The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_systimer.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
    3  * 
    4  * This code is derived from software contributed to The DragonFly Project
    5  * by Matthew Dillon <dillon@backplane.com>
    6  * 
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in
   15  *    the documentation and/or other materials provided with the
   16  *    distribution.
   17  * 3. Neither the name of The DragonFly Project nor the names of its
   18  *    contributors may be used to endorse or promote products derived
   19  *    from this software without specific, prior written permission.
   20  * 
   21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
   25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
   27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  */
   34 
   35 /*
   36  * WARNING!  THE SYSTIMER MODULE DOES NOT OPERATE OR DISPATCH WITH THE
   37  * MP LOCK HELD.  ALL CODE USING THIS MODULE MUST BE MP-SAFE.
   38  *
   39  * This code implements a fine-grained per-cpu system timer which is
   40  * ultimately based on a hardware timer.  The hardware timer abstraction
   41  * is sufficiently disconnected from this code to support both per-cpu
   42  * hardware timers or a single system-wide hardware timer.
   43  *
   44  * WARNING!  During early boot if a new system timer is selected, existing
   45  * timeouts will not be effected and will thus occur slower or faster.
   46  * periodic timers will be adjusted at the next periodic load.
   47  *
   48  * Notes on machine-dependant code (in arch/arch/systimer.c)
   49  *
   50  * cputimer_intr_reload()       Reload the one-shot (per-cpu basis)
   51  */
   52 
   53 #include <sys/param.h>
   54 #include <sys/kernel.h>
   55 #include <sys/systm.h>
   56 #include <sys/thread.h>
   57 #include <sys/globaldata.h>
   58 #include <sys/systimer.h>
   59 #include <sys/thread2.h>
   60 
   61 /*
   62  * Execute ready systimers.  Called directly from the platform-specific
   63  * one-shot timer clock interrupt (e.g. clkintr()) or via an IPI.  May
   64  * be called simultaniously on multiple cpus and always operations on 
   65  * the current cpu's queue.  Systimer functions are responsible for calling
   66  * hardclock, statclock, and other finely-timed routines.
   67  */
   68 void
   69 systimer_intr(sysclock_t *timep, int in_ipi, struct intrframe *frame)
   70 {
   71     globaldata_t gd = mycpu;
   72     sysclock_t time = *timep;
   73     systimer_t info;
   74 
   75     if (gd->gd_syst_nest)
   76         return;
   77 
   78     crit_enter();
   79     ++gd->gd_syst_nest;
   80     while ((info = TAILQ_FIRST(&gd->gd_systimerq)) != NULL) {
   81         /*
   82          * If we haven't reached the requested time, tell the cputimer
   83          * how much is left and break out.
   84          */
   85         if ((int)(info->time - time) > 0) {
   86             cputimer_intr_reload(info->time - time);
   87             break;
   88         }
   89 
   90         /*
   91          * Dequeue and execute, detect a loss of the systimer.  Note
   92          * that the in-progress systimer pointer can only be used to
   93          * detect a loss of the systimer, it is only useful within
   94          * this code sequence and becomes stale otherwise.
   95          */
   96         info->flags &= ~SYSTF_ONQUEUE;
   97         TAILQ_REMOVE(info->queue, info, node);
   98         gd->gd_systimer_inprog = info;
   99         crit_exit();
  100         info->func(info, in_ipi, frame);
  101         crit_enter();
  102 
  103         /*
  104          * The caller may deleted or even re-queue the systimer itself
  105          * with a delete/add sequence.  If the caller does not mess with
  106          * the systimer we will requeue the periodic interval automatically.
  107          *
  108          * If this is a non-queued periodic interrupt, do not allow multiple
  109          * events to build up (used for things like the callout timer to
  110          * prevent premature timeouts due to long interrupt disablements,
  111          * BIOS 8254 glitching, and so forth).  However, we still want to
  112          * keep things synchronized between cpus for efficient handling of
  113          * the timer interrupt so jump in multiples of the periodic rate.
  114          */
  115         if (gd->gd_systimer_inprog == info && info->periodic) {
  116             if (info->which != sys_cputimer) {
  117                 info->periodic = sys_cputimer->fromhz(info->freq);
  118                 info->which = sys_cputimer;
  119             }
  120             info->time += info->periodic;
  121             if ((info->flags & SYSTF_NONQUEUED) &&
  122                 (int)(info->time - time) <= 0
  123             ) {
  124                 info->time += ((time - info->time + info->periodic - 1) / 
  125                                 info->periodic) * info->periodic;
  126             }
  127             systimer_add(info);
  128         }
  129         gd->gd_systimer_inprog = NULL;
  130     }
  131     --gd->gd_syst_nest;
  132     crit_exit();
  133 }
  134 
  135 void
  136 systimer_intr_enable(void)
  137 {
  138     cputimer_intr_enable();
  139 }
  140 
  141 /*
  142  * MPSAFE
  143  */
  144 void
  145 systimer_add(systimer_t info)
  146 {
  147     struct globaldata *gd = mycpu;
  148 
  149     KKASSERT((info->flags & SYSTF_ONQUEUE) == 0);
  150     crit_enter();
  151     if (info->gd == gd) {
  152         systimer_t scan1;
  153         systimer_t scan2;
  154         scan1 = TAILQ_FIRST(&gd->gd_systimerq);
  155         if (scan1 == NULL || (int)(scan1->time - info->time) > 0) {
  156             cputimer_intr_reload(info->time - sys_cputimer->count());
  157             TAILQ_INSERT_HEAD(&gd->gd_systimerq, info, node);
  158         } else {
  159             scan2 = TAILQ_LAST(&gd->gd_systimerq, systimerq);
  160             for (;;) {
  161                 if (scan1 == NULL) {
  162                     TAILQ_INSERT_TAIL(&gd->gd_systimerq, info, node);
  163                     break;
  164                 }
  165                 if ((int)(scan1->time - info->time) > 0) {
  166                     TAILQ_INSERT_BEFORE(scan1, info, node);
  167                     break;
  168                 }
  169                 if ((int)(scan2->time - info->time) <= 0) {
  170                     TAILQ_INSERT_AFTER(&gd->gd_systimerq, scan2, info, node);
  171                     break;
  172                 }
  173                 scan1 = TAILQ_NEXT(scan1, node);
  174                 scan2 = TAILQ_PREV(scan2, systimerq, node);
  175             }
  176         }
  177         info->flags = (info->flags | SYSTF_ONQUEUE) & ~SYSTF_IPIRUNNING;
  178         info->queue = &gd->gd_systimerq;
  179     } else {
  180         KKASSERT((info->flags & SYSTF_IPIRUNNING) == 0);
  181         info->flags |= SYSTF_IPIRUNNING;
  182         lwkt_send_ipiq(info->gd, (ipifunc1_t)systimer_add, info);
  183     }
  184     crit_exit();
  185 }
  186 
  187 /*
  188  * systimer_del()
  189  *
  190  *      Delete a system timer.  Only the owning cpu can delete a timer.
  191  *
  192  * MPSAFE
  193  */
  194 void
  195 systimer_del(systimer_t info)
  196 {
  197     struct globaldata *gd = info->gd;
  198 
  199     KKASSERT(gd == mycpu && (info->flags & SYSTF_IPIRUNNING) == 0);
  200 
  201     crit_enter();
  202 
  203     if (info->flags & SYSTF_ONQUEUE) {
  204         TAILQ_REMOVE(info->queue, info, node);
  205         info->flags &= ~SYSTF_ONQUEUE;
  206     }
  207 
  208     /*
  209      * Deal with dispatch races by clearing the in-progress systimer
  210      * pointer.  Only a direct pointer comparison can be used, the
  211      * actual contents of the structure gd_systimer_inprog points to,
  212      * if not equal to info, may be stale.
  213      */
  214     if (gd->gd_systimer_inprog == info)
  215         gd->gd_systimer_inprog = NULL;
  216 
  217     crit_exit();
  218 }
  219 
  220 /*
  221  * systimer_init_periodic()
  222  *
  223  *      Initialize a periodic timer at the specified frequency and add
  224  *      it to the system.  The frequency is uncompensated and approximate.
  225  *
  226  *      Try to synchronize multi registrations of the same or similar
  227  *      frequencies so the hardware interrupt is able to dispatch several
  228  *      at together by adjusting the phase of the initial interrupt.  This
  229  *      helps SMP.  Note that we are not attempting to synchronize to 
  230  *      the realtime clock.
  231  */
  232 void
  233 systimer_init_periodic(systimer_t info, systimer_func_t func, void *data,
  234     int hz)
  235 {
  236     sysclock_t base_count;
  237 
  238     bzero(info, sizeof(struct systimer));
  239     info->periodic = sys_cputimer->fromhz(hz);
  240     base_count = sys_cputimer->count();
  241     base_count = base_count - (base_count % info->periodic);
  242     info->time = base_count + info->periodic;
  243     info->func = func;
  244     info->data = data;
  245     info->freq = hz;
  246     info->which = sys_cputimer;
  247     info->gd = mycpu;
  248     systimer_add(info);
  249 }
  250 
  251 void
  252 systimer_init_periodic_nq(systimer_t info, systimer_func_t func, void *data,
  253     int hz)
  254 {
  255     sysclock_t base_count;
  256 
  257     bzero(info, sizeof(struct systimer));
  258     info->periodic = sys_cputimer->fromhz(hz);
  259     base_count = sys_cputimer->count();
  260     base_count = base_count - (base_count % info->periodic);
  261     info->time = base_count + info->periodic;
  262     info->func = func;
  263     info->data = data;
  264     info->freq = hz;
  265     info->which = sys_cputimer;
  266     info->gd = mycpu;
  267     info->flags |= SYSTF_NONQUEUED;
  268     systimer_add(info);
  269 }
  270 
  271 /*
  272  * Adjust the periodic interval for a periodic timer which is already
  273  * running.  The current timeout is not effected.
  274  */
  275 void
  276 systimer_adjust_periodic(systimer_t info, int hz)
  277 {
  278     crit_enter();
  279     info->periodic = sys_cputimer->fromhz(hz);
  280     info->freq = hz;
  281     info->which = sys_cputimer;
  282     crit_exit();
  283 }
  284 
  285 /*
  286  * systimer_init_oneshot()
  287  *
  288  *      Initialize a periodic timer at the specified frequency and add
  289  *      it to the system.  The frequency is uncompensated and approximate.
  290  */
  291 void
  292 systimer_init_oneshot(systimer_t info, systimer_func_t func, void *data, int us)
  293 {
  294     bzero(info, sizeof(struct systimer));
  295     info->time = sys_cputimer->count() + sys_cputimer->fromus(us);
  296     info->func = func;
  297     info->data = data;
  298     info->which = sys_cputimer;
  299     info->gd = mycpu;
  300     systimer_add(info);
  301 }

Cache object: 7905ea2ff51802b770d373ca725d4caa


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.