The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_synch.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * (c) UNIX System Laboratories, Inc.
    5  * All or some portions of this file are derived from material licensed
    6  * to the University of California by American Telephone and Telegraph
    7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
    8  * the permission of UNIX System Laboratories, Inc.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 4. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_synch.c        8.9 (Berkeley) 5/19/95
   35  */
   36 
   37 #include <sys/cdefs.h>
   38 __FBSDID("$FreeBSD$");
   39 
   40 #include "opt_kdtrace.h"
   41 #include "opt_ktrace.h"
   42 #include "opt_sched.h"
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/condvar.h>
   47 #include <sys/kdb.h>
   48 #include <sys/kernel.h>
   49 #include <sys/ktr.h>
   50 #include <sys/lock.h>
   51 #include <sys/mutex.h>
   52 #include <sys/proc.h>
   53 #include <sys/resourcevar.h>
   54 #include <sys/sched.h>
   55 #include <sys/sdt.h>
   56 #include <sys/signalvar.h>
   57 #include <sys/sleepqueue.h>
   58 #include <sys/smp.h>
   59 #include <sys/sx.h>
   60 #include <sys/sysctl.h>
   61 #include <sys/sysproto.h>
   62 #include <sys/vmmeter.h>
   63 #ifdef KTRACE
   64 #include <sys/uio.h>
   65 #include <sys/ktrace.h>
   66 #endif
   67 
   68 #include <machine/cpu.h>
   69 
   70 #ifdef XEN
   71 #include <vm/vm.h>
   72 #include <vm/vm_param.h>
   73 #include <vm/pmap.h>
   74 #endif
   75 
   76 #define KTDSTATE(td)                                                    \
   77         (((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :         \
   78         ((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :      \
   79         ((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :          \
   80         ((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :             \
   81         ((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
   82 
   83 static void synch_setup(void *dummy);
   84 SYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
   85     NULL);
   86 
   87 int     hogticks;
   88 static int pause_wchan;
   89 
   90 static struct callout loadav_callout;
   91 
   92 struct loadavg averunnable =
   93         { {0, 0, 0}, FSCALE };  /* load average, of runnable procs */
   94 /*
   95  * Constants for averages over 1, 5, and 15 minutes
   96  * when sampling at 5 second intervals.
   97  */
   98 static fixpt_t cexp[3] = {
   99         0.9200444146293232 * FSCALE,    /* exp(-1/12) */
  100         0.9834714538216174 * FSCALE,    /* exp(-1/60) */
  101         0.9944598480048967 * FSCALE,    /* exp(-1/180) */
  102 };
  103 
  104 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
  105 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
  106 
  107 static void     loadav(void *arg);
  108 
  109 SDT_PROVIDER_DECLARE(sched);
  110 SDT_PROBE_DEFINE(sched, , , preempt);
  111 
  112 /*
  113  * These probes reference Solaris features that are not implemented in FreeBSD.
  114  * Create the probes anyway for compatibility with existing D scripts; they'll
  115  * just never fire.
  116  */
  117 SDT_PROBE_DEFINE(sched, , , cpucaps__sleep);
  118 SDT_PROBE_DEFINE(sched, , , cpucaps__wakeup);
  119 SDT_PROBE_DEFINE(sched, , , schedctl__nopreempt);
  120 SDT_PROBE_DEFINE(sched, , , schedctl__preempt);
  121 SDT_PROBE_DEFINE(sched, , , schedctl__yield);
  122 
  123 void
  124 sleepinit(void)
  125 {
  126 
  127         hogticks = (hz / 10) * 2;       /* Default only. */
  128         init_sleepqueues();
  129 }
  130 
  131 /*
  132  * General sleep call.  Suspends the current thread until a wakeup is
  133  * performed on the specified identifier.  The thread will then be made
  134  * runnable with the specified priority.  Sleeps at most timo/hz seconds
  135  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
  136  * before and after sleeping, else signals are not checked.  Returns 0 if
  137  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
  138  * signal needs to be delivered, ERESTART is returned if the current system
  139  * call should be restarted if possible, and EINTR is returned if the system
  140  * call should be interrupted by the signal (return EINTR).
  141  *
  142  * The lock argument is unlocked before the caller is suspended, and
  143  * re-locked before _sleep() returns.  If priority includes the PDROP
  144  * flag the lock is not re-locked before returning.
  145  */
  146 int
  147 _sleep(void *ident, struct lock_object *lock, int priority,
  148     const char *wmesg, int timo)
  149 {
  150         struct thread *td;
  151         struct proc *p;
  152         struct lock_class *class;
  153         int catch, flags, lock_state, pri, rval;
  154         WITNESS_SAVE_DECL(lock_witness);
  155 
  156         td = curthread;
  157         p = td->td_proc;
  158 #ifdef KTRACE
  159         if (KTRPOINT(td, KTR_CSW))
  160                 ktrcsw(1, 0, wmesg);
  161 #endif
  162         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
  163             "Sleeping on \"%s\"", wmesg);
  164         KASSERT(timo != 0 || mtx_owned(&Giant) || lock != NULL,
  165             ("sleeping without a lock"));
  166         KASSERT(p != NULL, ("msleep1"));
  167         KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
  168         if (priority & PDROP)
  169                 KASSERT(lock != NULL && lock != &Giant.lock_object,
  170                     ("PDROP requires a non-Giant lock"));
  171         if (lock != NULL)
  172                 class = LOCK_CLASS(lock);
  173         else
  174                 class = NULL;
  175 
  176         if (cold || SCHEDULER_STOPPED()) {
  177                 /*
  178                  * During autoconfiguration, just return;
  179                  * don't run any other threads or panic below,
  180                  * in case this is the idle thread and already asleep.
  181                  * XXX: this used to do "s = splhigh(); splx(safepri);
  182                  * splx(s);" to give interrupts a chance, but there is
  183                  * no way to give interrupts a chance now.
  184                  */
  185                 if (lock != NULL && priority & PDROP)
  186                         class->lc_unlock(lock);
  187                 return (0);
  188         }
  189         catch = priority & PCATCH;
  190         pri = priority & PRIMASK;
  191 
  192         /*
  193          * If we are already on a sleep queue, then remove us from that
  194          * sleep queue first.  We have to do this to handle recursive
  195          * sleeps.
  196          */
  197         if (TD_ON_SLEEPQ(td))
  198                 sleepq_remove(td, td->td_wchan);
  199 
  200         if (ident == &pause_wchan)
  201                 flags = SLEEPQ_PAUSE;
  202         else
  203                 flags = SLEEPQ_SLEEP;
  204         if (catch)
  205                 flags |= SLEEPQ_INTERRUPTIBLE;
  206         if (priority & PBDRY)
  207                 flags |= SLEEPQ_STOP_ON_BDRY;
  208 
  209         sleepq_lock(ident);
  210         CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
  211             td->td_tid, p->p_pid, td->td_name, wmesg, ident);
  212 
  213         if (lock == &Giant.lock_object)
  214                 mtx_assert(&Giant, MA_OWNED);
  215         DROP_GIANT();
  216         if (lock != NULL && lock != &Giant.lock_object &&
  217             !(class->lc_flags & LC_SLEEPABLE)) {
  218                 WITNESS_SAVE(lock, lock_witness);
  219                 lock_state = class->lc_unlock(lock);
  220         } else
  221                 /* GCC needs to follow the Yellow Brick Road */
  222                 lock_state = -1;
  223 
  224         /*
  225          * We put ourselves on the sleep queue and start our timeout
  226          * before calling thread_suspend_check, as we could stop there,
  227          * and a wakeup or a SIGCONT (or both) could occur while we were
  228          * stopped without resuming us.  Thus, we must be ready for sleep
  229          * when cursig() is called.  If the wakeup happens while we're
  230          * stopped, then td will no longer be on a sleep queue upon
  231          * return from cursig().
  232          */
  233         sleepq_add(ident, lock, wmesg, flags, 0);
  234         if (timo)
  235                 sleepq_set_timeout(ident, timo);
  236         if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
  237                 sleepq_release(ident);
  238                 WITNESS_SAVE(lock, lock_witness);
  239                 lock_state = class->lc_unlock(lock);
  240                 sleepq_lock(ident);
  241         }
  242         if (timo && catch)
  243                 rval = sleepq_timedwait_sig(ident, pri);
  244         else if (timo)
  245                 rval = sleepq_timedwait(ident, pri);
  246         else if (catch)
  247                 rval = sleepq_wait_sig(ident, pri);
  248         else {
  249                 sleepq_wait(ident, pri);
  250                 rval = 0;
  251         }
  252 #ifdef KTRACE
  253         if (KTRPOINT(td, KTR_CSW))
  254                 ktrcsw(0, 0, wmesg);
  255 #endif
  256         PICKUP_GIANT();
  257         if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
  258                 class->lc_lock(lock, lock_state);
  259                 WITNESS_RESTORE(lock, lock_witness);
  260         }
  261         return (rval);
  262 }
  263 
  264 int
  265 msleep_spin(void *ident, struct mtx *mtx, const char *wmesg, int timo)
  266 {
  267         struct thread *td;
  268         struct proc *p;
  269         int rval;
  270         WITNESS_SAVE_DECL(mtx);
  271 
  272         td = curthread;
  273         p = td->td_proc;
  274         KASSERT(mtx != NULL, ("sleeping without a mutex"));
  275         KASSERT(p != NULL, ("msleep1"));
  276         KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
  277 
  278         if (cold || SCHEDULER_STOPPED()) {
  279                 /*
  280                  * During autoconfiguration, just return;
  281                  * don't run any other threads or panic below,
  282                  * in case this is the idle thread and already asleep.
  283                  * XXX: this used to do "s = splhigh(); splx(safepri);
  284                  * splx(s);" to give interrupts a chance, but there is
  285                  * no way to give interrupts a chance now.
  286                  */
  287                 return (0);
  288         }
  289 
  290         sleepq_lock(ident);
  291         CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
  292             td->td_tid, p->p_pid, td->td_name, wmesg, ident);
  293 
  294         DROP_GIANT();
  295         mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
  296         WITNESS_SAVE(&mtx->lock_object, mtx);
  297         mtx_unlock_spin(mtx);
  298 
  299         /*
  300          * We put ourselves on the sleep queue and start our timeout.
  301          */
  302         sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
  303         if (timo)
  304                 sleepq_set_timeout(ident, timo);
  305 
  306         /*
  307          * Can't call ktrace with any spin locks held so it can lock the
  308          * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
  309          * any spin lock.  Thus, we have to drop the sleepq spin lock while
  310          * we handle those requests.  This is safe since we have placed our
  311          * thread on the sleep queue already.
  312          */
  313 #ifdef KTRACE
  314         if (KTRPOINT(td, KTR_CSW)) {
  315                 sleepq_release(ident);
  316                 ktrcsw(1, 0, wmesg);
  317                 sleepq_lock(ident);
  318         }
  319 #endif
  320 #ifdef WITNESS
  321         sleepq_release(ident);
  322         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
  323             wmesg);
  324         sleepq_lock(ident);
  325 #endif
  326         if (timo)
  327                 rval = sleepq_timedwait(ident, 0);
  328         else {
  329                 sleepq_wait(ident, 0);
  330                 rval = 0;
  331         }
  332 #ifdef KTRACE
  333         if (KTRPOINT(td, KTR_CSW))
  334                 ktrcsw(0, 0, wmesg);
  335 #endif
  336         PICKUP_GIANT();
  337         mtx_lock_spin(mtx);
  338         WITNESS_RESTORE(&mtx->lock_object, mtx);
  339         return (rval);
  340 }
  341 
  342 /*
  343  * pause() delays the calling thread by the given number of system ticks.
  344  * During cold bootup, pause() uses the DELAY() function instead of
  345  * the tsleep() function to do the waiting. The "timo" argument must be
  346  * greater than or equal to zero. A "timo" value of zero is equivalent
  347  * to a "timo" value of one.
  348  */
  349 int
  350 pause(const char *wmesg, int timo)
  351 {
  352         KASSERT(timo >= 0, ("pause: timo must be >= 0"));
  353 
  354         /* silently convert invalid timeouts */
  355         if (timo < 1)
  356                 timo = 1;
  357 
  358         if (cold || kdb_active || SCHEDULER_STOPPED()) {
  359                 /*
  360                  * We delay one HZ at a time to avoid overflowing the
  361                  * system specific DELAY() function(s):
  362                  */
  363                 while (timo >= hz) {
  364                         DELAY(1000000);
  365                         timo -= hz;
  366                 }
  367                 if (timo > 0)
  368                         DELAY(timo * tick);
  369                 return (0);
  370         }
  371         return (tsleep(&pause_wchan, 0, wmesg, timo));
  372 }
  373 
  374 /*
  375  * Make all threads sleeping on the specified identifier runnable.
  376  */
  377 void
  378 wakeup(void *ident)
  379 {
  380         int wakeup_swapper;
  381 
  382         sleepq_lock(ident);
  383         wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
  384         sleepq_release(ident);
  385         if (wakeup_swapper) {
  386                 KASSERT(ident != &proc0,
  387                     ("wakeup and wakeup_swapper and proc0"));
  388                 kick_proc0();
  389         }
  390 }
  391 
  392 /*
  393  * Make a thread sleeping on the specified identifier runnable.
  394  * May wake more than one thread if a target thread is currently
  395  * swapped out.
  396  */
  397 void
  398 wakeup_one(void *ident)
  399 {
  400         int wakeup_swapper;
  401 
  402         sleepq_lock(ident);
  403         wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
  404         sleepq_release(ident);
  405         if (wakeup_swapper)
  406                 kick_proc0();
  407 }
  408 
  409 static void
  410 kdb_switch(void)
  411 {
  412         thread_unlock(curthread);
  413         kdb_backtrace();
  414         kdb_reenter();
  415         panic("%s: did not reenter debugger", __func__);
  416 }
  417 
  418 /*
  419  * The machine independent parts of context switching.
  420  */
  421 void
  422 mi_switch(int flags, struct thread *newtd)
  423 {
  424         uint64_t runtime, new_switchtime;
  425         struct thread *td;
  426         struct proc *p;
  427 
  428         td = curthread;                 /* XXX */
  429         THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
  430         p = td->td_proc;                /* XXX */
  431         KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
  432 #ifdef INVARIANTS
  433         if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
  434                 mtx_assert(&Giant, MA_NOTOWNED);
  435 #endif
  436         KASSERT(td->td_critnest == 1 || panicstr,
  437             ("mi_switch: switch in a critical section"));
  438         KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
  439             ("mi_switch: switch must be voluntary or involuntary"));
  440         KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
  441 
  442         /*
  443          * Don't perform context switches from the debugger.
  444          */
  445         if (kdb_active)
  446                 kdb_switch();
  447         if (SCHEDULER_STOPPED())
  448                 return;
  449         if (flags & SW_VOL) {
  450                 td->td_ru.ru_nvcsw++;
  451                 td->td_swvoltick = ticks;
  452         } else
  453                 td->td_ru.ru_nivcsw++;
  454 #ifdef SCHED_STATS
  455         SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
  456 #endif
  457         /*
  458          * Compute the amount of time during which the current
  459          * thread was running, and add that to its total so far.
  460          */
  461         new_switchtime = cpu_ticks();
  462         runtime = new_switchtime - PCPU_GET(switchtime);
  463         td->td_runtime += runtime;
  464         td->td_incruntime += runtime;
  465         PCPU_SET(switchtime, new_switchtime);
  466         td->td_generation++;    /* bump preempt-detect counter */
  467         PCPU_INC(cnt.v_swtch);
  468         PCPU_SET(switchticks, ticks);
  469         CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
  470             td->td_tid, td->td_sched, p->p_pid, td->td_name);
  471 #if (KTR_COMPILE & KTR_SCHED) != 0
  472         if (TD_IS_IDLETHREAD(td))
  473                 KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
  474                     "prio:%d", td->td_priority);
  475         else
  476                 KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
  477                     "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
  478                     "lockname:\"%s\"", td->td_lockname);
  479 #endif
  480         SDT_PROBE0(sched, , , preempt);
  481 #ifdef XEN
  482         PT_UPDATES_FLUSH();
  483 #endif
  484         sched_switch(td, newtd, flags);
  485         KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
  486             "prio:%d", td->td_priority);
  487 
  488         CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
  489             td->td_tid, td->td_sched, p->p_pid, td->td_name);
  490 
  491         /* 
  492          * If the last thread was exiting, finish cleaning it up.
  493          */
  494         if ((td = PCPU_GET(deadthread))) {
  495                 PCPU_SET(deadthread, NULL);
  496                 thread_stash(td);
  497         }
  498 }
  499 
  500 /*
  501  * Change thread state to be runnable, placing it on the run queue if
  502  * it is in memory.  If it is swapped out, return true so our caller
  503  * will know to awaken the swapper.
  504  */
  505 int
  506 setrunnable(struct thread *td)
  507 {
  508 
  509         THREAD_LOCK_ASSERT(td, MA_OWNED);
  510         KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
  511             ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
  512         switch (td->td_state) {
  513         case TDS_RUNNING:
  514         case TDS_RUNQ:
  515                 return (0);
  516         case TDS_INHIBITED:
  517                 /*
  518                  * If we are only inhibited because we are swapped out
  519                  * then arange to swap in this process. Otherwise just return.
  520                  */
  521                 if (td->td_inhibitors != TDI_SWAPPED)
  522                         return (0);
  523                 /* FALLTHROUGH */
  524         case TDS_CAN_RUN:
  525                 break;
  526         default:
  527                 printf("state is 0x%x", td->td_state);
  528                 panic("setrunnable(2)");
  529         }
  530         if ((td->td_flags & TDF_INMEM) == 0) {
  531                 if ((td->td_flags & TDF_SWAPINREQ) == 0) {
  532                         td->td_flags |= TDF_SWAPINREQ;
  533                         return (1);
  534                 }
  535         } else
  536                 sched_wakeup(td);
  537         return (0);
  538 }
  539 
  540 /*
  541  * Compute a tenex style load average of a quantity on
  542  * 1, 5 and 15 minute intervals.
  543  */
  544 static void
  545 loadav(void *arg)
  546 {
  547         int i, nrun;
  548         struct loadavg *avg;
  549 
  550         nrun = sched_load();
  551         avg = &averunnable;
  552 
  553         for (i = 0; i < 3; i++)
  554                 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
  555                     nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
  556 
  557         /*
  558          * Schedule the next update to occur after 5 seconds, but add a
  559          * random variation to avoid synchronisation with processes that
  560          * run at regular intervals.
  561          */
  562         callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
  563             loadav, NULL);
  564 }
  565 
  566 /* ARGSUSED */
  567 static void
  568 synch_setup(void *dummy)
  569 {
  570         callout_init(&loadav_callout, CALLOUT_MPSAFE);
  571 
  572         /* Kick off timeout driven events by calling first time. */
  573         loadav(NULL);
  574 }
  575 
  576 int
  577 should_yield(void)
  578 {
  579 
  580         return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
  581 }
  582 
  583 void
  584 maybe_yield(void)
  585 {
  586 
  587         if (should_yield())
  588                 kern_yield(PRI_USER);
  589 }
  590 
  591 void
  592 kern_yield(int prio)
  593 {
  594         struct thread *td;
  595 
  596         td = curthread;
  597         DROP_GIANT();
  598         thread_lock(td);
  599         if (prio == PRI_USER)
  600                 prio = td->td_user_pri;
  601         if (prio >= 0)
  602                 sched_prio(td, prio);
  603         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
  604         thread_unlock(td);
  605         PICKUP_GIANT();
  606 }
  607 
  608 /*
  609  * General purpose yield system call.
  610  */
  611 int
  612 sys_yield(struct thread *td, struct yield_args *uap)
  613 {
  614 
  615         thread_lock(td);
  616         if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
  617                 sched_prio(td, PRI_MAX_TIMESHARE);
  618         mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
  619         thread_unlock(td);
  620         td->td_retval[0] = 0;
  621         return (0);
  622 }

Cache object: e0f52e9506c86352a78c16faea8e237b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.