The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_synch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)kern_synch.c        8.9 (Berkeley) 5/19/95
   37  */
   38 
   39 #include <sys/cdefs.h>
   40 __FBSDID("$FreeBSD$");
   41 
   42 #include "opt_ktrace.h"
   43 #include "opt_sched.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/blockcount.h>
   48 #include <sys/condvar.h>
   49 #include <sys/kdb.h>
   50 #include <sys/kernel.h>
   51 #include <sys/ktr.h>
   52 #include <sys/lock.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/resourcevar.h>
   56 #include <sys/sched.h>
   57 #include <sys/sdt.h>
   58 #include <sys/signalvar.h>
   59 #include <sys/sleepqueue.h>
   60 #include <sys/smp.h>
   61 #include <sys/sx.h>
   62 #include <sys/sysctl.h>
   63 #include <sys/sysproto.h>
   64 #include <sys/vmmeter.h>
   65 #ifdef KTRACE
   66 #include <sys/uio.h>
   67 #include <sys/ktrace.h>
   68 #endif
   69 #ifdef EPOCH_TRACE
   70 #include <sys/epoch.h>
   71 #endif
   72 
   73 #include <machine/cpu.h>
   74 
   75 static void synch_setup(void *dummy);
   76 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
   77     NULL);
   78 
   79 int     hogticks;
   80 static const char pause_wchan[MAXCPU];
   81 
   82 static struct callout loadav_callout;
   83 
   84 struct loadavg averunnable =
   85         { {0, 0, 0}, FSCALE };  /* load average, of runnable procs */
   86 /*
   87  * Constants for averages over 1, 5, and 15 minutes
   88  * when sampling at 5 second intervals.
   89  */
   90 static uint64_t cexp[3] = {
   91         0.9200444146293232 * FSCALE,    /* exp(-1/12) */
   92         0.9834714538216174 * FSCALE,    /* exp(-1/60) */
   93         0.9944598480048967 * FSCALE,    /* exp(-1/180) */
   94 };
   95 
   96 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
   97 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE,
   98     "Fixed-point scale factor used for calculating load average values");
   99 
  100 static void     loadav(void *arg);
  101 
  102 SDT_PROVIDER_DECLARE(sched);
  103 SDT_PROBE_DEFINE(sched, , , preempt);
  104 
  105 static void
  106 sleepinit(void *unused)
  107 {
  108 
  109         hogticks = (hz / 10) * 2;       /* Default only. */
  110         init_sleepqueues();
  111 }
  112 
  113 /*
  114  * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
  115  * it is available.
  116  */
  117 SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, NULL);
  118 
  119 /*
  120  * General sleep call.  Suspends the current thread until a wakeup is
  121  * performed on the specified identifier.  The thread will then be made
  122  * runnable with the specified priority.  Sleeps at most sbt units of time
  123  * (0 means no timeout).  If pri includes the PCATCH flag, let signals
  124  * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
  125  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
  126  * signal becomes pending, ERESTART is returned if the current system
  127  * call should be restarted if possible, and EINTR is returned if the system
  128  * call should be interrupted by the signal (return EINTR).
  129  *
  130  * The lock argument is unlocked before the caller is suspended, and
  131  * re-locked before _sleep() returns.  If priority includes the PDROP
  132  * flag the lock is not re-locked before returning.
  133  */
  134 int
  135 _sleep(const void *ident, struct lock_object *lock, int priority,
  136     const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
  137 {
  138         struct thread *td;
  139         struct lock_class *class;
  140         uintptr_t lock_state;
  141         int catch, pri, rval, sleepq_flags;
  142         WITNESS_SAVE_DECL(lock_witness);
  143 
  144         TSENTER();
  145         td = curthread;
  146 #ifdef KTRACE
  147         if (KTRPOINT(td, KTR_CSW))
  148                 ktrcsw(1, 0, wmesg);
  149 #endif
  150         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
  151             "Sleeping on \"%s\"", wmesg);
  152         KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
  153             ("sleeping without a lock"));
  154         KASSERT(ident != NULL, ("_sleep: NULL ident"));
  155         KASSERT(TD_IS_RUNNING(td), ("_sleep: curthread not running"));
  156         if (priority & PDROP)
  157                 KASSERT(lock != NULL && lock != &Giant.lock_object,
  158                     ("PDROP requires a non-Giant lock"));
  159         if (lock != NULL)
  160                 class = LOCK_CLASS(lock);
  161         else
  162                 class = NULL;
  163 
  164         if (SCHEDULER_STOPPED_TD(td)) {
  165                 if (lock != NULL && priority & PDROP)
  166                         class->lc_unlock(lock);
  167                 return (0);
  168         }
  169         catch = priority & PCATCH;
  170         pri = priority & PRIMASK;
  171 
  172         KASSERT(!TD_ON_SLEEPQ(td), ("recursive sleep"));
  173 
  174         if ((uintptr_t)ident >= (uintptr_t)&pause_wchan[0] &&
  175             (uintptr_t)ident <= (uintptr_t)&pause_wchan[MAXCPU - 1])
  176                 sleepq_flags = SLEEPQ_PAUSE;
  177         else
  178                 sleepq_flags = SLEEPQ_SLEEP;
  179         if (catch)
  180                 sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
  181 
  182         sleepq_lock(ident);
  183         CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
  184             td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);
  185 
  186         if (lock == &Giant.lock_object)
  187                 mtx_assert(&Giant, MA_OWNED);
  188         DROP_GIANT();
  189         if (lock != NULL && lock != &Giant.lock_object &&
  190             !(class->lc_flags & LC_SLEEPABLE)) {
  191                 KASSERT(!(class->lc_flags & LC_SPINLOCK),
  192                     ("spin locks can only use msleep_spin"));
  193                 WITNESS_SAVE(lock, lock_witness);
  194                 lock_state = class->lc_unlock(lock);
  195         } else
  196                 /* GCC needs to follow the Yellow Brick Road */
  197                 lock_state = -1;
  198 
  199         /*
  200          * We put ourselves on the sleep queue and start our timeout
  201          * before calling thread_suspend_check, as we could stop there,
  202          * and a wakeup or a SIGCONT (or both) could occur while we were
  203          * stopped without resuming us.  Thus, we must be ready for sleep
  204          * when cursig() is called.  If the wakeup happens while we're
  205          * stopped, then td will no longer be on a sleep queue upon
  206          * return from cursig().
  207          */
  208         sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
  209         if (sbt != 0)
  210                 sleepq_set_timeout_sbt(ident, sbt, pr, flags);
  211         if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
  212                 sleepq_release(ident);
  213                 WITNESS_SAVE(lock, lock_witness);
  214                 lock_state = class->lc_unlock(lock);
  215                 sleepq_lock(ident);
  216         }
  217         if (sbt != 0 && catch)
  218                 rval = sleepq_timedwait_sig(ident, pri);
  219         else if (sbt != 0)
  220                 rval = sleepq_timedwait(ident, pri);
  221         else if (catch)
  222                 rval = sleepq_wait_sig(ident, pri);
  223         else {
  224                 sleepq_wait(ident, pri);
  225                 rval = 0;
  226         }
  227 #ifdef KTRACE
  228         if (KTRPOINT(td, KTR_CSW))
  229                 ktrcsw(0, 0, wmesg);
  230 #endif
  231         PICKUP_GIANT();
  232         if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
  233                 class->lc_lock(lock, lock_state);
  234                 WITNESS_RESTORE(lock, lock_witness);
  235         }
  236         TSEXIT();
  237         return (rval);
  238 }
  239 
  240 int
  241 msleep_spin_sbt(const void *ident, struct mtx *mtx, const char *wmesg,
  242     sbintime_t sbt, sbintime_t pr, int flags)
  243 {
  244         struct thread *td;
  245         int rval;
  246         WITNESS_SAVE_DECL(mtx);
  247 
  248         td = curthread;
  249         KASSERT(mtx != NULL, ("sleeping without a mutex"));
  250         KASSERT(ident != NULL, ("msleep_spin_sbt: NULL ident"));
  251         KASSERT(TD_IS_RUNNING(td), ("msleep_spin_sbt: curthread not running"));
  252 
  253         if (SCHEDULER_STOPPED_TD(td))
  254                 return (0);
  255 
  256         sleepq_lock(ident);
  257         CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
  258             td->td_tid, td->td_proc->p_pid, td->td_name, wmesg, ident);
  259 
  260         DROP_GIANT();
  261         mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
  262         WITNESS_SAVE(&mtx->lock_object, mtx);
  263         mtx_unlock_spin(mtx);
  264 
  265         /*
  266          * We put ourselves on the sleep queue and start our timeout.
  267          */
  268         sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
  269         if (sbt != 0)
  270                 sleepq_set_timeout_sbt(ident, sbt, pr, flags);
  271 
  272         /*
  273          * Can't call ktrace with any spin locks held so it can lock the
  274          * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
  275          * any spin lock.  Thus, we have to drop the sleepq spin lock while
  276          * we handle those requests.  This is safe since we have placed our
  277          * thread on the sleep queue already.
  278          */
  279 #ifdef KTRACE
  280         if (KTRPOINT(td, KTR_CSW)) {
  281                 sleepq_release(ident);
  282                 ktrcsw(1, 0, wmesg);
  283                 sleepq_lock(ident);
  284         }
  285 #endif
  286 #ifdef WITNESS
  287         sleepq_release(ident);
  288         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
  289             wmesg);
  290         sleepq_lock(ident);
  291 #endif
  292         if (sbt != 0)
  293                 rval = sleepq_timedwait(ident, 0);
  294         else {
  295                 sleepq_wait(ident, 0);
  296                 rval = 0;
  297         }
  298 #ifdef KTRACE
  299         if (KTRPOINT(td, KTR_CSW))
  300                 ktrcsw(0, 0, wmesg);
  301 #endif
  302         PICKUP_GIANT();
  303         mtx_lock_spin(mtx);
  304         WITNESS_RESTORE(&mtx->lock_object, mtx);
  305         return (rval);
  306 }
  307 
  308 /*
  309  * pause_sbt() delays the calling thread by the given signed binary
  310  * time. During cold bootup, pause_sbt() uses the DELAY() function
  311  * instead of the _sleep() function to do the waiting. The "sbt"
  312  * argument must be greater than or equal to zero. A "sbt" value of
  313  * zero is equivalent to a "sbt" value of one tick.
  314  */
  315 int
  316 pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
  317 {
  318         KASSERT(sbt >= 0, ("pause_sbt: timeout must be >= 0"));
  319 
  320         /* silently convert invalid timeouts */
  321         if (sbt == 0)
  322                 sbt = tick_sbt;
  323 
  324         if ((cold && curthread == &thread0) || kdb_active ||
  325             SCHEDULER_STOPPED()) {
  326                 /*
  327                  * We delay one second at a time to avoid overflowing the
  328                  * system specific DELAY() function(s):
  329                  */
  330                 while (sbt >= SBT_1S) {
  331                         DELAY(1000000);
  332                         sbt -= SBT_1S;
  333                 }
  334                 /* Do the delay remainder, if any */
  335                 sbt = howmany(sbt, SBT_1US);
  336                 if (sbt > 0)
  337                         DELAY(sbt);
  338                 return (EWOULDBLOCK);
  339         }
  340         return (_sleep(&pause_wchan[curcpu], NULL,
  341             (flags & C_CATCH) ? PCATCH : 0, wmesg, sbt, pr, flags));
  342 }
  343 
  344 /*
  345  * Make all threads sleeping on the specified identifier runnable.
  346  */
  347 void
  348 wakeup(const void *ident)
  349 {
  350         int wakeup_swapper;
  351 
  352         sleepq_lock(ident);
  353         wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
  354         sleepq_release(ident);
  355         if (wakeup_swapper) {
  356                 KASSERT(ident != &proc0,
  357                     ("wakeup and wakeup_swapper and proc0"));
  358                 kick_proc0();
  359         }
  360 }
  361 
  362 /*
  363  * Make a thread sleeping on the specified identifier runnable.
  364  * May wake more than one thread if a target thread is currently
  365  * swapped out.
  366  */
  367 void
  368 wakeup_one(const void *ident)
  369 {
  370         int wakeup_swapper;
  371 
  372         sleepq_lock(ident);
  373         wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_DROP, 0, 0);
  374         if (wakeup_swapper)
  375                 kick_proc0();
  376 }
  377 
  378 void
  379 wakeup_any(const void *ident)
  380 {
  381         int wakeup_swapper;
  382 
  383         sleepq_lock(ident);
  384         wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP | SLEEPQ_UNFAIR |
  385             SLEEPQ_DROP, 0, 0);
  386         if (wakeup_swapper)
  387                 kick_proc0();
  388 }
  389 
  390 /*
  391  * Signal sleeping waiters after the counter has reached zero.
  392  */
  393 void
  394 _blockcount_wakeup(blockcount_t *bc, u_int old)
  395 {
  396 
  397         KASSERT(_BLOCKCOUNT_WAITERS(old),
  398             ("%s: no waiters on %p", __func__, bc));
  399 
  400         if (atomic_cmpset_int(&bc->__count, _BLOCKCOUNT_WAITERS_FLAG, 0))
  401                 wakeup(bc);
  402 }
  403 
  404 /*
  405  * Wait for a wakeup or a signal.  This does not guarantee that the count is
  406  * still zero on return.  Callers wanting a precise answer should use
  407  * blockcount_wait() with an interlock.
  408  *
  409  * If there is no work to wait for, return 0.  If the sleep was interrupted by a
  410  * signal, return EINTR or ERESTART, and return EAGAIN otherwise.
  411  */
  412 int
  413 _blockcount_sleep(blockcount_t *bc, struct lock_object *lock, const char *wmesg,
  414     int prio)
  415 {
  416         void *wchan;
  417         uintptr_t lock_state;
  418         u_int old;
  419         int ret;
  420         bool catch, drop;
  421 
  422         KASSERT(lock != &Giant.lock_object,
  423             ("%s: cannot use Giant as the interlock", __func__));
  424 
  425         catch = (prio & PCATCH) != 0;
  426         drop = (prio & PDROP) != 0;
  427         prio &= PRIMASK;
  428 
  429         /*
  430          * Synchronize with the fence in blockcount_release().  If we end up
  431          * waiting, the sleepqueue lock acquisition will provide the required
  432          * side effects.
  433          *
  434          * If there is no work to wait for, but waiters are present, try to put
  435          * ourselves to sleep to avoid jumping ahead.
  436          */
  437         if (atomic_load_acq_int(&bc->__count) == 0) {
  438                 if (lock != NULL && drop)
  439                         LOCK_CLASS(lock)->lc_unlock(lock);
  440                 return (0);
  441         }
  442         lock_state = 0;
  443         wchan = bc;
  444         sleepq_lock(wchan);
  445         DROP_GIANT();
  446         if (lock != NULL)
  447                 lock_state = LOCK_CLASS(lock)->lc_unlock(lock);
  448         old = blockcount_read(bc);
  449         ret = 0;
  450         do {
  451                 if (_BLOCKCOUNT_COUNT(old) == 0) {
  452                         sleepq_release(wchan);
  453                         goto out;
  454                 }
  455                 if (_BLOCKCOUNT_WAITERS(old))
  456                         break;
  457         } while (!atomic_fcmpset_int(&bc->__count, &old,
  458             old | _BLOCKCOUNT_WAITERS_FLAG));
  459         sleepq_add(wchan, NULL, wmesg, catch ? SLEEPQ_INTERRUPTIBLE : 0, 0);
  460         if (catch)
  461                 ret = sleepq_wait_sig(wchan, prio);
  462         else
  463                 sleepq_wait(wchan, prio);
  464         if (ret == 0)
  465                 ret = EAGAIN;
  466 
  467 out:
  468         PICKUP_GIANT();
  469         if (lock != NULL && !drop)
  470                 LOCK_CLASS(lock)->lc_lock(lock, lock_state);
  471 
  472         return (ret);
  473 }
  474 
  475 static void
  476 kdb_switch(void)
  477 {
  478         thread_unlock(curthread);
  479         kdb_backtrace();
  480         kdb_reenter();
  481         panic("%s: did not reenter debugger", __func__);
  482 }
  483 
  484 /*
  485  * The machine independent parts of context switching.
  486  *
  487  * The thread lock is required on entry and is no longer held on return.
  488  */
  489 void
  490 mi_switch(int flags)
  491 {
  492         uint64_t runtime, new_switchtime;
  493         struct thread *td;
  494 
  495         td = curthread;                 /* XXX */
  496         THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
  497         KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
  498 #ifdef INVARIANTS
  499         if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
  500                 mtx_assert(&Giant, MA_NOTOWNED);
  501 #endif
  502         KASSERT(td->td_critnest == 1 || KERNEL_PANICKED(),
  503                 ("mi_switch: switch in a critical section"));
  504         KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
  505             ("mi_switch: switch must be voluntary or involuntary"));
  506 
  507         /*
  508          * Don't perform context switches from the debugger.
  509          */
  510         if (kdb_active)
  511                 kdb_switch();
  512         if (SCHEDULER_STOPPED_TD(td))
  513                 return;
  514         if (flags & SW_VOL) {
  515                 td->td_ru.ru_nvcsw++;
  516                 td->td_swvoltick = ticks;
  517         } else {
  518                 td->td_ru.ru_nivcsw++;
  519                 td->td_swinvoltick = ticks;
  520         }
  521 #ifdef SCHED_STATS
  522         SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
  523 #endif
  524         /*
  525          * Compute the amount of time during which the current
  526          * thread was running, and add that to its total so far.
  527          */
  528         new_switchtime = cpu_ticks();
  529         runtime = new_switchtime - PCPU_GET(switchtime);
  530         td->td_runtime += runtime;
  531         td->td_incruntime += runtime;
  532         PCPU_SET(switchtime, new_switchtime);
  533         td->td_generation++;    /* bump preempt-detect counter */
  534         VM_CNT_INC(v_swtch);
  535         PCPU_SET(switchticks, ticks);
  536         CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
  537             td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
  538 #ifdef KDTRACE_HOOKS
  539         if (SDT_PROBES_ENABLED() &&
  540             ((flags & SW_PREEMPT) != 0 || ((flags & SW_INVOL) != 0 &&
  541             (flags & SW_TYPE_MASK) == SWT_NEEDRESCHED)))
  542                 SDT_PROBE0(sched, , , preempt);
  543 #endif
  544         sched_switch(td, flags);
  545         CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
  546             td->td_tid, td_get_sched(td), td->td_proc->p_pid, td->td_name);
  547 
  548         /* 
  549          * If the last thread was exiting, finish cleaning it up.
  550          */
  551         if ((td = PCPU_GET(deadthread))) {
  552                 PCPU_SET(deadthread, NULL);
  553                 thread_stash(td);
  554         }
  555         spinlock_exit();
  556 }
  557 
  558 /*
  559  * Change thread state to be runnable, placing it on the run queue if
  560  * it is in memory.  If it is swapped out, return true so our caller
  561  * will know to awaken the swapper.
  562  *
  563  * Requires the thread lock on entry, drops on exit.
  564  */
  565 int
  566 setrunnable(struct thread *td, int srqflags)
  567 {
  568         int swapin;
  569 
  570         THREAD_LOCK_ASSERT(td, MA_OWNED);
  571         KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
  572             ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
  573 
  574         swapin = 0;
  575         switch (td->td_state) {
  576         case TDS_RUNNING:
  577         case TDS_RUNQ:
  578                 break;
  579         case TDS_CAN_RUN:
  580                 KASSERT((td->td_flags & TDF_INMEM) != 0,
  581                     ("setrunnable: td %p not in mem, flags 0x%X inhibit 0x%X",
  582                     td, td->td_flags, td->td_inhibitors));
  583                 /* unlocks thread lock according to flags */
  584                 sched_wakeup(td, srqflags);
  585                 return (0);
  586         case TDS_INHIBITED:
  587                 /*
  588                  * If we are only inhibited because we are swapped out
  589                  * arrange to swap in this process.
  590                  */
  591                 if (td->td_inhibitors == TDI_SWAPPED &&
  592                     (td->td_flags & TDF_SWAPINREQ) == 0) {
  593                         td->td_flags |= TDF_SWAPINREQ;
  594                         swapin = 1;
  595                 }
  596                 break;
  597         default:
  598                 panic("setrunnable: state 0x%x", td->td_state);
  599         }
  600         if ((srqflags & (SRQ_HOLD | SRQ_HOLDTD)) == 0)
  601                 thread_unlock(td);
  602 
  603         return (swapin);
  604 }
  605 
  606 /*
  607  * Compute a tenex style load average of a quantity on
  608  * 1, 5 and 15 minute intervals.
  609  */
  610 static void
  611 loadav(void *arg)
  612 {
  613         int i;
  614         uint64_t nrun;
  615         struct loadavg *avg;
  616 
  617         nrun = (uint64_t)sched_load();
  618         avg = &averunnable;
  619 
  620         for (i = 0; i < 3; i++)
  621                 avg->ldavg[i] = (cexp[i] * (uint64_t)avg->ldavg[i] +
  622                     nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
  623 
  624         /*
  625          * Schedule the next update to occur after 5 seconds, but add a
  626          * random variation to avoid synchronisation with processes that
  627          * run at regular intervals.
  628          */
  629         callout_reset_sbt(&loadav_callout,
  630             SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
  631             loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
  632 }
  633 
  634 /* ARGSUSED */
  635 static void
  636 synch_setup(void *dummy)
  637 {
  638         callout_init(&loadav_callout, 1);
  639 
  640         /* Kick off timeout driven events by calling first time. */
  641         loadav(NULL);
  642 }
  643 
  644 int
  645 should_yield(void)
  646 {
  647 
  648         return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
  649 }
  650 
  651 void
  652 maybe_yield(void)
  653 {
  654 
  655         if (should_yield())
  656                 kern_yield(PRI_USER);
  657 }
  658 
  659 void
  660 kern_yield(int prio)
  661 {
  662         struct thread *td;
  663 
  664         td = curthread;
  665         DROP_GIANT();
  666         thread_lock(td);
  667         if (prio == PRI_USER)
  668                 prio = td->td_user_pri;
  669         if (prio >= 0)
  670                 sched_prio(td, prio);
  671         mi_switch(SW_VOL | SWT_RELINQUISH);
  672         PICKUP_GIANT();
  673 }
  674 
  675 /*
  676  * General purpose yield system call.
  677  */
  678 int
  679 sys_yield(struct thread *td, struct yield_args *uap)
  680 {
  681 
  682         thread_lock(td);
  683         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  684                 sched_prio(td, PRI_MAX_TIMESHARE);
  685         mi_switch(SW_VOL | SWT_RELINQUISH);
  686         td->td_retval[0] = 0;
  687         return (0);
  688 }
  689 
  690 int
  691 sys_sched_getcpu(struct thread *td, struct sched_getcpu_args *uap)
  692 {
  693         td->td_retval[0] = td->td_oncpu;
  694         return (0);
  695 }

Cache object: bfe3cc898d521eb16978264dc83e47c6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.