The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_synch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_synch.c        8.9 (Berkeley) 5/19/95
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD$");
   39 
   40 #include "opt_ktrace.h"
   41 #include "opt_sched.h"
   42 
   43 #include <sys/param.h>
   44 #include <sys/systm.h>
   45 #include <sys/condvar.h>
   46 #include <sys/kdb.h>
   47 #include <sys/kernel.h>
   48 #include <sys/ktr.h>
   49 #include <sys/lock.h>
   50 #include <sys/mutex.h>
   51 #include <sys/proc.h>
   52 #include <sys/resourcevar.h>
   53 #include <sys/sched.h>
   54 #include <sys/sdt.h>
   55 #include <sys/signalvar.h>
   56 #include <sys/sleepqueue.h>
   57 #include <sys/smp.h>
   58 #include <sys/sx.h>
   59 #include <sys/sysctl.h>
   60 #include <sys/sysproto.h>
   61 #include <sys/vmmeter.h>
   62 #ifdef KTRACE
   63 #include <sys/uio.h>
   64 #include <sys/ktrace.h>
   65 #endif
   66 
   67 #include <machine/cpu.h>
   68 
   69 static void synch_setup(void *dummy);
   70 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
   71     NULL);
   72 
   73 int     hogticks;
   74 static uint8_t pause_wchan[MAXCPU];
   75 
   76 static struct callout loadav_callout;
   77 
   78 struct loadavg averunnable =
   79         { {0, 0, 0}, FSCALE };  /* load average, of runnable procs */
   80 /*
   81  * Constants for averages over 1, 5, and 15 minutes
   82  * when sampling at 5 second intervals.
   83  */
   84 static fixpt_t cexp[3] = {
   85         0.9200444146293232 * FSCALE,    /* exp(-1/12) */
   86         0.9834714538216174 * FSCALE,    /* exp(-1/60) */
   87         0.9944598480048967 * FSCALE,    /* exp(-1/180) */
   88 };
   89 
   90 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
   91 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
   92 
   93 static void     loadav(void *arg);
   94 
   95 SDT_PROVIDER_DECLARE(sched);
   96 SDT_PROBE_DEFINE(sched, , , preempt);
   97 
   98 static void
   99 sleepinit(void *unused)
  100 {
  101 
  102         hogticks = (hz / 10) * 2;       /* Default only. */
  103         init_sleepqueues();
  104 }
  105 
  106 /*
  107  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
  108  * it is available.
  109  */
  110 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, NULL);
  111 
  112 /*
  113  * General sleep call.  Suspends the current thread until a wakeup is
  114  * performed on the specified identifier.  The thread will then be made
  115  * runnable with the specified priority.  Sleeps at most sbt units of time
  116  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
  117  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
  118  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
  119  * signal becomes pending, ERESTART is returned if the current system
  120  * call should be restarted if possible, and EINTR is returned if the system
  121  * call should be interrupted by the signal (return EINTR).
  122  *
  123  * The lock argument is unlocked before the caller is suspended, and
  124  * re-locked before _sleep() returns.  If priority includes the PDROP
  125  * flag the lock is not re-locked before returning.
  126  */
  127 int
  128 _sleep(void *ident, struct lock_object *lock, int priority,
  129     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
  130 {
  131         struct thread *td;
  132         struct proc *p;
  133         struct lock_class *class;
  134         uintptr_t lock_state;
  135         int catch, pri, rval, sleepq_flags;
  136         WITNESS_SAVE_DECL(lock_witness);
  137 
  138         td = curthread;
  139         p = td->td_proc;
  140 #ifdef KTRACE
  141         if (KTRPOINT(td, KTR_CSW))
  142                 ktrcsw(1, 0, wmesg);
  143 #endif
  144         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
  145             "Sleeping on \"%s\"", wmesg);
  146         KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
  147             ("sleeping without a lock"));
  148         KASSERT(p != NULL, ("msleep1"));
  149         KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
  150         if (priority & PDROP)
  151                 KASSERT(lock != NULL && lock != &Giant.lock_object,
  152                     ("PDROP requires a non-Giant lock"));
  153         if (lock != NULL)
  154                 class = LOCK_CLASS(lock);
  155         else
  156                 class = NULL;
  157 
  158         if (SCHEDULER_STOPPED_TD(td)) {
  159                 if (lock != NULL && priority & PDROP)
  160                         class->lc_unlock(lock);
  161                 return (0);
  162         }
  163         catch = priority & PCATCH;
  164         pri = priority & PRIMASK;
  165 
  166         KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));
  167 
  168         if ((uint8_t *)ident >= &pause_wchan[0] &&
  169             (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
  170                 sleepq_flags = SLEEPQ_PAUSE;
  171         else
  172                 sleepq_flags = SLEEPQ_SLEEP;
  173         if (catch)
  174                 sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
  175 
  176         sleepq_lock(ident);
  177         CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
  178             td->td_tid, p->p_pid, td->td_name, wmesg, ident);
  179 
  180         if (lock == &Giant.lock_object)
  181                 mtx_assert(&Giant, MA_OWNED);
  182         DROP_GIANT();
  183         if (lock != NULL && lock != &Giant.lock_object &&
  184             !(class->lc_flags & LC_SLEEPABLE)) {
  185                 WITNESS_SAVE(lock, lock_witness);
  186                 lock_state = class->lc_unlock(lock);
  187         } else
  188                 /* GCC needs to follow the Yellow Brick Road */
  189                 lock_state = -1;
  190 
  191         /*
  192          * We put ourselves on the sleep queue and start our timeout
  193          * before calling thread_suspend_check, as we could stop there,
  194          * and a wakeup or a SIGCONT (or both) could occur while we were
  195          * stopped without resuming us.  Thus, we must be ready for sleep
  196          * when cursig() is called.  If the wakeup happens while we're
  197          * stopped, then td will no longer be on a sleep queue upon
  198          * return from cursig().
  199          */
  200         sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
  201         if (sbt != 0)
  202                 sleepq_set_timeout_sbt(ident, sbt, pr, flags);
  203         if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
  204                 sleepq_release(ident);
  205                 WITNESS_SAVE(lock, lock_witness);
  206                 lock_state = class->lc_unlock(lock);
  207                 sleepq_lock(ident);
  208         }
  209         if (sbt != 0 && catch)
  210                 rval = sleepq_timedwait_sig(ident, pri);
  211         else if (sbt != 0)
  212                 rval = sleepq_timedwait(ident, pri);
  213         else if (catch)
  214                 rval = sleepq_wait_sig(ident, pri);
  215         else {
  216                 sleepq_wait(ident, pri);
  217                 rval = 0;
  218         }
  219 #ifdef KTRACE
  220         if (KTRPOINT(td, KTR_CSW))
  221                 ktrcsw(0, 0, wmesg);
  222 #endif
  223         PICKUP_GIANT();
  224         if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
  225                 class->lc_lock(lock, lock_state);
  226                 WITNESS_RESTORE(lock, lock_witness);
  227         }
  228         return (rval);
  229 }
  230 
  231 int
  232 msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
  233     sbintime_t sbt, sbintime_t pr, int flags)
  234 {
  235         struct thread *td;
  236         struct proc *p;
  237         int rval;
  238         WITNESS_SAVE_DECL(mtx);
  239 
  240         td = curthread;
  241         p = td->td_proc;
  242         KASSERT(mtx != NULL, ("sleeping without a mutex"));
  243         KASSERT(p != NULL, ("msleep1"));
  244         KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
  245 
  246         if (SCHEDULER_STOPPED_TD(td))
  247                 return (0);
  248 
  249         sleepq_lock(ident);
  250         CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
  251             td->td_tid, p->p_pid, td->td_name, wmesg, ident);
  252 
  253         DROP_GIANT();
  254         mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
  255         WITNESS_SAVE(&mtx->lock_object, mtx);
  256         mtx_unlock_spin(mtx);
  257 
  258         /*
  259          * We put ourselves on the sleep queue and start our timeout.
  260          */
  261         sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
  262         if (sbt != 0)
  263                 sleepq_set_timeout_sbt(ident, sbt, pr, flags);
  264 
  265         /*
  266          * Can't call ktrace with any spin locks held so it can lock the
  267          * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
  268          * any spin lock.  Thus, we have to drop the sleepq spin lock while
  269          * we handle those requests.  This is safe since we have placed our
  270          * thread on the sleep queue already.
  271          */
  272 #ifdef KTRACE
  273         if (KTRPOINT(td, KTR_CSW)) {
  274                 sleepq_release(ident);
  275                 ktrcsw(1, 0, wmesg);
  276                 sleepq_lock(ident);
  277         }
  278 #endif
  279 #ifdef WITNESS
  280         sleepq_release(ident);
  281         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
  282             wmesg);
  283         sleepq_lock(ident);
  284 #endif
  285         if (sbt != 0)
  286                 rval = sleepq_timedwait(ident, 0);
  287         else {
  288                 sleepq_wait(ident, 0);
  289                 rval = 0;
  290         }
  291 #ifdef KTRACE
  292         if (KTRPOINT(td, KTR_CSW))
  293                 ktrcsw(0, 0, wmesg);
  294 #endif
  295         PICKUP_GIANT();
  296         mtx_lock_spin(mtx);
  297         WITNESS_RESTORE(&mtx->lock_object, mtx);
  298         return (rval);
  299 }
  300 
  301 /*
  302  * pause_sbt() delays the calling thread by the given signed binary
  303  * time. During cold bootup, pause_sbt() uses the DELAY() function
  304  * instead of the _sleep() function to do the waiting. The "sbt"
  305  * argument must be greater than or equal to zero. A "sbt" value of
  306  * zero is equivalent to a "sbt" value of one tick.
  307  */
  308 int
  309 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
  310 {
  311         KASSERT(sbt >= 0, ("pause_sbt: timeout must be >= 0"));
  312 
  313         /* silently convert invalid timeouts */
  314         if (sbt == 0)
  315                 sbt = tick_sbt;
  316 
  317         if ((cold && curthread == &thread0) || kdb_active ||
  318             SCHEDULER_STOPPED()) {
  319                 /*
  320                  * We delay one second at a time to avoid overflowing the
  321                  * system specific DELAY() function(s):
  322                  */
  323                 while (sbt >= SBT_1S) {
  324                         DELAY(1000000);
  325                         sbt -= SBT_1S;
  326                 }
  327                 /* Do the delay remainder, if any */
  328                 sbt = howmany(sbt, SBT_1US);
  329                 if (sbt > 0)
  330                         DELAY(sbt);
  331                 return (EWOULDBLOCK);
  332         }
  333         return (_sleep(&pause_wchan[curcpu], NULL,
  334             (flags & C_CATCH) ? PCATCH : 0, wmesg, sbt, pr, flags));
  335 }
  336 
  337 /*
  338  * Make all threads sleeping on the specified identifier runnable.
  339  */
  340 void
  341 wakeup(void *ident)
  342 {
  343         int wakeup_swapper;
  344 
  345         sleepq_lock(ident);
  346         wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
  347         sleepq_release(ident);
  348         if (wakeup_swapper) {
  349                 KASSERT(ident != &proc0,
  350                     ("wakeup and wakeup_swapper and proc0"));
  351                 kick_proc0();
  352         }
  353 }
  354 
  355 /*
  356  * Make a thread sleeping on the specified identifier runnable.
  357  * May wake more than one thread if a target thread is currently
  358  * swapped out.
  359  */
  360 void
  361 wakeup_one(void *ident)
  362 {
  363         int wakeup_swapper;
  364 
  365         sleepq_lock(ident);
  366         wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
  367         sleepq_release(ident);
  368         if (wakeup_swapper)
  369                 kick_proc0();
  370 }
  371 
  372 void
  373 wakeup_any(void *ident)
  374 {
  375         int wakeup_swapper;
  376 
  377         sleepq_lock(ident);
  378         wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_UNFAIR,
  379             0, 0);
  380         sleepq_release(ident);
  381         if (wakeup_swapper)
  382                 kick_proc0();
  383 }
  384 
  385 static void
  386 kdb_switch(void)
  387 {
  388         thread_unlock(curthread);
  389         kdb_backtrace();
  390         kdb_reenter();
  391         panic("%s: did not reenter debugger", __func__);
  392 }
  393 
  394 /*
  395  * The machine independent parts of context switching.
  396  */
  397 void
  398 mi_switch(int flags, struct thread *newtd)
  399 {
  400         uint64_t runtime, new_switchtime;
  401         struct thread *td;
  402 
  403         td = curthread;                 /* XXX */
  404         THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
  405         KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
  406 #ifdef INVARIANTS
  407         if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
  408                 mtx_assert(&Giant, MA_NOTOWNED);
  409 #endif
  410         KASSERT(td->td_critnest == 1 || panicstr,
  411             ("mi_switch: switch in a critical section"));
  412         KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
  413             ("mi_switch: switch must be voluntary or involuntary"));
  414         KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
  415 
  416         /*
  417          * Don't perform context switches from the debugger.
  418          */
  419         if (kdb_active)
  420                 kdb_switch();
  421         if (SCHEDULER_STOPPED_TD(td))
  422                 return;
  423         if (flags & SW_VOL) {
  424                 td->td_ru.ru_nvcsw++;
  425                 td->td_swvoltick = ticks;
  426         } else {
  427                 td->td_ru.ru_nivcsw++;
  428                 td->td_swinvoltick = ticks;
  429         }
  430 #ifdef SCHED_STATS
  431         SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
  432 #endif
  433         /*
  434          * Compute the amount of time during which the current
  435          * thread was running, and add that to its total so far.
  436          */
  437         new_switchtime = cpu_ticks();
  438         runtime = new_switchtime - PCPU_GET(switchtime);
  439         td->td_runtime += runtime;
  440         td->td_incruntime += runtime;
  441         PCPU_SET(switchtime, new_switchtime);
  442         td->td_generation++;    /* bump preempt-detect counter */
  443         PCPU_INC(cnt.v_swtch);
  444         PCPU_SET(switchticks, ticks);
  445         CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
  446             td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
  447 #ifdef KDTRACE_HOOKS
  448         if ((flags & SW_PREEMPT) != 0 || ((flags & SW_INVOL) != 0 &&
  449             (flags & SW_TYPE_MASK) == SWT_NEEDRESCHED))
  450                 SDT_PROBE0(sched, , , preempt);
  451 #endif
  452         sched_switch(td, newtd, flags);
  453         CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
  454             td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
  455 
  456         /* 
  457          * If the last thread was exiting, finish cleaning it up.
  458          */
  459         if ((td = PCPU_GET(deadthread))) {
  460                 PCPU_SET(deadthread, NULL);
  461                 thread_stash(td);
  462         }
  463 }
  464 
  465 /*
  466  * Change thread state to be runnable, placing it on the run queue if
  467  * it is in memory.  If it is swapped out, return true so our caller
  468  * will know to awaken the swapper.
  469  */
  470 int
  471 setrunnable(struct thread *td)
  472 {
  473 
  474         THREAD_LOCK_ASSERT(td, MA_OWNED);
  475         KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
  476             ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
  477         switch (td->td_state) {
  478         case TDS_RUNNING:
  479         case TDS_RUNQ:
  480                 return (0);
  481         case TDS_INHIBITED:
  482                 /*
  483                  * If we are only inhibited because we are swapped out
  484                  * then arange to swap in this process. Otherwise just return.
  485                  */
  486                 if (td->td_inhibitors != TDI_SWAPPED)
  487                         return (0);
  488                 /* FALLTHROUGH */
  489         case TDS_CAN_RUN:
  490                 break;
  491         default:
  492                 printf("state is 0x%x", td->td_state);
  493                 panic("setrunnable(2)");
  494         }
  495         if ((td->td_flags & TDF_INMEM) == 0) {
  496                 if ((td->td_flags & TDF_SWAPINREQ) == 0) {
  497                         td->td_flags |= TDF_SWAPINREQ;
  498                         return (1);
  499                 }
  500         } else
  501                 sched_wakeup(td);
  502         return (0);
  503 }
  504 
  505 /*
  506  * Compute a tenex style load average of a quantity on
  507  * 1, 5 and 15 minute intervals.
  508  */
  509 static void
  510 loadav(void *arg)
  511 {
  512         int i, nrun;
  513         struct loadavg *avg;
  514 
  515         nrun = sched_load();
  516         avg = &averunnable;
  517 
  518         for (i = 0; i < 3; i++)
  519                 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
  520                     nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
  521 
  522         /*
  523          * Schedule the next update to occur after 5 seconds, but add a
  524          * random variation to avoid synchronisation with processes that
  525          * run at regular intervals.
  526          */
  527         callout_reset_sbt(&loadav_callout,
  528             SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
  529             loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
  530 }
  531 
  532 /* ARGSUSED */
  533 static void
  534 synch_setup(void *dummy)
  535 {
  536         callout_init(&loadav_callout, 1);
  537 
  538         /* Kick off timeout driven events by calling first time. */
  539         loadav(NULL);
  540 }
  541 
  542 int
  543 should_yield(void)
  544 {
  545 
  546         return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
  547 }
  548 
  549 void
  550 maybe_yield(void)
  551 {
  552 
  553         if (should_yield())
  554                 kern_yield(PRI_USER);
  555 }
  556 
  557 void
  558 kern_yield(int prio)
  559 {
  560         struct thread *td;
  561 
  562         td = curthread;
  563         DROP_GIANT();
  564         thread_lock(td);
  565         if (prio == PRI_USER)
  566                 prio = td->td_user_pri;
  567         if (prio >= 0)
  568                 sched_prio(td, prio);
  569         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
  570         thread_unlock(td);
  571         PICKUP_GIANT();
  572 }
  573 
  574 /*
  575  * General purpose yield system call.
  576  */
  577 int
  578 sys_yield(struct thread *td, struct yield_args *uap)
  579 {
  580 
  581         thread_lock(td);
  582         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  583                 sched_prio(td, PRI_MAX_TIMESHARE);
  584         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
  585         thread_unlock(td);
  586         td->td_retval[0] = 0;
  587         return (0);
  588 }

Cache object: 436fe06a6cd10b91695801071333356e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.