  155  *
  156  * This code also allows us to store sysclock_t data in the process structure
  157  * without fear of an overrun, since sysclock_t are guarenteed to hold 
  158  * several seconds worth of count.
  159  *
  160  * WARNING!  callouts can preempt normal threads.  However, they will not
  161  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
  162  */
  163 static int schedcpu_stats(struct proc *p, void *data __unused);
  164 static int schedcpu_resource(struct proc *p, void *data __unused);
  165 
  166 static void
  167 schedcpu(void *arg)
  168 {
  169         allproc_scan(schedcpu_stats, NULL);
  170         allproc_scan(schedcpu_resource, NULL);
  171         wakeup((caddr_t)&lbolt);
  172         wakeup(lbolt_syncer);
  173         callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
  174 }
  175 
  176 /*
  177  * General process statistics once a second
  178  */
  179 static int
  180 schedcpu_stats(struct proc *p, void *data __unused)
  181 {
  182         struct lwp *lp;
  183 
  184         /*
  185          * Threads may not be completely set up if process in SIDL state.
  186          */
  187         if (p->p_stat == SIDL)
  188                 return(0);
  189 
  190         PHOLD(p);
  191         if (lwkt_trytoken(&p->p_token) == FALSE) {
  192                 PRELE(p);
  193                 return(0);
  194         }
  195 
  196         p->p_swtime++;
  197         FOREACH_LWP_IN_PROC(lp, p) {
  198                 if (lp->lwp_stat == LSSLEEP) {
  199                         ++lp->lwp_slptime;
  200                         if (lp->lwp_slptime == 1)
  201                                 p->p_usched->uload_update(lp);
  202                 }
  203 
  204                 /*
  205                  * Only recalculate processes that are active or have slept
  206                  * less then 2 seconds.  The schedulers understand this.
  207                  * Otherwise decay by 50% per second.
  208                  */
  209                 if (lp->lwp_slptime <= 1) {
  210                         p->p_usched->recalculate(lp);
  211                 } else {
  212                         int decay;
  213 
  214                         decay = pctcpu_decay;
  215                         cpu_ccfence();
  216                         if (decay <= 1)
  217                                 decay = 1;
  218                         if (decay > 100)
  219                                 decay = 100;
  220                         lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
  221                 }
  222         }
  223         lwkt_reltoken(&p->p_token);
  224         lwkt_yield();
  225         PRELE(p);
  226         return(0);
  227 }
  228 
  229 /*
  230  * Resource checks.  XXX break out since ksignal/killproc can block,
  231  * limiting us to one process killed per second.  There is probably
  232  * a better way.
  233  */
  234 static int
  235 schedcpu_resource(struct proc *p, void *data __unused)
  236 {
  237         u_int64_t ttime;
  238         struct lwp *lp;
  239 
  240         if (p->p_stat == SIDL)
  241                 return(0);
  242 
  243         PHOLD(p);
  244         if (lwkt_trytoken(&p->p_token) == FALSE) {
  245                 PRELE(p);
  246                 return(0);
  247         }
  248 
  249         if (p->p_stat == SZOMB || p->p_limit == NULL) {
  250                 lwkt_reltoken(&p->p_token);
  251                 PRELE(p);
  252                 return(0);
  253         }
  254 
  255         ttime = 0;
  256         FOREACH_LWP_IN_PROC(lp, p) {
  257                 /*
  258                  * We may have caught an lp in the middle of being
  259                  * created, lwp_thread can be NULL.
  260                  */
  261                 if (lp->lwp_thread) {
  262                         ttime += lp->lwp_thread->td_sticks;
  263                         ttime += lp->lwp_thread->td_uticks;
  264                 }
  265         }
  266 
  267         switch(plimit_testcpulimit(p->p_limit, ttime)) {
  268         case PLIMIT_TESTCPU_KILL:
  269                 killproc(p, "exceeded maximum CPU limit");
  270                 break;
  271         case PLIMIT_TESTCPU_XCPU:
  272                 if ((p->p_flags & P_XCPU) == 0) {
  273                         p->p_flags |= P_XCPU;
  274                         ksignal(p, SIGXCPU);
  275                 }
  276                 break;
  277         default:
  278                 break;
  279         }
  280         lwkt_reltoken(&p->p_token);
  281         lwkt_yield();
  282         PRELE(p);
  283         return(0);
  284 }
  285 
  286 /*
  287  * This is only used by ps.  Generate a cpu percentage use over
  288  * a period of one second.
  289  */
  290 void
  291 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
  292 {
  293         fixpt_t acc;
  294         int remticks;
  295 
  296         acc = (cpticks << FSHIFT) / ttlticks;
  297         if (ttlticks >= ESTCPUFREQ) {
  298                 lp->lwp_pctcpu = acc;
  299         } else {
  300                 remticks = ESTCPUFREQ - ttlticks;
  301                 lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
  302                                 ESTCPUFREQ;
  303         }
  304 }
  305 
  306 /*
  307  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
  308  * like addresses being slept on.
  309  */
  310 #define TABLESIZE       4001
  311 #define LOOKUP(x)       (((u_int)(uintptr_t)(x)) % TABLESIZE)
  312 
  313 static cpumask_t slpque_cpumasks[TABLESIZE];
  314 
  315 /*
  316  * General scheduler initialization.  We force a reschedule 25 times
  317  * a second by default.  Note that cpu0 is initialized in early boot and
  318  * cannot make any high level calls.
  319  *
  320  * Each cpu has its own sleep queue.
  321  */
  322 void
  323 sleep_gdinit(globaldata_t gd)
  324 {
  325         static struct tslpque slpque_cpu0[TABLESIZE];
  326         int i;
  327 
  328         if (gd->gd_cpuid == 0) {
  329                 sched_quantum = (hz + 24) / 25;
  330                 hogticks = 2 * sched_quantum;
  331 
  332                 gd->gd_tsleep_hash = slpque_cpu0;
  333         } else {
  334                 gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0), 
  335                                             M_TSLEEP, M_WAITOK | M_ZERO);
  336         }
  337         for (i = 0; i < TABLESIZE; ++i)
  338                 TAILQ_INIT(&gd->gd_tsleep_hash[i]);
  339 }
  340 
  341 /*
  342  * This is a dandy function that allows us to interlock tsleep/wakeup
  343  * operations with unspecified upper level locks, such as lockmgr locks,
  344  * simply by holding a critical section.  The sequence is:
  345  *
  346  *      (acquire upper level lock)
  347  *      tsleep_interlock(blah)
  348  *      (release upper level lock)
  349  *      tsleep(blah, ...)
  350  *
  351  * Basically this functions queues us on the tsleep queue without actually
  352  * descheduling us.  When tsleep() is later called with PINTERLOCK it
  353  * assumes the thread was already queued, otherwise it queues it there.
  354  *
  355  * Thus it is possible to receive the wakeup prior to going to sleep and
  356  * the race conditions are covered.
  357  */
  358 static __inline void
  359 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
  360 {
  361         thread_t td = gd->gd_curthread;
  362         int id;
  363 
  364         crit_enter_quick(td);
  365         if (td->td_flags & TDF_TSLEEPQ) {
  366                 id = LOOKUP(td->td_wchan);
  367                 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
  368                 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
  369                         atomic_clear_cpumask(&slpque_cpumasks[id],
  370                                              gd->gd_cpumask);
  371                 }
  372         } else {
  373                 td->td_flags |= TDF_TSLEEPQ;
  374         }
  375         id = LOOKUP(ident);
  376         TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
  377         atomic_set_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
  378         td->td_wchan = ident;
  379         td->td_wdomain = flags & PDOMAIN_MASK;
  380         crit_exit_quick(td);
  381 }
  382 
  383 void
  384 tsleep_interlock(const volatile void *ident, int flags)
  385 {
  386         _tsleep_interlock(mycpu, ident, flags);
  387 }
  388 
  389 /*
  390  * Remove thread from sleepq.  Must be called with a critical section held.
  391  * The thread must not be migrating.
  392  */
  393 static __inline void
  394 _tsleep_remove(thread_t td)
  395 {
  396         globaldata_t gd = mycpu;
  397         int id;
  398 
  399         KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
  400         KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
  401         if (td->td_flags & TDF_TSLEEPQ) {
  402                 td->td_flags &= ~TDF_TSLEEPQ;
  403                 id = LOOKUP(td->td_wchan);
  404                 TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
  405                 if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
  406                         atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
  407                 td->td_wchan = NULL;
  408                 td->td_wdomain = 0;
  409         }
  410 }
  411 
  412 void
  413 tsleep_remove(thread_t td)
  414 {
  415         _tsleep_remove(td);
  416 }
  417 
  418 /*
  419  * General sleep call.  Suspends the current process until a wakeup is
  420  * performed on the specified identifier.  The process will then be made
  421  * runnable with the specified priority.  Sleeps at most timo/hz seconds
  422  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
  423  * before and after sleeping, else signals are not checked.  Returns 0 if
  424  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
  425  * signal needs to be delivered, ERESTART is returned if the current system
  426  * call should be restarted if possible, and EINTR is returned if the system
  427  * call should be interrupted by the signal (return EINTR).
  428  *
  429  * Note that if we are a process, we release_curproc() before messing with
  430  * the LWKT scheduler.
  431  *
  432  * During autoconfiguration or after a panic, a sleep will simply
  433  * lower the priority briefly to allow interrupts, then return.
  434  *
  435  * WARNING!  This code can't block (short of switching away), or bad things
  436  *           will happen.  No getting tokens, no blocking locks, etc.
  437  */
  438 int
  439 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
  440 {
  441         struct thread *td = curthread;
  442         struct lwp *lp = td->td_lwp;
  443         struct proc *p = td->td_proc;           /* may be NULL */
  444         globaldata_t gd;
  445         int sig;
  446         int catch;
  447         int error;
  448         int oldpri;
  449         struct callout thandle;
  450 
  451         /*
  452          * Currently a severe hack.  Make sure any delayed wakeups
  453          * are flushed before we sleep or we might deadlock on whatever
  454          * event we are sleeping on.
  455          */
  456         if (td->td_flags & TDF_DELAYED_WAKEUP)
  457                 wakeup_end_delayed();
  458 
  459         /*
  460          * NOTE: removed KTRPOINT, it could cause races due to blocking
  461          * even in stable.  Just scrap it for now.
  462          */
  463         if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
  464                 /*
  465                  * After a panic, or before we actually have an operational
  466                  * softclock, just give interrupts a chance, then just return;
  467                  *
  468                  * don't run any other procs or panic below,
  469                  * in case this is the idle process and already asleep.
  470                  */
  471                 splz();
  472                 oldpri = td->td_pri;
  473                 lwkt_setpri_self(safepri);
  474                 lwkt_switch();
  475                 lwkt_setpri_self(oldpri);
  476                 return (0);
  477         }
  478         logtsleep2(tsleep_beg, ident);
  479         gd = td->td_gd;
  480         KKASSERT(td != &gd->gd_idlethread);     /* you must be kidding! */
  481         td->td_wakefromcpu = -1;                /* overwritten by _wakeup */
  482 
  483         /*
  484          * NOTE: all of this occurs on the current cpu, including any
  485          * callout-based wakeups, so a critical section is a sufficient
  486          * interlock.
  487          *
  488          * The entire sequence through to where we actually sleep must
  489          * run without breaking the critical section.
  490          */
  491         catch = flags & PCATCH;
  492         error = 0;
  493         sig = 0;
  494 
  495         crit_enter_quick(td);
  496 
  497         KASSERT(ident != NULL, ("tsleep: no ident"));
  498         KASSERT(lp == NULL ||
  499                 lp->lwp_stat == LSRUN ||        /* Obvious */
  500                 lp->lwp_stat == LSSTOP,         /* Set in tstop */
  501                 ("tsleep %p %s %d",
  502                         ident, wmesg, lp->lwp_stat));
  503 
  504         /*
  505          * We interlock the sleep queue if the caller has not already done
  506          * it for us.  This must be done before we potentially acquire any
  507          * tokens or we can loose the wakeup.
  508          */
  509         if ((flags & PINTERLOCKED) == 0) {
  510                 _tsleep_interlock(gd, ident, flags);
  511         }
  512 
  513         /*
  514          * Setup for the current process (if this is a process).  We must
  515          * interlock with lwp_token to avoid remote wakeup races via
  516          * setrunnable()
  517          */
  518         if (lp) {
  519                 lwkt_gettoken(&lp->lwp_token);
  520                 if (catch) {
  521                         /*
  522                          * Early termination if PCATCH was set and a
  523                          * signal is pending, interlocked with the
  524                          * critical section.
  525                          *
  526                          * Early termination only occurs when tsleep() is
  527                          * entered while in a normal LSRUN state.
  528                          */
  529                         if ((sig = CURSIG(lp)) != 0)
  530                                 goto resume;
  531 
  532                         /*
  533                          * Causes ksignal to wake us up if a signal is
  534                          * received (interlocked with p->p_token).
  535                          */
  536                         lp->lwp_flags |= LWP_SINTR;
  537                 }
  538         } else {
  539                 KKASSERT(p == NULL);
  540         }
  541 
  542         /*
  543          * Make sure the current process has been untangled from
  544          * the userland scheduler and initialize slptime to start
  545          * counting.
  546          *
  547          * NOTE: td->td_wakefromcpu is pre-set by the release function
  548          *       for the dfly scheduler, and then adjusted by _wakeup()
  549          */
  550         if (lp) {
  551                 p->p_usched->release_curproc(lp);
  552                 lp->lwp_slptime = 0;
  553         }
  554 
  555         /*
  556          * If the interlocked flag is set but our cpu bit in the slpqueue
  557          * is no longer set, then a wakeup was processed inbetween the
  558          * tsleep_interlock() (ours or the callers), and here.  This can
  559          * occur under numerous circumstances including when we release the
  560          * current process.
  561          *
  562          * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
  563          * to process incoming IPIs, thus draining incoming wakeups.
  564          */
  565         if ((td->td_flags & TDF_TSLEEPQ) == 0) {
  566                 logtsleep2(ilockfail, ident);
  567                 goto resume;
  568         }
  569 
  570         /*
  571          * scheduling is blocked while in a critical section.  Coincide
  572          * the descheduled-by-tsleep flag with the descheduling of the
  573          * lwkt.
  574          *
  575          * The timer callout is localized on our cpu and interlocked by
  576          * our critical section.
  577          */
  578         lwkt_deschedule_self(td);
  579         td->td_flags |= TDF_TSLEEP_DESCHEDULED;
  580         td->td_wmesg = wmesg;
  581 
  582         /*
  583          * Setup the timeout, if any.  The timeout is only operable while
  584          * the thread is flagged descheduled.
  585          */
  586         KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
  587         if (timo) {
  588                 callout_init_mp(&thandle);
  589                 callout_reset(&thandle, timo, endtsleep, td);
  590         }
  591 
  592         /*
  593          * Beddy bye bye.
  594          */
  595         if (lp) {
  596                 /*
  597                  * Ok, we are sleeping.  Place us in the SSLEEP state.
  598                  */
  599                 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
  600 
  601                 /*
  602                  * tstop() sets LSSTOP, so don't fiddle with that.
  603                  */
  604                 if (lp->lwp_stat != LSSTOP)
  605                         lp->lwp_stat = LSSLEEP;
  606                 lp->lwp_ru.ru_nvcsw++;
  607                 p->p_usched->uload_update(lp);
  608                 lwkt_switch();
  609 
  610                 /*
  611                  * And when we are woken up, put us back in LSRUN.  If we
  612                  * slept for over a second, recalculate our estcpu.
  613                  */
  614                 lp->lwp_stat = LSRUN;
  615                 if (lp->lwp_slptime) {
  616                         p->p_usched->uload_update(lp);
  617                         p->p_usched->recalculate(lp);
  618                 }
  619                 lp->lwp_slptime = 0;
  620         } else {
  621                 lwkt_switch();
  622         }
  623 
  624         /* 
  625          * Make sure we haven't switched cpus while we were asleep.  It's
  626          * not supposed to happen.  Cleanup our temporary flags.
  627          */
  628         KKASSERT(gd == td->td_gd);
  629 
  630         /*
  631          * Cleanup the timeout.  If the timeout has already occured thandle
  632          * has already been stopped, otherwise stop thandle.  If the timeout
  633          * is running (the callout thread must be blocked trying to get
  634          * lwp_token) then wait for us to get scheduled.
  635          */
  636         if (timo) {
  637                 while (td->td_flags & TDF_TIMEOUT_RUNNING) {
  638                         lwkt_deschedule_self(td);
  639                         td->td_wmesg = "tsrace";
  640                         lwkt_switch();
  641                         kprintf("td %p %s: timeout race\n", td, td->td_comm);
  642                 }
  643                 if (td->td_flags & TDF_TIMEOUT) {
  644                         td->td_flags &= ~TDF_TIMEOUT;
  645                         error = EWOULDBLOCK;
  646                 } else {
  647                         /* does not block when on same cpu */
  648                         callout_stop(&thandle);
  649                 }
  650         }
  651         td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
  652 
  653         /*
  654          * Make sure we have been removed from the sleepq.  In most
  655          * cases this will have been done for us already but it is
  656          * possible for a scheduling IPI to be in-flight from a
  657          * previous tsleep/tsleep_interlock() or due to a straight-out
  658          * call to lwkt_schedule() (in the case of an interrupt thread),
  659          * causing a spurious wakeup.
  660          */
  661         _tsleep_remove(td);
  662         td->td_wmesg = NULL;
  663 
  664         /*
  665          * Figure out the correct error return.  If interrupted by a
  666          * signal we want to return EINTR or ERESTART.  
  667          */
  668 resume:
  669         if (lp) {
  670                 if (catch && error == 0) {
  671                         if (sig != 0 || (sig = CURSIG(lp))) {
  672                                 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
  673                                         error = EINTR;
  674                                 else
  675                                         error = ERESTART;
  676                         }
  677                 }
  678                 lp->lwp_flags &= ~LWP_SINTR;
  679                 lwkt_reltoken(&lp->lwp_token);
  680         }
  681         logtsleep1(tsleep_end);
  682         crit_exit_quick(td);
  683         return (error);
  684 }
  685 
  686 /*
  687  * Interlocked spinlock sleep.  An exclusively held spinlock must
  688  * be passed to ssleep().  The function will atomically release the
  689  * spinlock and tsleep on the ident, then reacquire the spinlock and
  690  * return.
  691  *
  692  * This routine is fairly important along the critical path, so optimize it
  693  * heavily.
  694  */
  695 int
  696 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
  697        const char *wmesg, int timo)
  698 {
  699         globaldata_t gd = mycpu;
  700         int error;
  701 
  702         _tsleep_interlock(gd, ident, flags);
  703         spin_unlock_quick(gd, spin);
  704         error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
  705         _spin_lock_quick(gd, spin, wmesg);
  706 
  707         return (error);
  708 }
  709 
  710 int
  711 lksleep(const volatile void *ident, struct lock *lock, int flags,
  712         const char *wmesg, int timo)
  713 {
  714         globaldata_t gd = mycpu;
  715         int error;
  716 
  717         _tsleep_interlock(gd, ident, flags);
  718         lockmgr(lock, LK_RELEASE);
  719         error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
  720         lockmgr(lock, LK_EXCLUSIVE);
  721 
  722         return (error);
  723 }
  724 
  725 /*
  726  * Interlocked mutex sleep.  An exclusively held mutex must be passed
  727  * to mtxsleep().  The function will atomically release the mutex
  728  * and tsleep on the ident, then reacquire the mutex and return.
  729  */
  730 int
  731 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
  732          const char *wmesg, int timo)
  733 {
  734         globaldata_t gd = mycpu;
  735         int error;
  736 
  737         _tsleep_interlock(gd, ident, flags);
  738         mtx_unlock(mtx);
  739         error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
  740         mtx_lock_ex_quick(mtx, wmesg);
  741 
  742         return (error);
  743 }
  744 
  745 /*
  746  * Interlocked serializer sleep.  An exclusively held serializer must
  747  * be passed to zsleep().  The function will atomically release
  748  * the serializer and tsleep on the ident, then reacquire the serializer
  749  * and return.
  750  */
  751 int
  752 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
  753        const char *wmesg, int timo)
  754 {
  755         globaldata_t gd = mycpu;
  756         int ret;
  757 
  758         ASSERT_SERIALIZED(slz);
  759 
  760         _tsleep_interlock(gd, ident, flags);
  761         lwkt_serialize_exit(slz);
  762         ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
  763         lwkt_serialize_enter(slz);
  764 
  765         return ret;
  766 }
  767 
  768 /*
  769  * Directly block on the LWKT thread by descheduling it.  This
  770  * is much faster then tsleep(), but the only legal way to wake
  771  * us up is to directly schedule the thread.
  772  *
  773  * Setting TDF_SINTR will cause new signals to directly schedule us.
  774  *
  775  * This routine must be called while in a critical section.
  776  */
  777 int
  778 lwkt_sleep(const char *wmesg, int flags)
  779 {
  780         thread_t td = curthread;
  781         int sig;
  782 
  783         if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
  784                 td->td_flags |= TDF_BLOCKED;
  785                 td->td_wmesg = wmesg;
  786                 lwkt_deschedule_self(td);
  787                 lwkt_switch();
  788                 td->td_wmesg = NULL;
  789                 td->td_flags &= ~TDF_BLOCKED;
  790                 return(0);
  791         }
  792         if ((sig = CURSIG(td->td_lwp)) != 0) {
  793                 if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
  794                         return(EINTR);
  795                 else
  796                         return(ERESTART);
  797                         
  798         }
  799         td->td_flags |= TDF_BLOCKED | TDF_SINTR;
  800         td->td_wmesg = wmesg;
  801         lwkt_deschedule_self(td);
  802         lwkt_switch();
  803         td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
  804         td->td_wmesg = NULL;
  805         return(0);
  806 }
  807 
  808 /*
  809  * Implement the timeout for tsleep.
  810  *
  811  * This type of callout timeout is scheduled on the same cpu the process
  812  * is sleeping on.  Also, at the moment, the MP lock is held.
  813  */
  814 static void
  815 endtsleep(void *arg)
  816 {
  817         thread_t td = arg;
  818         struct lwp *lp;
  819 
  820         /*
  821          * We are going to have to get the lwp_token, which means we might
  822          * block.  This can race a tsleep getting woken up by other means
  823          * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
  824          * processing to complete (sorry tsleep!).
  825          *
  826          * We can safely set td_flags because td MUST be on the same cpu
  827          * as we are.
  828          */
  829         KKASSERT(td->td_gd == mycpu);
  830         crit_enter();
  831         td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
  832 
  833         /*
  834          * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
  835          * from exiting the tsleep on us.  The flag is interlocked by virtue
  836          * of lp being on the same cpu as we are.
  837          */
  838         if ((lp = td->td_lwp) != NULL)
  839                 lwkt_gettoken(&lp->lwp_token);
  840 
  841         KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
  842 
  843         if (lp) {
  844                 /*
  845                  * callout timer should never be set in tstop() because
  846                  * it passes a timeout of 0.
  847                  */
  848                 KKASSERT(lp->lwp_stat != LSSTOP);
  849                 setrunnable(lp);
  850                 lwkt_reltoken(&lp->lwp_token);
  851         } else {
  852                 _tsleep_remove(td);
  853                 lwkt_schedule(td);
  854         }
  855         KKASSERT(td->td_gd == mycpu);
  856         td->td_flags &= ~TDF_TIMEOUT_RUNNING;
  857         crit_exit();
  858 }
  859 
  860 /*
  861  * Make all processes sleeping on the specified identifier runnable.
  862  * count may be zero or one only.
  863  *
  864  * The domain encodes the sleep/wakeup domain, flags, plus the originating
  865  * cpu.
  866  *
  867  * This call may run without the MP lock held.  We can only manipulate thread
  868  * state on the cpu owning the thread.  We CANNOT manipulate process state
  869  * at all.
  870  *
  871  * _wakeup() can be passed to an IPI so we can't use (const volatile
  872  * void *ident).
  873  */
  874 static void
  875 _wakeup(void *ident, int domain)
  876 {
  877         struct tslpque *qp;
  878         struct thread *td;
  879         struct thread *ntd;
  880         globaldata_t gd;
  881         cpumask_t mask;
  882         int id;
  883 
  884         crit_enter();
  885         logtsleep2(wakeup_beg, ident);
  886         gd = mycpu;
  887         id = LOOKUP(ident);
  888         qp = &gd->gd_tsleep_hash[id];
  889 restart:
  890         for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
  891                 ntd = TAILQ_NEXT(td, td_sleepq);
  892                 if (td->td_wchan == ident && 
  893                     td->td_wdomain == (domain & PDOMAIN_MASK)
  894                 ) {
  895                         KKASSERT(td->td_gd == gd);
  896                         _tsleep_remove(td);
  897                         td->td_wakefromcpu = PWAKEUP_DECODE(domain);
  898                         if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
  899                                 lwkt_schedule(td);
  900                                 if (domain & PWAKEUP_ONE)
  901                                         goto done;
  902                         }
  903                         goto restart;
  904                 }
  905         }
  906 
  907         /*
  908          * We finished checking the current cpu but there still may be
  909          * more work to do.  Either wakeup_one was requested and no matching
  910          * thread was found, or a normal wakeup was requested and we have
  911          * to continue checking cpus.
  912          *
  913          * It should be noted that this scheme is actually less expensive then
  914          * the old scheme when waking up multiple threads, since we send 
  915          * only one IPI message per target candidate which may then schedule
  916          * multiple threads.  Before we could have wound up sending an IPI
  917          * message for each thread on the target cpu (!= current cpu) that
  918          * needed to be woken up.
  919          *
  920          * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
  921          * should be ok since we are passing idents in the IPI rather then
  922          * thread pointers.
  923          */
  924         if ((domain & PWAKEUP_MYCPU) == 0 &&
  925             (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
  926                 lwkt_send_ipiq2_mask(mask, _wakeup, ident,
  927                                      domain | PWAKEUP_MYCPU);
  928         }
  929 done:
  930         logtsleep1(wakeup_end);
  931         crit_exit();
  932 }
  933 
  934 /*
  935  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
  936  */
  937 void
  938 wakeup(const volatile void *ident)
  939 {
  940     globaldata_t gd = mycpu;
  941     thread_t td = gd->gd_curthread;
  942 
  943     if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
  944         /*
  945          * If we are in a delayed wakeup section, record up to two wakeups in
  946          * a per-CPU queue and issue them when we block or exit the delayed
  947          * wakeup section.
  948          */
  949         if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
  950                 return;
  951         if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
  952                 return;
  953 
  954         ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
  955                                 __DEALL(ident));
  956         ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
  957                                 __DEALL(ident));
  958     }
  959 
  960     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
  961 }
  962 
  963 /*
  964  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
  965  */
  966 void
  967 wakeup_one(const volatile void *ident)
  968 {
  969     /* XXX potentially round-robin the first responding cpu */
  970     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
  971                             PWAKEUP_ONE);
  972 }
  973 
  974 /*
  975  * Wakeup threads tsleep()ing on the specified ident on the current cpu
  976  * only.
  977  */
  978 void
  979 wakeup_mycpu(const volatile void *ident)
  980 {
  981     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
  982                             PWAKEUP_MYCPU);
  983 }
  984 
  985 /*
  986  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
  987  * only.
  988  */
  989 void
  990 wakeup_mycpu_one(const volatile void *ident)
  991 {
  992     /* XXX potentially round-robin the first responding cpu */
  993     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
  994                             PWAKEUP_MYCPU | PWAKEUP_ONE);
  995 }
  996 
  997 /*
  998  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
  999  * only.
 1000  */
 1001 void
 1002 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
 1003 {
 1004     globaldata_t mygd = mycpu;
 1005     if (gd == mycpu) {
 1006         _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
 1007                                 PWAKEUP_MYCPU);
 1008     } else {
 1009         lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
 1010                         PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
 1011                         PWAKEUP_MYCPU);
 1012     }
 1013 }
 1014 
 1015 /*
 1016  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
 1017  * only.
 1018  */
 1019 void
 1020 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
 1021 {
 1022     globaldata_t mygd = mycpu;
 1023     if (gd == mygd) {
 1024         _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
 1025                                 PWAKEUP_MYCPU | PWAKEUP_ONE);
 1026     } else {
 1027         lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
 1028                         PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
 1029                         PWAKEUP_MYCPU | PWAKEUP_ONE);
 1030     }
 1031 }
 1032 
 1033 /*
 1034  * Wakeup all threads waiting on the specified ident that slept using
 1035  * the specified domain, on all cpus.
 1036  */
 1037 void
 1038 wakeup_domain(const volatile void *ident, int domain)
 1039 {
 1040     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
 1041 }
 1042 
 1043 /*
 1044  * Wakeup one thread waiting on the specified ident that slept using
 1045  * the specified  domain, on any cpu.
 1046  */
 1047 void
 1048 wakeup_domain_one(const volatile void *ident, int domain)
 1049 {
 1050     /* XXX potentially round-robin the first responding cpu */
 1051     _wakeup(__DEALL(ident),
 1052             PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
 1053 }
 1054 
 1055 void
 1056 wakeup_start_delayed(void)
 1057 {
 1058     globaldata_t gd = mycpu;
 1059 
 1060     crit_enter();
 1061     gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
 1062     crit_exit();
 1063 }
 1064 
 1065 void
 1066 wakeup_end_delayed(void)
 1067 {
 1068     globaldata_t gd = mycpu;
 1069 
 1070     if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
 1071         crit_enter();
 1072         gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
 1073         if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
 1074             if (gd->gd_delayed_wakeup[0]) {
 1075                     wakeup(gd->gd_delayed_wakeup[0]);
 1076                     gd->gd_delayed_wakeup[0] = NULL;
 1077             }
 1078             if (gd->gd_delayed_wakeup[1]) {
 1079                     wakeup(gd->gd_delayed_wakeup[1]);
 1080                     gd->gd_delayed_wakeup[1] = NULL;
 1081             }
 1082         }
 1083         crit_exit();
 1084     }
 1085 }
 1086 
 1087 /*
 1088  * setrunnable()
 1089  *
 1090  * Make a process runnable.  lp->lwp_token must be held on call and this
 1091  * function must be called from the cpu owning lp.
 1092  *
 1093  * This only has an effect if we are in LSSTOP or LSSLEEP.
 1094  */
 1095 void
 1096 setrunnable(struct lwp *lp)
 1097 {
 1098         thread_t td = lp->lwp_thread;
 1099 
 1100         ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
 1101         KKASSERT(td->td_gd == mycpu);
 1102         crit_enter();
 1103         if (lp->lwp_stat == LSSTOP)
 1104                 lp->lwp_stat = LSSLEEP;
 1105         if (lp->lwp_stat == LSSLEEP) {
 1106                 _tsleep_remove(td);
 1107                 lwkt_schedule(td);
 1108         } else if (td->td_flags & TDF_SINTR) {
 1109                 lwkt_schedule(td);
 1110         }
 1111         crit_exit();
 1112 }
 1113 
 1114 /*
 1115  * The process is stopped due to some condition, usually because p_stat is
 1116  * set to SSTOP, but also possibly due to being traced.  
 1117  *
 1118  * Caller must hold p->p_token
 1119  *
 1120  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
 1121  * because the parent may check the child's status before the child actually
 1122  * gets to this routine.
 1123  *
 1124  * This routine is called with the current lwp only, typically just
 1125  * before returning to userland if the process state is detected as
 1126  * possibly being in a stopped state.
 1127  */
 1128 void
 1129 tstop(void)
 1130 {
 1131         struct lwp *lp = curthread->td_lwp;
 1132         struct proc *p = lp->lwp_proc;
 1133         struct proc *q;
 1134 
 1135         lwkt_gettoken(&lp->lwp_token);
 1136         crit_enter();
 1137 
 1138         /*
 1139          * If LWP_MP_WSTOP is set, we were sleeping
 1140          * while our process was stopped.  At this point
 1141          * we were already counted as stopped.
 1142          */
 1143         if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
 1144                 /*
 1145                  * If we're the last thread to stop, signal
 1146                  * our parent.
 1147                  */
 1148                 p->p_nstopped++;
 1149                 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
 1150                 wakeup(&p->p_nstopped);
 1151                 if (p->p_nstopped == p->p_nthreads) {
 1152                         /*
 1153                          * Token required to interlock kern_wait()
 1154                          */
 1155                         q = p->p_pptr;
 1156                         PHOLD(q);
 1157                         lwkt_gettoken(&q->p_token);
 1158                         p->p_flags &= ~P_WAITED;
 1159                         wakeup(p->p_pptr);
 1160                         if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
 1161                                 ksignal(q, SIGCHLD);
 1162                         lwkt_reltoken(&q->p_token);
 1163                         PRELE(q);
 1164                 }
 1165         }
 1166         while (p->p_stat == SSTOP) {
 1167                 lp->lwp_stat = LSSTOP;
 1168                 tsleep(p, 0, "stop", 0);
 1169         }
 1170         p->p_nstopped--;
 1171         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
 1172         crit_exit();
 1173         lwkt_reltoken(&lp->lwp_token);
 1174 }
 1175 
 1176 /*
 1177  * Compute a tenex style load average of a quantity on
 1178  * 1, 5 and 15 minute intervals.
 1179  */
 1180 static int loadav_count_runnable(struct lwp *p, void *data);
 1181 
 1182 static void
 1183 loadav(void *arg)
 1184 {
 1185         struct loadavg *avg;
 1186         int i, nrun;
 1187 
 1188         nrun = 0;
 1189         alllwp_scan(loadav_count_runnable, &nrun);
 1190         avg = &averunnable;
 1191         for (i = 0; i < 3; i++) {
 1192                 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
 1193                     nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
 1194         }
 1195 
 1196         /*
 1197          * Schedule the next update to occur after 5 seconds, but add a
 1198          * random variation to avoid synchronisation with processes that
 1199          * run at regular intervals.
 1200          */
 1201         callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
 1202                       loadav, NULL);
 1203 }
 1204 
 1205 static int
 1206 loadav_count_runnable(struct lwp *lp, void *data)
 1207 {
 1208         int *nrunp = data;
 1209         thread_t td;
 1210 
 1211         switch (lp->lwp_stat) {
 1212         case LSRUN:
 1213                 if ((td = lp->lwp_thread) == NULL)
 1214                         break;
 1215                 if (td->td_flags & TDF_BLOCKED)
 1216                         break;
 1217                 ++*nrunp;
 1218                 break;
 1219         default:
 1220                 break;
 1221         }
 1222         lwkt_yield();
 1223         return(0);
 1224 }
 1225 
 1226 /* ARGSUSED */
 1227 static void
 1228 sched_setup(void *dummy)
 1229 {
 1230         callout_init_mp(&loadav_callout);
 1231         callout_init_mp(&schedcpu_callout);
 1232 
 1233         /* Kick off timeout driven events by calling first time. */
 1234         schedcpu(NULL);
 1235         loadav(NULL);
 1236 }
 1237 

Cache object: 84a8bc130d4b4f9187097327a034e059


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.