The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_synch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      @(#)kern_synch.c        8.9 (Berkeley) 5/19/95
   39  * $FreeBSD$
   40  */
   41 
   42 #include "opt_ktrace.h"
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/proc.h>
   47 #include <sys/kernel.h>
   48 #include <sys/signalvar.h>
   49 #include <sys/resourcevar.h>
   50 #include <sys/vmmeter.h>
   51 #include <sys/sysctl.h>
   52 #include <vm/vm.h>
   53 #include <vm/vm_extern.h>
   54 #ifdef KTRACE
   55 #include <sys/uio.h>
   56 #include <sys/ktrace.h>
   57 #endif
   58 
   59 #include <machine/cpu.h>
   60 #ifdef SMP
   61 #include <machine/smp.h>
   62 #endif
   63 #include <machine/limits.h>     /* for UCHAR_MAX = typeof(p_priority)_MAX */
   64 
   65 static void rqinit __P((void *));
   66 SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
   67 static void sched_setup __P((void *dummy));
   68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
   69 
   70 u_char  curpriority;
   71 int     hogticks;
   72 int     lbolt;
   73 int     sched_quantum;          /* Roundrobin scheduling quantum in ticks. */
   74 
   75 static void     endtsleep __P((void *));
   76 static void     roundrobin __P((void *arg));
   77 static void     schedcpu __P((void *arg));
   78 static void     updatepri __P((struct proc *p));
   79 
   80 static int
   81 sysctl_kern_quantum SYSCTL_HANDLER_ARGS
   82 {
   83         int error, new_val;
   84 
   85         new_val = sched_quantum * tick;
   86         error = sysctl_handle_int(oidp, &new_val, 0, req);
   87         if (error != 0 || req->newptr == NULL)
   88                 return (error);
   89         if (new_val < tick)
   90                 return (EINVAL);
   91         sched_quantum = new_val / tick;
   92         hogticks = 2 * sched_quantum;
   93         return (0);
   94 }
   95 
   96 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
   97         0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
   98 
   99 /* maybe_resched: Decide if you need to reschedule or not
  100  * taking the priorities and schedulers into account.
  101  */
  102 static void maybe_resched(struct proc *chk)
  103 {
  104         struct proc *p = curproc; /* XXX */
  105 
  106         /*
  107          * Compare priorities if the new process is on the same scheduler,
  108          * otherwise the one on the more realtimeish scheduler wins.
  109          *
  110          * XXX idle scheduler still broken because proccess stays on idle
  111          * scheduler during waits (such as when getting FS locks).  If a
  112          * standard process becomes runaway cpu-bound, the system can lockup
  113          * due to idle-scheduler processes in wakeup never getting any cpu.
  114          */
  115         if (p == 0 ||
  116                 (chk->p_priority < curpriority && RTP_PRIO_BASE(p->p_rtprio.type) == RTP_PRIO_BASE(chk->p_rtprio.type)) ||
  117                 RTP_PRIO_BASE(chk->p_rtprio.type) < RTP_PRIO_BASE(p->p_rtprio.type)
  118         ) {
  119                 need_resched();
  120         }
  121 }
  122 
  123 int 
  124 roundrobin_interval(void)
  125 {
  126         return (sched_quantum);
  127 }
  128 
  129 /*
  130  * Force switch among equal priority processes every 100ms.
  131  */
  132 /* ARGSUSED */
  133 static void
  134 roundrobin(arg)
  135         void *arg;
  136 {
  137 #ifndef SMP
  138         struct proc *p = curproc; /* XXX */
  139 #endif
  140  
  141 #ifdef SMP
  142         need_resched();
  143         forward_roundrobin();
  144 #else 
  145         if (p == 0 || RTP_PRIO_NEED_RR(p->p_rtprio.type))
  146                 need_resched();
  147 #endif
  148 
  149         timeout(roundrobin, NULL, sched_quantum);
  150 }
  151 
  152 /*
  153  * Constants for digital decay and forget:
  154  *      90% of (p_estcpu) usage in 5 * loadav time
  155  *      95% of (p_pctcpu) usage in 60 seconds (load insensitive)
  156  *          Note that, as ps(1) mentions, this can let percentages
  157  *          total over 100% (I've seen 137.9% for 3 processes).
  158  *
  159  * Note that statclock() updates p_estcpu and p_cpticks asynchronously.
  160  *
  161  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
  162  * That is, the system wants to compute a value of decay such
  163  * that the following for loop:
  164  *      for (i = 0; i < (5 * loadavg); i++)
  165  *              p_estcpu *= decay;
  166  * will compute
  167  *      p_estcpu *= 0.1;
  168  * for all values of loadavg:
  169  *
  170  * Mathematically this loop can be expressed by saying:
  171  *      decay ** (5 * loadavg) ~= .1
  172  *
  173  * The system computes decay as:
  174  *      decay = (2 * loadavg) / (2 * loadavg + 1)
  175  *
  176  * We wish to prove that the system's computation of decay
  177  * will always fulfill the equation:
  178  *      decay ** (5 * loadavg) ~= .1
  179  *
  180  * If we compute b as:
  181  *      b = 2 * loadavg
  182  * then
  183  *      decay = b / (b + 1)
  184  *
  185  * We now need to prove two things:
  186  *      1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
  187  *      2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
  188  *
  189  * Facts:
  190  *         For x close to zero, exp(x) =~ 1 + x, since
  191  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
  192  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
  193  *         For x close to zero, ln(1+x) =~ x, since
  194  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
  195  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
  196  *         ln(.1) =~ -2.30
  197  *
  198  * Proof of (1):
  199  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
  200  *      solving for factor,
  201  *      ln(factor) =~ (-2.30/5*loadav), or
  202  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
  203  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
  204  *
  205  * Proof of (2):
  206  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
  207  *      solving for power,
  208  *      power*ln(b/(b+1)) =~ -2.30, or
  209  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
  210  *
  211  * Actual power values for the implemented algorithm are as follows:
  212  *      loadav: 1       2       3       4
  213  *      power:  5.68    10.32   14.94   19.55
  214  */
  215 
  216 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
  217 #define loadfactor(loadav)      (2 * (loadav))
  218 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE))
  219 
  220 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
  221 static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
  222 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
  223 
  224 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
  225 static int      fscale __unused = FSCALE;
  226 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
  227 
  228 /*
  229  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
  230  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
  231  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
  232  *
  233  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
  234  *      1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
  235  *
  236  * If you don't want to bother with the faster/more-accurate formula, you
  237  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
  238  * (more general) method of calculating the %age of CPU used by a process.
  239  */
  240 #define CCPU_SHIFT      11
  241 
  242 /*
  243  * Recompute process priorities, every hz ticks.
  244  */
  245 /* ARGSUSED */
  246 static void
  247 schedcpu(arg)
  248         void *arg;
  249 {
  250         register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
  251         register struct proc *p;
  252         register int realstathz, s;
  253         register unsigned int newcpu;
  254 
  255         realstathz = stathz ? stathz : hz;
  256         for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
  257                 /*
  258                  * Increment time in/out of memory and sleep time
  259                  * (if sleeping).  We ignore overflow; with 16-bit int's
  260                  * (remember them?) overflow takes 45 days.
  261                  */
  262                 p->p_swtime++;
  263                 if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
  264                         p->p_slptime++;
  265                 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
  266                 /*
  267                  * If the process has slept the entire second,
  268                  * stop recalculating its priority until it wakes up.
  269                  */
  270                 if (p->p_slptime > 1)
  271                         continue;
  272                 s = splhigh();  /* prevent state changes and protect run queue */
  273                 /*
  274                  * p_pctcpu is only for ps.
  275                  */
  276 #if     (FSHIFT >= CCPU_SHIFT)
  277                 p->p_pctcpu += (realstathz == 100)?
  278                         ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
  279                         100 * (((fixpt_t) p->p_cpticks)
  280                                 << (FSHIFT - CCPU_SHIFT)) / realstathz;
  281 #else
  282                 p->p_pctcpu += ((FSCALE - ccpu) *
  283                         (p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
  284 #endif
  285                 p->p_cpticks = 0;
  286                 newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
  287                 p->p_estcpu = min(newcpu, UCHAR_MAX);
  288                 resetpriority(p);
  289                 if (p->p_priority >= PUSER) {
  290 #define PPQ     (128 / NQS)             /* priorities per queue */
  291                         if ((p != curproc) &&
  292 #ifdef SMP
  293                             (u_char)p->p_oncpu == 0xff &&       /* idle */
  294 #endif
  295                             p->p_stat == SRUN &&
  296                             (p->p_flag & P_INMEM) &&
  297                             (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
  298                                 remrq(p);
  299                                 p->p_priority = p->p_usrpri;
  300                                 setrunqueue(p);
  301                         } else
  302                                 p->p_priority = p->p_usrpri;
  303                 }
  304                 splx(s);
  305         }
  306         vmmeter();
  307         wakeup((caddr_t)&lbolt);
  308         timeout(schedcpu, (void *)0, hz);
  309 }
  310 
  311 /*
  312  * Recalculate the priority of a process after it has slept for a while.
  313  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
  314  * least six times the loadfactor will decay p_estcpu to zero.
  315  */
  316 static void
  317 updatepri(p)
  318         register struct proc *p;
  319 {
  320         register unsigned int newcpu = p->p_estcpu;
  321         register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
  322 
  323         if (p->p_slptime > 5 * loadfac)
  324                 p->p_estcpu = 0;
  325         else {
  326                 p->p_slptime--; /* the first time was done in schedcpu */
  327                 while (newcpu && --p->p_slptime)
  328                         newcpu = (int) decay_cpu(loadfac, newcpu);
  329                 p->p_estcpu = min(newcpu, UCHAR_MAX);
  330         }
  331         resetpriority(p);
  332 }
  333 
  334 /*
  335  * We're only looking at 7 bits of the address; everything is
  336  * aligned to 4, lots of things are aligned to greater powers
  337  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
  338  */
  339 #define TABLESIZE       128
  340 static TAILQ_HEAD(slpquehead, proc) slpque[TABLESIZE];
  341 #define LOOKUP(x)       (((intptr_t)(x) >> 8) & (TABLESIZE - 1))
  342 
  343 /*
  344  * During autoconfiguration or after a panic, a sleep will simply
  345  * lower the priority briefly to allow interrupts, then return.
  346  * The priority to be used (safepri) is machine-dependent, thus this
  347  * value is initialized and maintained in the machine-dependent layers.
  348  * This priority will typically be 0, or the lowest priority
  349  * that is safe for use on the interrupt stack; it can be made
  350  * higher to block network software interrupts after panics.
  351  */
  352 int safepri;
  353 
  354 void
  355 sleepinit(void)
  356 {
  357         int i;
  358 
  359         sched_quantum = hz/10;
  360         hogticks = 2 * sched_quantum;
  361         for (i = 0; i < TABLESIZE; i++)
  362                 TAILQ_INIT(&slpque[i]);
  363 }
  364 
  365 /*
  366  * General sleep call.  Suspends the current process until a wakeup is
  367  * performed on the specified identifier.  The process will then be made
  368  * runnable with the specified priority.  Sleeps at most timo/hz seconds
  369  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
  370  * before and after sleeping, else signals are not checked.  Returns 0 if
  371  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
  372  * signal needs to be delivered, ERESTART is returned if the current system
  373  * call should be restarted if possible, and EINTR is returned if the system
  374  * call should be interrupted by the signal (return EINTR).
  375  */
  376 int
  377 tsleep(ident, priority, wmesg, timo)
  378         void *ident;
  379         int priority, timo;
  380         const char *wmesg;
  381 {
  382         struct proc *p = curproc;
  383         int s, sig, catch = priority & PCATCH;
  384         struct callout_handle thandle;
  385 
  386 #ifdef KTRACE
  387         if (p && KTRPOINT(p, KTR_CSW))
  388                 ktrcsw(p->p_tracep, 1, 0);
  389 #endif
  390         s = splhigh();
  391         if (cold || panicstr) {
  392                 /*
  393                  * After a panic, or during autoconfiguration,
  394                  * just give interrupts a chance, then just return;
  395                  * don't run any other procs or panic below,
  396                  * in case this is the idle process and already asleep.
  397                  */
  398                 splx(safepri);
  399                 splx(s);
  400                 return (0);
  401         }
  402         KASSERT(p != NULL, ("tsleep1"));
  403         KASSERT(ident != NULL && p->p_stat == SRUN, ("tsleep"));
  404         /*
  405          * Process may be sitting on a slpque if asleep() was called, remove
  406          * it before re-adding.
  407          */
  408         if (p->p_wchan != NULL)
  409                 unsleep(p);
  410 
  411         p->p_wchan = ident;
  412         p->p_wmesg = wmesg;
  413         p->p_slptime = 0;
  414         p->p_priority = priority & PRIMASK;
  415         TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
  416         if (timo)
  417                 thandle = timeout(endtsleep, (void *)p, timo);
  418         /*
  419          * We put ourselves on the sleep queue and start our timeout
  420          * before calling CURSIG, as we could stop there, and a wakeup
  421          * or a SIGCONT (or both) could occur while we were stopped.
  422          * A SIGCONT would cause us to be marked as SSLEEP
  423          * without resuming us, thus we must be ready for sleep
  424          * when CURSIG is called.  If the wakeup happens while we're
  425          * stopped, p->p_wchan will be 0 upon return from CURSIG.
  426          */
  427         if (catch) {
  428                 p->p_flag |= P_SINTR;
  429                 if ((sig = CURSIG(p))) {
  430                         if (p->p_wchan)
  431                                 unsleep(p);
  432                         p->p_stat = SRUN;
  433                         goto resume;
  434                 }
  435                 if (p->p_wchan == 0) {
  436                         catch = 0;
  437                         goto resume;
  438                 }
  439         } else
  440                 sig = 0;
  441         p->p_stat = SSLEEP;
  442         p->p_stats->p_ru.ru_nvcsw++;
  443         mi_switch();
  444 resume:
  445         curpriority = p->p_usrpri;
  446         splx(s);
  447         p->p_flag &= ~P_SINTR;
  448         if (p->p_flag & P_TIMEOUT) {
  449                 p->p_flag &= ~P_TIMEOUT;
  450                 if (sig == 0) {
  451 #ifdef KTRACE
  452                         if (KTRPOINT(p, KTR_CSW))
  453                                 ktrcsw(p->p_tracep, 0, 0);
  454 #endif
  455                         return (EWOULDBLOCK);
  456                 }
  457         } else if (timo)
  458                 untimeout(endtsleep, (void *)p, thandle);
  459         if (catch && (sig != 0 || (sig = CURSIG(p)))) {
  460 #ifdef KTRACE
  461                 if (KTRPOINT(p, KTR_CSW))
  462                         ktrcsw(p->p_tracep, 0, 0);
  463 #endif
  464                 if (p->p_sigacts->ps_sigintr & sigmask(sig))
  465                         return (EINTR);
  466                 return (ERESTART);
  467         }
  468 #ifdef KTRACE
  469         if (KTRPOINT(p, KTR_CSW))
  470                 ktrcsw(p->p_tracep, 0, 0);
  471 #endif
  472         return (0);
  473 }
  474 
  475 /*
  476  * asleep() - async sleep call.  Place process on wait queue and return 
  477  * immediately without blocking.  The process stays runnable until await() 
  478  * is called.  If ident is NULL, remove process from wait queue if it is still
  479  * on one.
  480  *
  481  * Only the most recent sleep condition is effective when making successive
  482  * calls to asleep() or when calling tsleep().
  483  *
  484  * The timeout, if any, is not initiated until await() is called.  The sleep
  485  * priority, signal, and timeout is specified in the asleep() call but may be
  486  * overriden in the await() call.
  487  *
  488  * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
  489  */
  490 
  491 int
  492 asleep(void *ident, int priority, const char *wmesg, int timo)
  493 {
  494         struct proc *p = curproc;
  495         int s;
  496 
  497         /*
  498          * splhigh() while manipulating sleep structures and slpque.
  499          *
  500          * Remove preexisting wait condition (if any) and place process
  501          * on appropriate slpque, but do not put process to sleep.
  502          */
  503 
  504         s = splhigh();
  505 
  506         if (p->p_wchan != NULL)
  507                 unsleep(p);
  508 
  509         if (ident) {
  510                 p->p_wchan = ident;
  511                 p->p_wmesg = wmesg;
  512                 p->p_slptime = 0;
  513                 p->p_asleep.as_priority = priority;
  514                 p->p_asleep.as_timo = timo;
  515                 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_procq);
  516         }
  517 
  518         splx(s);
  519 
  520         return(0);
  521 }
  522 
  523 /*
  524  * await() - wait for async condition to occur.   The process blocks until
  525  * wakeup() is called on the most recent asleep() address.  If wakeup is called
  526  * priority to await(), await() winds up being a NOP.
  527  *
  528  * If await() is called more then once (without an intervening asleep() call),
  529  * await() is still effectively a NOP but it calls mi_switch() to give other
  530  * processes some cpu before returning.  The process is left runnable.
  531  *
  532  * <<<<<<<< EXPERIMENTAL, UNTESTED >>>>>>>>>>
  533  */
  534 
  535 int
  536 await(int priority, int timo)
  537 {
  538         struct proc *p = curproc;
  539         int s;
  540 
  541         s = splhigh();
  542 
  543         if (p->p_wchan != NULL) {
  544                 struct callout_handle thandle;
  545                 int sig;
  546                 int catch;
  547 
  548                 /*
  549                  * The call to await() can override defaults specified in
  550                  * the original asleep().
  551                  */
  552                 if (priority < 0)
  553                         priority = p->p_asleep.as_priority;
  554                 if (timo < 0)
  555                         timo = p->p_asleep.as_timo;
  556 
  557                 /*
  558                  * Install timeout
  559                  */
  560 
  561                 if (timo)
  562                         thandle = timeout(endtsleep, (void *)p, timo);
  563 
  564                 sig = 0;
  565                 catch = priority & PCATCH;
  566 
  567                 if (catch) {
  568                         p->p_flag |= P_SINTR;
  569                         if ((sig = CURSIG(p))) {
  570                                 if (p->p_wchan)
  571                                         unsleep(p);
  572                                 p->p_stat = SRUN;
  573                                 goto resume;
  574                         }
  575                         if (p->p_wchan == NULL) {
  576                                 catch = 0;
  577                                 goto resume;
  578                         }
  579                 }
  580                 p->p_stat = SSLEEP;
  581                 p->p_stats->p_ru.ru_nvcsw++;
  582                 mi_switch();
  583 resume:
  584                 curpriority = p->p_usrpri;
  585 
  586                 splx(s);
  587                 p->p_flag &= ~P_SINTR;
  588                 if (p->p_flag & P_TIMEOUT) {
  589                         p->p_flag &= ~P_TIMEOUT;
  590                         if (sig == 0) {
  591 #ifdef KTRACE
  592                                 if (KTRPOINT(p, KTR_CSW))
  593                                         ktrcsw(p->p_tracep, 0, 0);
  594 #endif
  595                                 return (EWOULDBLOCK);
  596                         }
  597                 } else if (timo)
  598                         untimeout(endtsleep, (void *)p, thandle);
  599                 if (catch && (sig != 0 || (sig = CURSIG(p)))) {
  600 #ifdef KTRACE
  601                         if (KTRPOINT(p, KTR_CSW))
  602                                 ktrcsw(p->p_tracep, 0, 0);
  603 #endif
  604                         if (p->p_sigacts->ps_sigintr & sigmask(sig))
  605                                 return (EINTR);
  606                         return (ERESTART);
  607                 }
  608 #ifdef KTRACE
  609                 if (KTRPOINT(p, KTR_CSW))
  610                         ktrcsw(p->p_tracep, 0, 0);
  611 #endif
  612         } else {
  613                 /*
  614                  * If as_priority is 0, await() has been called without an 
  615                  * intervening asleep().  We are still effectively a NOP, 
  616                  * but we call mi_switch() for safety.
  617                  */
  618 
  619                 if (p->p_asleep.as_priority == 0) {
  620                         p->p_stats->p_ru.ru_nvcsw++;
  621                         mi_switch();
  622                 }
  623                 splx(s);
  624         }
  625 
  626         /*
  627          * clear p_asleep.as_priority as an indication that await() has been
  628          * called.  If await() is called again without an intervening asleep(),
  629          * await() is still effectively a NOP but the above mi_switch() code
  630          * is triggered as a safety.
  631          */
  632         p->p_asleep.as_priority = 0;
  633 
  634         return (0);
  635 }
  636 
  637 /*
  638  * Implement timeout for tsleep or asleep()/await()
  639  *
  640  * If process hasn't been awakened (wchan non-zero),
  641  * set timeout flag and undo the sleep.  If proc
  642  * is stopped, just unsleep so it will remain stopped.
  643  */
  644 static void
  645 endtsleep(arg)
  646         void *arg;
  647 {
  648         register struct proc *p;
  649         int s;
  650 
  651         p = (struct proc *)arg;
  652         s = splhigh();
  653         if (p->p_wchan) {
  654                 if (p->p_stat == SSLEEP)
  655                         setrunnable(p);
  656                 else
  657                         unsleep(p);
  658                 p->p_flag |= P_TIMEOUT;
  659         }
  660         splx(s);
  661 }
  662 
  663 /*
  664  * Remove a process from its wait queue
  665  */
  666 void
  667 unsleep(p)
  668         register struct proc *p;
  669 {
  670         int s;
  671 
  672         s = splhigh();
  673         if (p->p_wchan) {
  674                 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_procq);
  675                 p->p_wchan = 0;
  676         }
  677         splx(s);
  678 }
  679 
  680 /*
  681  * Make all processes sleeping on the specified identifier runnable.
  682  */
  683 void
  684 wakeup(ident)
  685         register void *ident;
  686 {
  687         register struct slpquehead *qp;
  688         register struct proc *p;
  689         int s;
  690 
  691         s = splhigh();
  692         qp = &slpque[LOOKUP(ident)];
  693 restart:
  694         for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
  695                 if (p->p_wchan == ident) {
  696                         TAILQ_REMOVE(qp, p, p_procq);
  697                         p->p_wchan = 0;
  698                         if (p->p_stat == SSLEEP) {
  699                                 /* OPTIMIZED EXPANSION OF setrunnable(p); */
  700                                 if (p->p_slptime > 1)
  701                                         updatepri(p);
  702                                 p->p_slptime = 0;
  703                                 p->p_stat = SRUN;
  704                                 if (p->p_flag & P_INMEM) {
  705                                         setrunqueue(p);
  706                                         maybe_resched(p);
  707                                 } else {
  708                                         p->p_flag |= P_SWAPINREQ;
  709                                         wakeup((caddr_t)&proc0);
  710                                 }
  711                                 /* END INLINE EXPANSION */
  712                                 goto restart;
  713                         }
  714                 }
  715         }
  716         splx(s);
  717 }
  718 
  719 /*
  720  * Make a process sleeping on the specified identifier runnable.
  721  * May wake more than one process if a target prcoess is currently
  722  * swapped out.
  723  */
  724 void
  725 wakeup_one(ident)
  726         register void *ident;
  727 {
  728         register struct slpquehead *qp;
  729         register struct proc *p;
  730         int s;
  731 
  732         s = splhigh();
  733         qp = &slpque[LOOKUP(ident)];
  734 
  735         for (p = qp->tqh_first; p != NULL; p = p->p_procq.tqe_next) {
  736                 if (p->p_wchan == ident) {
  737                         TAILQ_REMOVE(qp, p, p_procq);
  738                         p->p_wchan = 0;
  739                         if (p->p_stat == SSLEEP) {
  740                                 /* OPTIMIZED EXPANSION OF setrunnable(p); */
  741                                 if (p->p_slptime > 1)
  742                                         updatepri(p);
  743                                 p->p_slptime = 0;
  744                                 p->p_stat = SRUN;
  745                                 if (p->p_flag & P_INMEM) {
  746                                         setrunqueue(p);
  747                                         maybe_resched(p);
  748                                         break;
  749                                 } else {
  750                                         p->p_flag |= P_SWAPINREQ;
  751                                         wakeup((caddr_t)&proc0);
  752                                 }
  753                                 /* END INLINE EXPANSION */
  754                         }
  755                 }
  756         }
  757         splx(s);
  758 }
  759 
  760 /*
  761  * The machine independent parts of mi_switch().
  762  * Must be called at splstatclock() or higher.
  763  */
  764 void
  765 mi_switch()
  766 {
  767         register struct proc *p = curproc;      /* XXX */
  768         register struct rlimit *rlim;
  769         int x;
  770 
  771         /*
  772          * XXX this spl is almost unnecessary.  It is partly to allow for
  773          * sloppy callers that don't do it (issignal() via CURSIG() is the
  774          * main offender).  It is partly to work around a bug in the i386
  775          * cpu_switch() (the ipl is not preserved).  We ran for years
  776          * without it.  I think there was only a interrupt latency problem.
  777          * The main caller, tsleep(), does an splx() a couple of instructions
  778          * after calling here.  The buggy caller, issignal(), usually calls
  779          * here at spl0() and sometimes returns at splhigh().  The process
  780          * then runs for a little too long at splhigh().  The ipl gets fixed
  781          * when the process returns to user mode (or earlier).
  782          *
  783          * It would probably be better to always call here at spl0(). Callers
  784          * are prepared to give up control to another process, so they must
  785          * be prepared to be interrupted.  The clock stuff here may not
  786          * actually need splstatclock().
  787          */
  788         x = splstatclock();
  789 
  790 #ifdef SIMPLELOCK_DEBUG
  791         if (p->p_simple_locks)
  792                 printf("sleep: holding simple lock\n");
  793 #endif
  794         /*
  795          * Compute the amount of time during which the current
  796          * process was running, and add that to its total so far.
  797          */
  798         microuptime(&switchtime);
  799         p->p_runtime += (switchtime.tv_usec - p->p_switchtime.tv_usec) +
  800             (switchtime.tv_sec - p->p_switchtime.tv_sec) * (int64_t)1000000;
  801 
  802         /*
  803          * Check if the process exceeds its cpu resource allocation.
  804          * If over max, kill it.
  805          */
  806         if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
  807             p->p_runtime > p->p_limit->p_cpulimit) {
  808                 rlim = &p->p_rlimit[RLIMIT_CPU];
  809                 if (p->p_runtime / (rlim_t)1000000 >= rlim->rlim_max) {
  810                         killproc(p, "exceeded maximum CPU limit");
  811                 } else {
  812                         psignal(p, SIGXCPU);
  813                         if (rlim->rlim_cur < rlim->rlim_max) {
  814                                 /* XXX: we should make a private copy */
  815                                 rlim->rlim_cur += 5;
  816                         }
  817                 }
  818         }
  819 
  820         /*
  821          * Pick a new current process and record its start time.
  822          */
  823         cnt.v_swtch++;
  824         cpu_switch(p);
  825         if (switchtime.tv_sec)
  826                 p->p_switchtime = switchtime;
  827         else
  828                 microuptime(&p->p_switchtime);
  829         switchticks = ticks;
  830 
  831         splx(x);
  832 }
  833 
  834 /*
  835  * Initialize the (doubly-linked) run queues
  836  * to be empty.
  837  */
  838 /* ARGSUSED*/
  839 static void
  840 rqinit(dummy)
  841         void *dummy;
  842 {
  843         register int i;
  844 
  845         for (i = 0; i < NQS; i++) {
  846                 qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
  847                 rtqs[i].ph_link = rtqs[i].ph_rlink = (struct proc *)&rtqs[i];
  848                 idqs[i].ph_link = idqs[i].ph_rlink = (struct proc *)&idqs[i];
  849         }
  850 }
  851 
  852 /*
  853  * Change process state to be runnable,
  854  * placing it on the run queue if it is in memory,
  855  * and awakening the swapper if it isn't in memory.
  856  */
  857 void
  858 setrunnable(p)
  859         register struct proc *p;
  860 {
  861         register int s;
  862 
  863         s = splhigh();
  864         switch (p->p_stat) {
  865         case 0:
  866         case SRUN:
  867         case SZOMB:
  868         default:
  869                 panic("setrunnable");
  870         case SSTOP:
  871         case SSLEEP:
  872                 unsleep(p);             /* e.g. when sending signals */
  873                 break;
  874 
  875         case SIDL:
  876                 break;
  877         }
  878         p->p_stat = SRUN;
  879         if (p->p_flag & P_INMEM)
  880                 setrunqueue(p);
  881         splx(s);
  882         if (p->p_slptime > 1)
  883                 updatepri(p);
  884         p->p_slptime = 0;
  885         if ((p->p_flag & P_INMEM) == 0) {
  886                 p->p_flag |= P_SWAPINREQ;
  887                 wakeup((caddr_t)&proc0);
  888         }
  889         else
  890                 maybe_resched(p);
  891 }
  892 
  893 /*
  894  * Compute the priority of a process when running in user mode.
  895  * Arrange to reschedule if the resulting priority is better
  896  * than that of the current process.
  897  */
  898 void
  899 resetpriority(p)
  900         register struct proc *p;
  901 {
  902         register unsigned int newpriority;
  903 
  904         if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
  905                 newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
  906                 newpriority = min(newpriority, MAXPRI);
  907                 p->p_usrpri = newpriority;
  908         }
  909         maybe_resched(p);
  910 }
  911 
  912 /* ARGSUSED */
  913 static void
  914 sched_setup(dummy)
  915         void *dummy;
  916 {
  917         /* Kick off timeout driven events by calling first time. */
  918         roundrobin(NULL);
  919         schedcpu(NULL);
  920 }
  921 

Cache object: 229c508552e938b50e62784cfc36172b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.