The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_synch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_synch.c        8.9 (Berkeley) 5/19/95
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD: releng/9.1/sys/kern/kern_synch.c 237719 2012-06-28 18:38:24Z jhb $");
   39 
   40 #include "opt_kdtrace.h"
   41 #include "opt_ktrace.h"
   42 #include "opt_sched.h"
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/condvar.h>
   47 #include <sys/kdb.h>
   48 #include <sys/kernel.h>
   49 #include <sys/ktr.h>
   50 #include <sys/lock.h>
   51 #include <sys/mutex.h>
   52 #include <sys/proc.h>
   53 #include <sys/resourcevar.h>
   54 #include <sys/sched.h>
   55 #include <sys/sdt.h>
   56 #include <sys/signalvar.h>
   57 #include <sys/sleepqueue.h>
   58 #include <sys/smp.h>
   59 #include <sys/sx.h>
   60 #include <sys/sysctl.h>
   61 #include <sys/sysproto.h>
   62 #include <sys/vmmeter.h>
   63 #ifdef KTRACE
   64 #include <sys/uio.h>
   65 #include <sys/ktrace.h>
   66 #endif
   67 
   68 #include <machine/cpu.h>
   69 
   70 #ifdef XEN
   71 #include <vm/vm.h>
   72 #include <vm/vm_param.h>
   73 #include <vm/pmap.h>
   74 #endif
   75 
   76 #define KTDSTATE(td)                                                    \
   77         (((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :         \
   78         ((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :      \
   79         ((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :          \
   80         ((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :             \
   81         ((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
   82 
   83 static void synch_setup(void *dummy);
   84 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
   85     NULL);
   86 
   87 int     hogticks;
   88 static int pause_wchan;
   89 
   90 static struct callout loadav_callout;
   91 
   92 struct loadavg averunnable =
   93         { {0, 0, 0}, FSCALE };  /* load average, of runnable procs */
   94 /*
   95  * Constants for averages over 1, 5, and 15 minutes
   96  * when sampling at 5 second intervals.
   97  */
   98 static fixpt_t cexp[3] = {
   99         0.9200444146293232 * FSCALE,    /* exp(-1/12) */
  100         0.9834714538216174 * FSCALE,    /* exp(-1/60) */
  101         0.9944598480048967 * FSCALE,    /* exp(-1/180) */
  102 };
  103 
  104 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
  105 static int      fscale __unused = FSCALE;
  106 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
  107 
  108 static void     loadav(void *arg);
  109 
  110 SDT_PROVIDER_DECLARE(sched);
  111 SDT_PROBE_DEFINE(sched, , , preempt, preempt);
  112 
  113 /*
  114  * These probes reference Solaris features that are not implemented in FreeBSD.
  115  * Create the probes anyway for compatibility with existing D scripts; they'll
  116  * just never fire.
  117  */
  118 SDT_PROBE_DEFINE(sched, , , cpucaps_sleep, cpucaps-sleep);
  119 SDT_PROBE_DEFINE(sched, , , cpucaps_wakeup, cpucaps-wakeup);
  120 SDT_PROBE_DEFINE(sched, , , schedctl_nopreempt, schedctl-nopreempt);
  121 SDT_PROBE_DEFINE(sched, , , schedctl_preempt, schedctl-preempt);
  122 SDT_PROBE_DEFINE(sched, , , schedctl_yield, schedctl-yield);
  123 
  124 void
  125 sleepinit(void)
  126 {
  127 
  128         hogticks = (hz / 10) * 2;       /* Default only. */
  129         init_sleepqueues();
  130 }
  131 
  132 /*
  133  * General sleep call.  Suspends the current thread until a wakeup is
  134  * performed on the specified identifier.  The thread will then be made
  135  * runnable with the specified priority.  Sleeps at most timo/hz seconds
  136  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
  137  * before and after sleeping, else signals are not checked.  Returns 0 if
  138  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
  139  * signal needs to be delivered, ERESTART is returned if the current system
  140  * call should be restarted if possible, and EINTR is returned if the system
  141  * call should be interrupted by the signal (return EINTR).
  142  *
  143  * The lock argument is unlocked before the caller is suspended, and
  144  * re-locked before _sleep() returns.  If priority includes the PDROP
  145  * flag the lock is not re-locked before returning.
  146  */
  147 int
  148 _sleep(void *ident, struct lock_object *lock, int priority,
  149     const char *wmesg, int timo)
  150 {
  151         struct thread *td;
  152         struct proc *p;
  153         struct lock_class *class;
  154         int catch, flags, lock_state, pri, rval;
  155         WITNESS_SAVE_DECL(lock_witness);
  156 
  157         td = curthread;
  158         p = td->td_proc;
  159 #ifdef KTRACE
  160         if (KTRPOINT(td, KTR_CSW))
  161                 ktrcsw(1, 0, wmesg);
  162 #endif
  163         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
  164             "Sleeping on \"%s\"", wmesg);
  165         KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
  166             ("sleeping without a lock"));
  167         KASSERT(p != NULL, ("msleep1"));
  168         KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
  169         if (priority & PDROP)
  170                 KASSERT(lock != NULL && lock != &Giant.lock_object,
  171                     ("PDROP requires a non-Giant lock"));
  172         if (lock != NULL)
  173                 class = LOCK_CLASS(lock);
  174         else
  175                 class = NULL;
  176 
  177         if (cold || SCHEDULER_STOPPED()) {
  178                 /*
  179                  * During autoconfiguration, just return;
  180                  * don't run any other threads or panic below,
  181                  * in case this is the idle thread and already asleep.
  182                  * XXX: this used to do "s = splhigh(); splx(safepri);
  183                  * splx(s);" to give interrupts a chance, but there is
  184                  * no way to give interrupts a chance now.
  185                  */
  186                 if (lock != NULL && priority & PDROP)
  187                         class->lc_unlock(lock);
  188                 return (0);
  189         }
  190         catch = priority & PCATCH;
  191         pri = priority & PRIMASK;
  192 
  193         /*
  194          * If we are already on a sleep queue, then remove us from that
  195          * sleep queue first.  We have to do this to handle recursive
  196          * sleeps.
  197          */
  198         if (TD_ON_SLEEPQ(td))
  199                 sleepq_remove(td, td->td_wchan);
  200 
  201         if (ident == &pause_wchan)
  202                 flags = SLEEPQ_PAUSE;
  203         else
  204                 flags = SLEEPQ_SLEEP;
  205         if (catch)
  206                 flags |= SLEEPQ_INTERRUPTIBLE;
  207         if (priority & PBDRY)
  208                 flags |= SLEEPQ_STOP_ON_BDRY;
  209 
  210         sleepq_lock(ident);
  211         CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
  212             td->td_tid, p->p_pid, td->td_name, wmesg, ident);
  213 
  214         if (lock == &Giant.lock_object)
  215                 mtx_assert(&Giant, MA_OWNED);
  216         DROP_GIANT();
  217         if (lock != NULL && lock != &Giant.lock_object &&
  218             !(class->lc_flags & LC_SLEEPABLE)) {
  219                 WITNESS_SAVE(lock, lock_witness);
  220                 lock_state = class->lc_unlock(lock);
  221         } else
  222                 /* GCC needs to follow the Yellow Brick Road */
  223                 lock_state = -1;
  224 
  225         /*
  226          * We put ourselves on the sleep queue and start our timeout
  227          * before calling thread_suspend_check, as we could stop there,
  228          * and a wakeup or a SIGCONT (or both) could occur while we were
  229          * stopped without resuming us.  Thus, we must be ready for sleep
  230          * when cursig() is called.  If the wakeup happens while we're
  231          * stopped, then td will no longer be on a sleep queue upon
  232          * return from cursig().
  233          */
  234         sleepq_add(ident, lock, wmesg, flags, 0);
  235         if (timo)
  236                 sleepq_set_timeout(ident, timo);
  237         if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
  238                 sleepq_release(ident);
  239                 WITNESS_SAVE(lock, lock_witness);
  240                 lock_state = class->lc_unlock(lock);
  241                 sleepq_lock(ident);
  242         }
  243         if (timo && catch)
  244                 rval = sleepq_timedwait_sig(ident, pri);
  245         else if (timo)
  246                 rval = sleepq_timedwait(ident, pri);
  247         else if (catch)
  248                 rval = sleepq_wait_sig(ident, pri);
  249         else {
  250                 sleepq_wait(ident, pri);
  251                 rval = 0;
  252         }
  253 #ifdef KTRACE
  254         if (KTRPOINT(td, KTR_CSW))
  255                 ktrcsw(0, 0, wmesg);
  256 #endif
  257         PICKUP_GIANT();
  258         if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
  259                 class->lc_lock(lock, lock_state);
  260                 WITNESS_RESTORE(lock, lock_witness);
  261         }
  262         return (rval);
  263 }
  264 
  265 int
  266 msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
  267 {
  268         struct thread *td;
  269         struct proc *p;
  270         int rval;
  271         WITNESS_SAVE_DECL(mtx);
  272 
  273         td = curthread;
  274         p = td->td_proc;
  275         KASSERT(mtx != NULL, ("sleeping without a mutex"));
  276         KASSERT(p != NULL, ("msleep1"));
  277         KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
  278 
  279         if (cold || SCHEDULER_STOPPED()) {
  280                 /*
  281                  * During autoconfiguration, just return;
  282                  * don't run any other threads or panic below,
  283                  * in case this is the idle thread and already asleep.
  284                  * XXX: this used to do "s = splhigh(); splx(safepri);
  285                  * splx(s);" to give interrupts a chance, but there is
  286                  * no way to give interrupts a chance now.
  287                  */
  288                 return (0);
  289         }
  290 
  291         sleepq_lock(ident);
  292         CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
  293             td->td_tid, p->p_pid, td->td_name, wmesg, ident);
  294 
  295         DROP_GIANT();
  296         mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
  297         WITNESS_SAVE(&mtx->lock_object, mtx);
  298         mtx_unlock_spin(mtx);
  299 
  300         /*
  301          * We put ourselves on the sleep queue and start our timeout.
  302          */
  303         sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
  304         if (timo)
  305                 sleepq_set_timeout(ident, timo);
  306 
  307         /*
  308          * Can't call ktrace with any spin locks held so it can lock the
  309          * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
  310          * any spin lock.  Thus, we have to drop the sleepq spin lock while
  311          * we handle those requests.  This is safe since we have placed our
  312          * thread on the sleep queue already.
  313          */
  314 #ifdef KTRACE
  315         if (KTRPOINT(td, KTR_CSW)) {
  316                 sleepq_release(ident);
  317                 ktrcsw(1, 0, wmesg);
  318                 sleepq_lock(ident);
  319         }
  320 #endif
  321 #ifdef WITNESS
  322         sleepq_release(ident);
  323         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
  324             wmesg);
  325         sleepq_lock(ident);
  326 #endif
  327         if (timo)
  328                 rval = sleepq_timedwait(ident, 0);
  329         else {
  330                 sleepq_wait(ident, 0);
  331                 rval = 0;
  332         }
  333 #ifdef KTRACE
  334         if (KTRPOINT(td, KTR_CSW))
  335                 ktrcsw(0, 0, wmesg);
  336 #endif
  337         PICKUP_GIANT();
  338         mtx_lock_spin(mtx);
  339         WITNESS_RESTORE(&mtx->lock_object, mtx);
  340         return (rval);
  341 }
  342 
  343 /*
  344  * pause() delays the calling thread by the given number of system ticks.
  345  * During cold bootup, pause() uses the DELAY() function instead of
  346  * the tsleep() function to do the waiting. The "timo" argument must be
  347  * greater than or equal to zero. A "timo" value of zero is equivalent
  348  * to a "timo" value of one.
  349  */
  350 int
  351 pause(const char *wmesg, int timo)
  352 {
  353         KASSERT(timo >= 0, ("pause: timo must be >= 0"));
  354 
  355         /* silently convert invalid timeouts */
  356         if (timo < 1)
  357                 timo = 1;
  358 
  359         if (cold) {
  360                 /*
  361                  * We delay one HZ at a time to avoid overflowing the
  362                  * system specific DELAY() function(s):
  363                  */
  364                 while (timo >= hz) {
  365                         DELAY(1000000);
  366                         timo -= hz;
  367                 }
  368                 if (timo > 0)
  369                         DELAY(timo * tick);
  370                 return (0);
  371         }
  372         return (tsleep(&pause_wchan, 0, wmesg, timo));
  373 }
  374 
  375 /*
  376  * Make all threads sleeping on the specified identifier runnable.
  377  */
  378 void
  379 wakeup(void *ident)
  380 {
  381         int wakeup_swapper;
  382 
  383         sleepq_lock(ident);
  384         wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
  385         sleepq_release(ident);
  386         if (wakeup_swapper) {
  387                 KASSERT(ident != &proc0,
  388                     ("wakeup and wakeup_swapper and proc0"));
  389                 kick_proc0();
  390         }
  391 }
  392 
  393 /*
  394  * Make a thread sleeping on the specified identifier runnable.
  395  * May wake more than one thread if a target thread is currently
  396  * swapped out.
  397  */
  398 void
  399 wakeup_one(void *ident)
  400 {
  401         int wakeup_swapper;
  402 
  403         sleepq_lock(ident);
  404         wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
  405         sleepq_release(ident);
  406         if (wakeup_swapper)
  407                 kick_proc0();
  408 }
  409 
  410 static void
  411 kdb_switch(void)
  412 {
  413         thread_unlock(curthread);
  414         kdb_backtrace();
  415         kdb_reenter();
  416         panic("%s: did not reenter debugger", __func__);
  417 }
  418 
  419 /*
  420  * The machine independent parts of context switching.
  421  */
  422 void
  423 mi_switch(int flags, struct thread *newtd)
  424 {
  425         uint64_t runtime, new_switchtime;
  426         struct thread *td;
  427         struct proc *p;
  428 
  429         td = curthread;                 /* XXX */
  430         THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
  431         p = td->td_proc;                /* XXX */
  432         KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
  433 #ifdef INVARIANTS
  434         if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
  435                 mtx_assert(&Giant, MA_NOTOWNED);
  436 #endif
  437         KASSERT(td->td_critnest == 1 || panicstr,
  438             ("mi_switch: switch in a critical section"));
  439         KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
  440             ("mi_switch: switch must be voluntary or involuntary"));
  441         KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
  442 
  443         /*
  444          * Don't perform context switches from the debugger.
  445          */
  446         if (kdb_active)
  447                 kdb_switch();
  448         if (SCHEDULER_STOPPED())
  449                 return;
  450         if (flags & SW_VOL) {
  451                 td->td_ru.ru_nvcsw++;
  452                 td->td_swvoltick = ticks;
  453         } else
  454                 td->td_ru.ru_nivcsw++;
  455 #ifdef SCHED_STATS
  456         SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
  457 #endif
  458         /*
  459          * Compute the amount of time during which the current
  460          * thread was running, and add that to its total so far.
  461          */
  462         new_switchtime = cpu_ticks();
  463         runtime = new_switchtime - PCPU_GET(switchtime);
  464         td->td_runtime += runtime;
  465         td->td_incruntime += runtime;
  466         PCPU_SET(switchtime, new_switchtime);
  467         td->td_generation++;    /* bump preempt-detect counter */
  468         PCPU_INC(cnt.v_swtch);
  469         PCPU_SET(switchticks, ticks);
  470         CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
  471             td->td_tid, td->td_sched, p->p_pid, td->td_name);
  472 #if (KTR_COMPILE & KTR_SCHED) != 0
  473         if (TD_IS_IDLETHREAD(td))
  474                 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
  475                     "prio:%d", td->td_priority);
  476         else
  477                 KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
  478                     "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
  479                     "lockname:\"%s\"", td->td_lockname);
  480 #endif
  481         SDT_PROBE0(sched, , , preempt);
  482 #ifdef XEN
  483         PT_UPDATES_FLUSH();
  484 #endif
  485         sched_switch(td, newtd, flags);
  486         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
  487             "prio:%d", td->td_priority);
  488 
  489         CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
  490             td->td_tid, td->td_sched, p->p_pid, td->td_name);
  491 
  492         /* 
  493          * If the last thread was exiting, finish cleaning it up.
  494          */
  495         if ((td = PCPU_GET(deadthread))) {
  496                 PCPU_SET(deadthread, NULL);
  497                 thread_stash(td);
  498         }
  499 }
  500 
  501 /*
  502  * Change thread state to be runnable, placing it on the run queue if
  503  * it is in memory.  If it is swapped out, return true so our caller
  504  * will know to awaken the swapper.
  505  */
  506 int
  507 setrunnable(struct thread *td)
  508 {
  509 
  510         THREAD_LOCK_ASSERT(td, MA_OWNED);
  511         KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
  512             ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
  513         switch (td->td_state) {
  514         case TDS_RUNNING:
  515         case TDS_RUNQ:
  516                 return (0);
  517         case TDS_INHIBITED:
  518                 /*
  519                  * If we are only inhibited because we are swapped out
  520                  * then arange to swap in this process. Otherwise just return.
  521                  */
  522                 if (td->td_inhibitors != TDI_SWAPPED)
  523                         return (0);
  524                 /* FALLTHROUGH */
  525         case TDS_CAN_RUN:
  526                 break;
  527         default:
  528                 printf("state is 0x%x", td->td_state);
  529                 panic("setrunnable(2)");
  530         }
  531         if ((td->td_flags & TDF_INMEM) == 0) {
  532                 if ((td->td_flags & TDF_SWAPINREQ) == 0) {
  533                         td->td_flags |= TDF_SWAPINREQ;
  534                         return (1);
  535                 }
  536         } else
  537                 sched_wakeup(td);
  538         return (0);
  539 }
  540 
  541 /*
  542  * Compute a tenex style load average of a quantity on
  543  * 1, 5 and 15 minute intervals.
  544  */
  545 static void
  546 loadav(void *arg)
  547 {
  548         int i, nrun;
  549         struct loadavg *avg;
  550 
  551         nrun = sched_load();
  552         avg = &averunnable;
  553 
  554         for (i = 0; i < 3; i++)
  555                 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
  556                     nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
  557 
  558         /*
  559          * Schedule the next update to occur after 5 seconds, but add a
  560          * random variation to avoid synchronisation with processes that
  561          * run at regular intervals.
  562          */
  563         callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
  564             loadav, NULL);
  565 }
  566 
  567 /* ARGSUSED */
  568 static void
  569 synch_setup(void *dummy)
  570 {
  571         callout_init(&loadav_callout, CALLOUT_MPSAFE);
  572 
  573         /* Kick off timeout driven events by calling first time. */
  574         loadav(NULL);
  575 }
  576 
  577 int
  578 should_yield(void)
  579 {
  580 
  581         return (ticks - curthread->td_swvoltick >= hogticks);
  582 }
  583 
  584 void
  585 maybe_yield(void)
  586 {
  587 
  588         if (should_yield())
  589                 kern_yield(PRI_USER);
  590 }
  591 
  592 void
  593 kern_yield(int prio)
  594 {
  595         struct thread *td;
  596 
  597         td = curthread;
  598         DROP_GIANT();
  599         thread_lock(td);
  600         if (prio == PRI_USER)
  601                 prio = td->td_user_pri;
  602         if (prio >= 0)
  603                 sched_prio(td, prio);
  604         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
  605         thread_unlock(td);
  606         PICKUP_GIANT();
  607 }
  608 
  609 /*
  610  * General purpose yield system call.
  611  */
  612 int
  613 sys_yield(struct thread *td, struct yield_args *uap)
  614 {
  615 
  616         thread_lock(td);
  617         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  618                 sched_prio(td, PRI_MAX_TIMESHARE);
  619         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
  620         thread_unlock(td);
  621         td->td_retval[0] = 0;
  622         return (0);
  623 }

Cache object: 26128c28ae7374fdadc7582b97d8bdeb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.