The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_synch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. All advertising materials mentioning features or use of this software
   19  *    must display the following acknowledgement:
   20  *      This product includes software developed by the University of
   21  *      California, Berkeley and its contributors.
   22  * 4. Neither the name of the University nor the names of its contributors
   23  *    may be used to endorse or promote products derived from this software
   24  *    without specific prior written permission.
   25  *
   26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   36  * SUCH DAMAGE.
   37  *
   38  *      @(#)kern_synch.c        8.9 (Berkeley) 5/19/95
   39  * $FreeBSD: releng/5.1/sys/kern/kern_synch.c 115084 2003-05-16 21:26:42Z marcel $
   40  */
   41 
   42 #include "opt_ddb.h"
   43 #include "opt_ktrace.h"
   44 #ifdef __i386__
   45 #include "opt_swtch.h"
   46 #endif
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/condvar.h>
   51 #include <sys/kernel.h>
   52 #include <sys/ktr.h>
   53 #include <sys/lock.h>
   54 #include <sys/mutex.h>
   55 #include <sys/proc.h>
   56 #include <sys/resourcevar.h>
   57 #include <sys/sched.h>
   58 #include <sys/signalvar.h>
   59 #include <sys/smp.h>
   60 #include <sys/sx.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/sysproto.h>
   63 #include <sys/vmmeter.h>
   64 #ifdef DDB
   65 #include <ddb/ddb.h>
   66 #endif
   67 #ifdef KTRACE
   68 #include <sys/uio.h>
   69 #include <sys/ktrace.h>
   70 #endif
   71 
   72 #include <machine/cpu.h>
   73 #ifdef SWTCH_OPTIM_STATS
   74 #include <machine/md_var.h>
   75 #endif
   76 
   77 static void sched_setup(void *dummy);
   78 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
   79 
   80 int     hogticks;
   81 int     lbolt;
   82 
   83 static struct callout loadav_callout;
   84 static struct callout lbolt_callout;
   85 
   86 struct loadavg averunnable =
   87         { {0, 0, 0}, FSCALE };  /* load average, of runnable procs */
   88 /*
   89  * Constants for averages over 1, 5, and 15 minutes
   90  * when sampling at 5 second intervals.
   91  */
   92 static fixpt_t cexp[3] = {
   93         0.9200444146293232 * FSCALE,    /* exp(-1/12) */
   94         0.9834714538216174 * FSCALE,    /* exp(-1/60) */
   95         0.9944598480048967 * FSCALE,    /* exp(-1/180) */
   96 };
   97 
   98 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
   99 static int      fscale __unused = FSCALE;
  100 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
  101 
  102 static void     endtsleep(void *);
  103 static void     loadav(void *arg);
  104 static void     lboltcb(void *arg);
  105 
  106 /*
  107  * We're only looking at 7 bits of the address; everything is
  108  * aligned to 4, lots of things are aligned to greater powers
  109  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
  110  */
  111 #define TABLESIZE       128
  112 static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
  113 #define LOOKUP(x)       (((intptr_t)(x) >> 8) & (TABLESIZE - 1))
  114 
  115 void
  116 sleepinit(void)
  117 {
  118         int i;
  119 
  120         hogticks = (hz / 10) * 2;       /* Default only. */
  121         for (i = 0; i < TABLESIZE; i++)
  122                 TAILQ_INIT(&slpque[i]);
  123 }
  124 
  125 /*
  126  * General sleep call.  Suspends the current process until a wakeup is
  127  * performed on the specified identifier.  The process will then be made
  128  * runnable with the specified priority.  Sleeps at most timo/hz seconds
  129  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
  130  * before and after sleeping, else signals are not checked.  Returns 0 if
  131  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
  132  * signal needs to be delivered, ERESTART is returned if the current system
  133  * call should be restarted if possible, and EINTR is returned if the system
  134  * call should be interrupted by the signal (return EINTR).
  135  *
  136  * The mutex argument is exited before the caller is suspended, and
  137  * entered before msleep returns.  If priority includes the PDROP
  138  * flag the mutex is not entered before returning.
  139  */
  140 
  141 int
  142 msleep(ident, mtx, priority, wmesg, timo)
  143         void *ident;
  144         struct mtx *mtx;
  145         int priority, timo;
  146         const char *wmesg;
  147 {
  148         struct thread *td = curthread;
  149         struct proc *p = td->td_proc;
  150         int sig, catch = priority & PCATCH;
  151         int rval = 0;
  152         WITNESS_SAVE_DECL(mtx);
  153 
  154 #ifdef KTRACE
  155         if (KTRPOINT(td, KTR_CSW))
  156                 ktrcsw(1, 0);
  157 #endif
  158         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, &mtx->mtx_object,
  159             "Sleeping on \"%s\"", wmesg);
  160         KASSERT(timo != 0 || mtx_owned(&Giant) || mtx != NULL,
  161             ("sleeping without a mutex"));
  162         /*
  163          * If we are capable of async syscalls and there isn't already
  164          * another one ready to return, start a new thread
  165          * and queue it as ready to run. Note that there is danger here
  166          * because we need to make sure that we don't sleep allocating
  167          * the thread (recursion here might be bad).
  168          */
  169         mtx_lock_spin(&sched_lock);
  170         if (p->p_flag & P_THREADED || p->p_numthreads > 1) {
  171                 /*
  172                  * Just don't bother if we are exiting
  173                  * and not the exiting thread or thread was marked as
  174                  * interrupted.
  175                  */
  176                 if (catch &&
  177                     (((p->p_flag & P_WEXIT) && (p->p_singlethread != td)) ||
  178                      (td->td_flags & TDF_INTERRUPT))) {
  179                         td->td_flags &= ~TDF_INTERRUPT;
  180                         mtx_unlock_spin(&sched_lock);
  181                         return (EINTR);
  182                 }
  183         }
  184         if (cold ) {
  185                 /*
  186                  * During autoconfiguration, just give interrupts
  187                  * a chance, then just return.
  188                  * Don't run any other procs or panic below,
  189                  * in case this is the idle process and already asleep.
  190                  */
  191                 if (mtx != NULL && priority & PDROP)
  192                         mtx_unlock(mtx);
  193                 mtx_unlock_spin(&sched_lock);
  194                 return (0);
  195         }
  196 
  197         DROP_GIANT();
  198 
  199         if (mtx != NULL) {
  200                 mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
  201                 WITNESS_SAVE(&mtx->mtx_object, mtx);
  202                 mtx_unlock(mtx);
  203                 if (priority & PDROP)
  204                         mtx = NULL;
  205         }
  206 
  207         KASSERT(p != NULL, ("msleep1"));
  208         KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
  209 
  210         CTR5(KTR_PROC, "msleep: thread %p (pid %d, %s) on %s (%p)",
  211             td, p->p_pid, p->p_comm, wmesg, ident);
  212 
  213         td->td_wchan = ident;
  214         td->td_wmesg = wmesg;
  215         TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], td, td_slpq);
  216         TD_SET_ON_SLEEPQ(td);
  217         if (timo)
  218                 callout_reset(&td->td_slpcallout, timo, endtsleep, td);
  219         /*
  220          * We put ourselves on the sleep queue and start our timeout
  221          * before calling thread_suspend_check, as we could stop there, and
  222          * a wakeup or a SIGCONT (or both) could occur while we were stopped.
  223          * without resuming us, thus we must be ready for sleep
  224          * when cursig is called.  If the wakeup happens while we're
  225          * stopped, td->td_wchan will be 0 upon return from cursig.
  226          */
  227         if (catch) {
  228                 CTR3(KTR_PROC, "msleep caught: thread %p (pid %d, %s)", td,
  229                     p->p_pid, p->p_comm);
  230                 td->td_flags |= TDF_SINTR;
  231                 mtx_unlock_spin(&sched_lock);
  232                 PROC_LOCK(p);
  233                 mtx_lock(&p->p_sigacts->ps_mtx);
  234                 sig = cursig(td);
  235                 mtx_unlock(&p->p_sigacts->ps_mtx);
  236                 if (sig == 0 && thread_suspend_check(1))
  237                         sig = SIGSTOP;
  238                 mtx_lock_spin(&sched_lock);
  239                 PROC_UNLOCK(p);
  240                 if (sig != 0) {
  241                         if (TD_ON_SLEEPQ(td))
  242                                 unsleep(td);
  243                 } else if (!TD_ON_SLEEPQ(td))
  244                         catch = 0;
  245         } else
  246                 sig = 0;
  247 
  248         /*
  249          * Let the scheduler know we're about to voluntarily go to sleep.
  250          */
  251         sched_sleep(td, priority & PRIMASK);
  252 
  253         if (TD_ON_SLEEPQ(td)) {
  254                 p->p_stats->p_ru.ru_nvcsw++;
  255                 TD_SET_SLEEPING(td);
  256                 mi_switch();
  257         }
  258         /*
  259          * We're awake from voluntary sleep.
  260          */
  261         CTR3(KTR_PROC, "msleep resume: thread %p (pid %d, %s)", td, p->p_pid,
  262             p->p_comm);
  263         KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
  264         td->td_flags &= ~TDF_SINTR;
  265         if (td->td_flags & TDF_TIMEOUT) {
  266                 td->td_flags &= ~TDF_TIMEOUT;
  267                 if (sig == 0)
  268                         rval = EWOULDBLOCK;
  269         } else if (td->td_flags & TDF_TIMOFAIL) {
  270                 td->td_flags &= ~TDF_TIMOFAIL;
  271         } else if (timo && callout_stop(&td->td_slpcallout) == 0) {
  272                 /*
  273                  * This isn't supposed to be pretty.  If we are here, then
  274                  * the endtsleep() callout is currently executing on another
  275                  * CPU and is either spinning on the sched_lock or will be
  276                  * soon.  If we don't synchronize here, there is a chance
  277                  * that this process may msleep() again before the callout
  278                  * has a chance to run and the callout may end up waking up
  279                  * the wrong msleep().  Yuck.
  280                  */
  281                 TD_SET_SLEEPING(td);
  282                 p->p_stats->p_ru.ru_nivcsw++;
  283                 mi_switch();
  284                 td->td_flags &= ~TDF_TIMOFAIL;
  285         } 
  286         if ((td->td_flags & TDF_INTERRUPT) && (priority & PCATCH) &&
  287             (rval == 0)) {
  288                 td->td_flags &= ~TDF_INTERRUPT;
  289                 rval = EINTR;
  290         }
  291         mtx_unlock_spin(&sched_lock);
  292 
  293         if (rval == 0 && catch) {
  294                 PROC_LOCK(p);
  295                 /* XXX: shouldn't we always be calling cursig() */
  296                 mtx_lock(&p->p_sigacts->ps_mtx);
  297                 if (sig != 0 || (sig = cursig(td))) {
  298                         if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
  299                                 rval = EINTR;
  300                         else
  301                                 rval = ERESTART;
  302                 }
  303                 mtx_unlock(&p->p_sigacts->ps_mtx);
  304                 PROC_UNLOCK(p);
  305         }
  306 #ifdef KTRACE
  307         if (KTRPOINT(td, KTR_CSW))
  308                 ktrcsw(0, 0);
  309 #endif
  310         PICKUP_GIANT();
  311         if (mtx != NULL) {
  312                 mtx_lock(mtx);
  313                 WITNESS_RESTORE(&mtx->mtx_object, mtx);
  314         }
  315         return (rval);
  316 }
  317 
  318 /*
  319  * Implement timeout for msleep()
  320  *
  321  * If process hasn't been awakened (wchan non-zero),
  322  * set timeout flag and undo the sleep.  If proc
  323  * is stopped, just unsleep so it will remain stopped.
  324  * MP-safe, called without the Giant mutex.
  325  */
  326 static void
  327 endtsleep(arg)
  328         void *arg;
  329 {
  330         register struct thread *td = arg;
  331 
  332         CTR3(KTR_PROC, "endtsleep: thread %p (pid %d, %s)",
  333             td, td->td_proc->p_pid, td->td_proc->p_comm);
  334         mtx_lock_spin(&sched_lock);
  335         /*
  336          * This is the other half of the synchronization with msleep()
  337          * described above.  If the TDS_TIMEOUT flag is set, we lost the
  338          * race and just need to put the process back on the runqueue.
  339          */
  340         if (TD_ON_SLEEPQ(td)) {
  341                 TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
  342                 TD_CLR_ON_SLEEPQ(td);
  343                 td->td_flags |= TDF_TIMEOUT;
  344                 td->td_wmesg = NULL;
  345         } else {
  346                 td->td_flags |= TDF_TIMOFAIL;
  347         }
  348         TD_CLR_SLEEPING(td);
  349         setrunnable(td);
  350         mtx_unlock_spin(&sched_lock);
  351 }
  352 
  353 /*
  354  * Abort a thread, as if an interrupt had occured.  Only abort
  355  * interruptable waits (unfortunatly it isn't only safe to abort others).
  356  * This is about identical to cv_abort().
  357  * Think about merging them?
  358  * Also, whatever the signal code does...
  359  */
  360 void
  361 abortsleep(struct thread *td)
  362 {
  363 
  364         mtx_assert(&sched_lock, MA_OWNED);
  365         /*
  366          * If the TDF_TIMEOUT flag is set, just leave. A
  367          * timeout is scheduled anyhow.
  368          */
  369         if ((td->td_flags & (TDF_TIMEOUT | TDF_SINTR)) == TDF_SINTR) {
  370                 if (TD_ON_SLEEPQ(td)) {
  371                         unsleep(td);
  372                         TD_CLR_SLEEPING(td);
  373                         setrunnable(td);
  374                 }
  375         }
  376 }
  377 
  378 /*
  379  * Remove a process from its wait queue
  380  */
  381 void
  382 unsleep(struct thread *td)
  383 {
  384 
  385         mtx_lock_spin(&sched_lock);
  386         if (TD_ON_SLEEPQ(td)) {
  387                 TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_slpq);
  388                 TD_CLR_ON_SLEEPQ(td);
  389                 td->td_wmesg = NULL;
  390         }
  391         mtx_unlock_spin(&sched_lock);
  392 }
  393 
  394 /*
  395  * Make all processes sleeping on the specified identifier runnable.
  396  */
  397 void
  398 wakeup(ident)
  399         register void *ident;
  400 {
  401         register struct slpquehead *qp;
  402         register struct thread *td;
  403         struct thread *ntd;
  404         struct proc *p;
  405 
  406         mtx_lock_spin(&sched_lock);
  407         qp = &slpque[LOOKUP(ident)];
  408 restart:
  409         for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
  410                 ntd = TAILQ_NEXT(td, td_slpq);
  411                 if (td->td_wchan == ident) {
  412                         unsleep(td);
  413                         TD_CLR_SLEEPING(td);
  414                         setrunnable(td);
  415                         p = td->td_proc;
  416                         CTR3(KTR_PROC,"wakeup: thread %p (pid %d, %s)",
  417                             td, p->p_pid, p->p_comm);
  418                         goto restart;
  419                 }
  420         }
  421         mtx_unlock_spin(&sched_lock);
  422 }
  423 
  424 /*
  425  * Make a process sleeping on the specified identifier runnable.
  426  * May wake more than one process if a target process is currently
  427  * swapped out.
  428  */
  429 void
  430 wakeup_one(ident)
  431         register void *ident;
  432 {
  433         register struct slpquehead *qp;
  434         register struct thread *td;
  435         register struct proc *p;
  436         struct thread *ntd;
  437 
  438         mtx_lock_spin(&sched_lock);
  439         qp = &slpque[LOOKUP(ident)];
  440         for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
  441                 ntd = TAILQ_NEXT(td, td_slpq);
  442                 if (td->td_wchan == ident) {
  443                         unsleep(td);
  444                         TD_CLR_SLEEPING(td);
  445                         setrunnable(td);
  446                         p = td->td_proc;
  447                         CTR3(KTR_PROC,"wakeup1: thread %p (pid %d, %s)",
  448                             td, p->p_pid, p->p_comm);
  449                         break;
  450                 }
  451         }
  452         mtx_unlock_spin(&sched_lock);
  453 }
  454 
  455 /*
  456  * The machine independent parts of mi_switch().
  457  */
  458 void
  459 mi_switch(void)
  460 {
  461         struct bintime new_switchtime;
  462         struct thread *td;
  463 #if !defined(__alpha__) && !defined(__powerpc__)
  464         struct thread *newtd;
  465 #endif
  466         struct proc *p;
  467         u_int sched_nest;
  468 
  469         mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
  470         td = curthread;                 /* XXX */
  471         p = td->td_proc;                /* XXX */
  472         KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
  473 #ifdef INVARIANTS
  474         if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
  475                 mtx_assert(&Giant, MA_NOTOWNED);
  476 #endif
  477         KASSERT(td->td_critnest == 1,
  478             ("mi_switch: switch in a critical section"));
  479 
  480         /*
  481          * Compute the amount of time during which the current
  482          * process was running, and add that to its total so far.
  483          */
  484         binuptime(&new_switchtime);
  485         bintime_add(&p->p_runtime, &new_switchtime);
  486         bintime_sub(&p->p_runtime, PCPU_PTR(switchtime));
  487 
  488 #ifdef DDB
  489         /*
  490          * Don't perform context switches from the debugger.
  491          */
  492         if (db_active) {
  493                 mtx_unlock_spin(&sched_lock);
  494                 db_print_backtrace();
  495                 db_error("Context switches not allowed in the debugger.");
  496         }
  497 #endif
  498 
  499         /*
  500          * Check if the process exceeds its cpu resource allocation.  If
  501          * over max, arrange to kill the process in ast().
  502          */
  503         if (p->p_cpulimit != RLIM_INFINITY &&
  504             p->p_runtime.sec > p->p_cpulimit) {
  505                 p->p_sflag |= PS_XCPU;
  506                 td->td_flags |= TDF_ASTPENDING;
  507         }
  508 
  509         /*
  510          * Finish up stats for outgoing thread.
  511          */
  512         cnt.v_swtch++;
  513         PCPU_SET(switchtime, new_switchtime);
  514         CTR3(KTR_PROC, "mi_switch: old thread %p (pid %d, %s)", td, p->p_pid,
  515             p->p_comm);
  516         sched_nest = sched_lock.mtx_recurse;
  517         if (td->td_proc->p_flag & P_THREADED)
  518                 thread_switchout(td);
  519         sched_switchout(td);
  520 
  521 #if !defined(__alpha__) && !defined(__powerpc__) 
  522         newtd = choosethread();
  523         if (td != newtd)
  524                 cpu_switch(td, newtd);  /* SHAZAM!! */
  525 #ifdef SWTCH_OPTIM_STATS
  526         else
  527                 stupid_switch++;
  528 #endif
  529 #else
  530         cpu_switch();           /* SHAZAM!!*/
  531 #endif
  532 
  533         sched_lock.mtx_recurse = sched_nest;
  534         sched_lock.mtx_lock = (uintptr_t)td;
  535         sched_switchin(td);
  536 
  537         /* 
  538          * Start setting up stats etc. for the incoming thread.
  539          * Similar code in fork_exit() is returned to by cpu_switch()
  540          * in the case of a new thread/process.
  541          */
  542         CTR3(KTR_PROC, "mi_switch: new thread %p (pid %d, %s)", td, p->p_pid,
  543             p->p_comm);
  544         if (PCPU_GET(switchtime.sec) == 0)
  545                 binuptime(PCPU_PTR(switchtime));
  546         PCPU_SET(switchticks, ticks);
  547 
  548         /*
  549          * Call the switchin function while still holding the scheduler lock
  550          * (used by the idlezero code and the general page-zeroing code)
  551          */
  552         if (td->td_switchin)
  553                 td->td_switchin();
  554 
  555         /* 
  556          * If the last thread was exiting, finish cleaning it up.
  557          */
  558         if ((td = PCPU_GET(deadthread))) {
  559                 PCPU_SET(deadthread, NULL);
  560                 thread_stash(td);
  561         }
  562 }
  563 
  564 /*
  565  * Change process state to be runnable,
  566  * placing it on the run queue if it is in memory,
  567  * and awakening the swapper if it isn't in memory.
  568  */
  569 void
  570 setrunnable(struct thread *td)
  571 {
  572         struct proc *p = td->td_proc;
  573 
  574         mtx_assert(&sched_lock, MA_OWNED);
  575         switch (p->p_state) {
  576         case PRS_ZOMBIE:
  577                 panic("setrunnable(1)");
  578         default:
  579                 break;
  580         }
  581         switch (td->td_state) {
  582         case TDS_RUNNING:
  583         case TDS_RUNQ:
  584                 return;
  585         case TDS_INHIBITED:
  586                 /*
  587                  * If we are only inhibited because we are swapped out
  588                  * then arange to swap in this process. Otherwise just return.
  589                  */
  590                 if (td->td_inhibitors != TDI_SWAPPED)
  591                         return;
  592         case TDS_CAN_RUN:
  593                 break;
  594         default:
  595                 printf("state is 0x%x", td->td_state);
  596                 panic("setrunnable(2)");
  597         }
  598         if ((p->p_sflag & PS_INMEM) == 0) {
  599                 if ((p->p_sflag & PS_SWAPPINGIN) == 0) {
  600                         p->p_sflag |= PS_SWAPINREQ;
  601                         wakeup(&proc0);
  602                 }
  603         } else
  604                 sched_wakeup(td);
  605 }
  606 
  607 /*
  608  * Compute a tenex style load average of a quantity on
  609  * 1, 5 and 15 minute intervals.
  610  * XXXKSE   Needs complete rewrite when correct info is available.
  611  * Completely Bogus.. only works with 1:1 (but compiles ok now :-)
  612  */
  613 static void
  614 loadav(void *arg)
  615 {
  616         int i, nrun;
  617         struct loadavg *avg;
  618         struct proc *p;
  619         struct thread *td;
  620 
  621         avg = &averunnable;
  622         sx_slock(&allproc_lock);
  623         nrun = 0;
  624         FOREACH_PROC_IN_SYSTEM(p) {
  625                 FOREACH_THREAD_IN_PROC(p, td) {
  626                         switch (td->td_state) {
  627                         case TDS_RUNQ:
  628                         case TDS_RUNNING:
  629                                 if ((p->p_flag & P_NOLOAD) != 0)
  630                                         goto nextproc;
  631                                 nrun++; /* XXXKSE */
  632                         default:
  633                                 break;
  634                         }
  635 nextproc:
  636                         continue;
  637                 }
  638         }
  639         sx_sunlock(&allproc_lock);
  640         for (i = 0; i < 3; i++)
  641                 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
  642                     nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
  643 
  644         /*
  645          * Schedule the next update to occur after 5 seconds, but add a
  646          * random variation to avoid synchronisation with processes that
  647          * run at regular intervals.
  648          */
  649         callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
  650             loadav, NULL);
  651 }
  652 
  653 static void
  654 lboltcb(void *arg)
  655 {
  656         wakeup(&lbolt);
  657         callout_reset(&lbolt_callout, hz, lboltcb, NULL);
  658 }
  659 
  660 /* ARGSUSED */
  661 static void
  662 sched_setup(dummy)
  663         void *dummy;
  664 {
  665         callout_init(&loadav_callout, 0);
  666         callout_init(&lbolt_callout, 1);
  667 
  668         /* Kick off timeout driven events by calling first time. */
  669         loadav(NULL);
  670         lboltcb(NULL);
  671 }
  672 
  673 /*
  674  * General purpose yield system call
  675  */
  676 int
  677 yield(struct thread *td, struct yield_args *uap)
  678 {
  679         struct ksegrp *kg = td->td_ksegrp;
  680 
  681         mtx_assert(&Giant, MA_NOTOWNED);
  682         mtx_lock_spin(&sched_lock);
  683         kg->kg_proc->p_stats->p_ru.ru_nvcsw++;
  684         sched_prio(td, PRI_MAX_TIMESHARE);
  685         mi_switch();
  686         mtx_unlock_spin(&sched_lock);
  687         td->td_retval[0] = 0;
  688 
  689         return (0);
  690 }
  691 

Cache object: f43e599a2f30a7341b4d7697815d6dde


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.