The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_tc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * ----------------------------------------------------------------------------
    3  * "THE BEER-WARE LICENSE" (Revision 42):
    4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
    5  * can do whatever you want with this stuff. If we meet some day, and you think
    6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
    7  * ----------------------------------------------------------------------------
    8  *
    9  * Copyright (c) 2011 The FreeBSD Foundation
   10  * All rights reserved.
   11  *
   12  * Portions of this software were developed by Julien Ridoux at the University
   13  * of Melbourne under sponsorship from the FreeBSD Foundation.
   14  */
   15 
   16 #include <sys/cdefs.h>
   17 __FBSDID("$FreeBSD: releng/11.0/sys/kern/kern_tc.c 298819 2016-04-29 22:15:33Z pfg $");
   18 
   19 #include "opt_compat.h"
   20 #include "opt_ntp.h"
   21 #include "opt_ffclock.h"
   22 
   23 #include <sys/param.h>
   24 #include <sys/kernel.h>
   25 #include <sys/limits.h>
   26 #include <sys/lock.h>
   27 #include <sys/mutex.h>
   28 #include <sys/sbuf.h>
   29 #include <sys/sysctl.h>
   30 #include <sys/syslog.h>
   31 #include <sys/systm.h>
   32 #include <sys/timeffc.h>
   33 #include <sys/timepps.h>
   34 #include <sys/timetc.h>
   35 #include <sys/timex.h>
   36 #include <sys/vdso.h>
   37 
   38 /*
   39  * A large step happens on boot.  This constant detects such steps.
   40  * It is relatively small so that ntp_update_second gets called enough
   41  * in the typical 'missed a couple of seconds' case, but doesn't loop
   42  * forever when the time step is large.
   43  */
   44 #define LARGE_STEP      200
   45 
   46 /*
   47  * Implement a dummy timecounter which we can use until we get a real one
   48  * in the air.  This allows the console and other early stuff to use
   49  * time services.
   50  */
   51 
   52 static u_int
   53 dummy_get_timecount(struct timecounter *tc)
   54 {
   55         static u_int now;
   56 
   57         return (++now);
   58 }
   59 
   60 static struct timecounter dummy_timecounter = {
   61         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
   62 };
   63 
   64 struct timehands {
   65         /* These fields must be initialized by the driver. */
   66         struct timecounter      *th_counter;
   67         int64_t                 th_adjustment;
   68         uint64_t                th_scale;
   69         u_int                   th_offset_count;
   70         struct bintime          th_offset;
   71         struct timeval          th_microtime;
   72         struct timespec         th_nanotime;
   73         /* Fields not to be copied in tc_windup start with th_generation. */
   74         u_int                   th_generation;
   75         struct timehands        *th_next;
   76 };
   77 
   78 static struct timehands th0;
   79 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
   80 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
   81 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
   82 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
   83 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
   84 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
   85 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
   86 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
   87 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
   88 static struct timehands th0 = {
   89         &dummy_timecounter,
   90         0,
   91         (uint64_t)-1 / 1000000,
   92         0,
   93         {1, 0},
   94         {0, 0},
   95         {0, 0},
   96         1,
   97         &th1
   98 };
   99 
  100 static struct timehands *volatile timehands = &th0;
  101 struct timecounter *timecounter = &dummy_timecounter;
  102 static struct timecounter *timecounters = &dummy_timecounter;
  103 
  104 int tc_min_ticktock_freq = 1;
  105 
  106 volatile time_t time_second = 1;
  107 volatile time_t time_uptime = 1;
  108 
  109 struct bintime boottimebin;
  110 struct timeval boottime;
  111 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
  112 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
  113     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
  114 
  115 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
  116 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
  117 
  118 static int timestepwarnings;
  119 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
  120     &timestepwarnings, 0, "Log time steps");
  121 
  122 struct bintime bt_timethreshold;
  123 struct bintime bt_tickthreshold;
  124 sbintime_t sbt_timethreshold;
  125 sbintime_t sbt_tickthreshold;
  126 struct bintime tc_tick_bt;
  127 sbintime_t tc_tick_sbt;
  128 int tc_precexp;
  129 int tc_timepercentage = TC_DEFAULTPERC;
  130 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
  131 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
  132     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
  133     sysctl_kern_timecounter_adjprecision, "I",
  134     "Allowed time interval deviation in percents");
  135 
  136 static int tc_chosen;   /* Non-zero if a specific tc was chosen via sysctl. */
  137 
  138 static void tc_windup(void);
  139 static void cpu_tick_calibrate(int);
  140 
  141 void dtrace_getnanotime(struct timespec *tsp);
  142 
  143 static int
  144 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
  145 {
  146 #ifndef __mips__
  147 #ifdef SCTL_MASK32
  148         int tv[2];
  149 
  150         if (req->flags & SCTL_MASK32) {
  151                 tv[0] = boottime.tv_sec;
  152                 tv[1] = boottime.tv_usec;
  153                 return SYSCTL_OUT(req, tv, sizeof(tv));
  154         } else
  155 #endif
  156 #endif
  157                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
  158 }
  159 
  160 static int
  161 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
  162 {
  163         u_int ncount;
  164         struct timecounter *tc = arg1;
  165 
  166         ncount = tc->tc_get_timecount(tc);
  167         return sysctl_handle_int(oidp, &ncount, 0, req);
  168 }
  169 
  170 static int
  171 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
  172 {
  173         uint64_t freq;
  174         struct timecounter *tc = arg1;
  175 
  176         freq = tc->tc_frequency;
  177         return sysctl_handle_64(oidp, &freq, 0, req);
  178 }
  179 
  180 /*
  181  * Return the difference between the timehands' counter value now and what
  182  * was when we copied it to the timehands' offset_count.
  183  */
  184 static __inline u_int
  185 tc_delta(struct timehands *th)
  186 {
  187         struct timecounter *tc;
  188 
  189         tc = th->th_counter;
  190         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
  191             tc->tc_counter_mask);
  192 }
  193 
  194 /*
  195  * Functions for reading the time.  We have to loop until we are sure that
  196  * the timehands that we operated on was not updated under our feet.  See
  197  * the comment in <sys/time.h> for a description of these 12 functions.
  198  */
  199 
  200 #ifdef FFCLOCK
  201 void
  202 fbclock_binuptime(struct bintime *bt)
  203 {
  204         struct timehands *th;
  205         unsigned int gen;
  206 
  207         do {
  208                 th = timehands;
  209                 gen = atomic_load_acq_int(&th->th_generation);
  210                 *bt = th->th_offset;
  211                 bintime_addx(bt, th->th_scale * tc_delta(th));
  212                 atomic_thread_fence_acq();
  213         } while (gen == 0 || gen != th->th_generation);
  214 }
  215 
  216 void
  217 fbclock_nanouptime(struct timespec *tsp)
  218 {
  219         struct bintime bt;
  220 
  221         fbclock_binuptime(&bt);
  222         bintime2timespec(&bt, tsp);
  223 }
  224 
  225 void
  226 fbclock_microuptime(struct timeval *tvp)
  227 {
  228         struct bintime bt;
  229 
  230         fbclock_binuptime(&bt);
  231         bintime2timeval(&bt, tvp);
  232 }
  233 
  234 void
  235 fbclock_bintime(struct bintime *bt)
  236 {
  237 
  238         fbclock_binuptime(bt);
  239         bintime_add(bt, &boottimebin);
  240 }
  241 
  242 void
  243 fbclock_nanotime(struct timespec *tsp)
  244 {
  245         struct bintime bt;
  246 
  247         fbclock_bintime(&bt);
  248         bintime2timespec(&bt, tsp);
  249 }
  250 
  251 void
  252 fbclock_microtime(struct timeval *tvp)
  253 {
  254         struct bintime bt;
  255 
  256         fbclock_bintime(&bt);
  257         bintime2timeval(&bt, tvp);
  258 }
  259 
  260 void
  261 fbclock_getbinuptime(struct bintime *bt)
  262 {
  263         struct timehands *th;
  264         unsigned int gen;
  265 
  266         do {
  267                 th = timehands;
  268                 gen = atomic_load_acq_int(&th->th_generation);
  269                 *bt = th->th_offset;
  270                 atomic_thread_fence_acq();
  271         } while (gen == 0 || gen != th->th_generation);
  272 }
  273 
  274 void
  275 fbclock_getnanouptime(struct timespec *tsp)
  276 {
  277         struct timehands *th;
  278         unsigned int gen;
  279 
  280         do {
  281                 th = timehands;
  282                 gen = atomic_load_acq_int(&th->th_generation);
  283                 bintime2timespec(&th->th_offset, tsp);
  284                 atomic_thread_fence_acq();
  285         } while (gen == 0 || gen != th->th_generation);
  286 }
  287 
  288 void
  289 fbclock_getmicrouptime(struct timeval *tvp)
  290 {
  291         struct timehands *th;
  292         unsigned int gen;
  293 
  294         do {
  295                 th = timehands;
  296                 gen = atomic_load_acq_int(&th->th_generation);
  297                 bintime2timeval(&th->th_offset, tvp);
  298                 atomic_thread_fence_acq();
  299         } while (gen == 0 || gen != th->th_generation);
  300 }
  301 
  302 void
  303 fbclock_getbintime(struct bintime *bt)
  304 {
  305         struct timehands *th;
  306         unsigned int gen;
  307 
  308         do {
  309                 th = timehands;
  310                 gen = atomic_load_acq_int(&th->th_generation);
  311                 *bt = th->th_offset;
  312                 atomic_thread_fence_acq();
  313         } while (gen == 0 || gen != th->th_generation);
  314         bintime_add(bt, &boottimebin);
  315 }
  316 
  317 void
  318 fbclock_getnanotime(struct timespec *tsp)
  319 {
  320         struct timehands *th;
  321         unsigned int gen;
  322 
  323         do {
  324                 th = timehands;
  325                 gen = atomic_load_acq_int(&th->th_generation);
  326                 *tsp = th->th_nanotime;
  327                 atomic_thread_fence_acq();
  328         } while (gen == 0 || gen != th->th_generation);
  329 }
  330 
  331 void
  332 fbclock_getmicrotime(struct timeval *tvp)
  333 {
  334         struct timehands *th;
  335         unsigned int gen;
  336 
  337         do {
  338                 th = timehands;
  339                 gen = atomic_load_acq_int(&th->th_generation);
  340                 *tvp = th->th_microtime;
  341                 atomic_thread_fence_acq();
  342         } while (gen == 0 || gen != th->th_generation);
  343 }
  344 #else /* !FFCLOCK */
  345 void
  346 binuptime(struct bintime *bt)
  347 {
  348         struct timehands *th;
  349         u_int gen;
  350 
  351         do {
  352                 th = timehands;
  353                 gen = atomic_load_acq_int(&th->th_generation);
  354                 *bt = th->th_offset;
  355                 bintime_addx(bt, th->th_scale * tc_delta(th));
  356                 atomic_thread_fence_acq();
  357         } while (gen == 0 || gen != th->th_generation);
  358 }
  359 
  360 void
  361 nanouptime(struct timespec *tsp)
  362 {
  363         struct bintime bt;
  364 
  365         binuptime(&bt);
  366         bintime2timespec(&bt, tsp);
  367 }
  368 
  369 void
  370 microuptime(struct timeval *tvp)
  371 {
  372         struct bintime bt;
  373 
  374         binuptime(&bt);
  375         bintime2timeval(&bt, tvp);
  376 }
  377 
  378 void
  379 bintime(struct bintime *bt)
  380 {
  381 
  382         binuptime(bt);
  383         bintime_add(bt, &boottimebin);
  384 }
  385 
  386 void
  387 nanotime(struct timespec *tsp)
  388 {
  389         struct bintime bt;
  390 
  391         bintime(&bt);
  392         bintime2timespec(&bt, tsp);
  393 }
  394 
  395 void
  396 microtime(struct timeval *tvp)
  397 {
  398         struct bintime bt;
  399 
  400         bintime(&bt);
  401         bintime2timeval(&bt, tvp);
  402 }
  403 
  404 void
  405 getbinuptime(struct bintime *bt)
  406 {
  407         struct timehands *th;
  408         u_int gen;
  409 
  410         do {
  411                 th = timehands;
  412                 gen = atomic_load_acq_int(&th->th_generation);
  413                 *bt = th->th_offset;
  414                 atomic_thread_fence_acq();
  415         } while (gen == 0 || gen != th->th_generation);
  416 }
  417 
  418 void
  419 getnanouptime(struct timespec *tsp)
  420 {
  421         struct timehands *th;
  422         u_int gen;
  423 
  424         do {
  425                 th = timehands;
  426                 gen = atomic_load_acq_int(&th->th_generation);
  427                 bintime2timespec(&th->th_offset, tsp);
  428                 atomic_thread_fence_acq();
  429         } while (gen == 0 || gen != th->th_generation);
  430 }
  431 
  432 void
  433 getmicrouptime(struct timeval *tvp)
  434 {
  435         struct timehands *th;
  436         u_int gen;
  437 
  438         do {
  439                 th = timehands;
  440                 gen = atomic_load_acq_int(&th->th_generation);
  441                 bintime2timeval(&th->th_offset, tvp);
  442                 atomic_thread_fence_acq();
  443         } while (gen == 0 || gen != th->th_generation);
  444 }
  445 
  446 void
  447 getbintime(struct bintime *bt)
  448 {
  449         struct timehands *th;
  450         u_int gen;
  451 
  452         do {
  453                 th = timehands;
  454                 gen = atomic_load_acq_int(&th->th_generation);
  455                 *bt = th->th_offset;
  456                 atomic_thread_fence_acq();
  457         } while (gen == 0 || gen != th->th_generation);
  458         bintime_add(bt, &boottimebin);
  459 }
  460 
  461 void
  462 getnanotime(struct timespec *tsp)
  463 {
  464         struct timehands *th;
  465         u_int gen;
  466 
  467         do {
  468                 th = timehands;
  469                 gen = atomic_load_acq_int(&th->th_generation);
  470                 *tsp = th->th_nanotime;
  471                 atomic_thread_fence_acq();
  472         } while (gen == 0 || gen != th->th_generation);
  473 }
  474 
  475 void
  476 getmicrotime(struct timeval *tvp)
  477 {
  478         struct timehands *th;
  479         u_int gen;
  480 
  481         do {
  482                 th = timehands;
  483                 gen = atomic_load_acq_int(&th->th_generation);
  484                 *tvp = th->th_microtime;
  485                 atomic_thread_fence_acq();
  486         } while (gen == 0 || gen != th->th_generation);
  487 }
  488 #endif /* FFCLOCK */
  489 
  490 #ifdef FFCLOCK
  491 /*
  492  * Support for feed-forward synchronization algorithms. This is heavily inspired
  493  * by the timehands mechanism but kept independent from it. *_windup() functions
  494  * have some connection to avoid accessing the timecounter hardware more than
  495  * necessary.
  496  */
  497 
  498 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
  499 struct ffclock_estimate ffclock_estimate;
  500 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
  501 uint32_t ffclock_status;                /* Feed-forward clock status. */
  502 int8_t ffclock_updated;                 /* New estimates are available. */
  503 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
  504 
  505 struct fftimehands {
  506         struct ffclock_estimate cest;
  507         struct bintime          tick_time;
  508         struct bintime          tick_time_lerp;
  509         ffcounter               tick_ffcount;
  510         uint64_t                period_lerp;
  511         volatile uint8_t        gen;
  512         struct fftimehands      *next;
  513 };
  514 
  515 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
  516 
  517 static struct fftimehands ffth[10];
  518 static struct fftimehands *volatile fftimehands = ffth;
  519 
  520 static void
  521 ffclock_init(void)
  522 {
  523         struct fftimehands *cur;
  524         struct fftimehands *last;
  525 
  526         memset(ffth, 0, sizeof(ffth));
  527 
  528         last = ffth + NUM_ELEMENTS(ffth) - 1;
  529         for (cur = ffth; cur < last; cur++)
  530                 cur->next = cur + 1;
  531         last->next = ffth;
  532 
  533         ffclock_updated = 0;
  534         ffclock_status = FFCLOCK_STA_UNSYNC;
  535         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
  536 }
  537 
  538 /*
  539  * Reset the feed-forward clock estimates. Called from inittodr() to get things
  540  * kick started and uses the timecounter nominal frequency as a first period
  541  * estimate. Note: this function may be called several time just after boot.
  542  * Note: this is the only function that sets the value of boot time for the
  543  * monotonic (i.e. uptime) version of the feed-forward clock.
  544  */
  545 void
  546 ffclock_reset_clock(struct timespec *ts)
  547 {
  548         struct timecounter *tc;
  549         struct ffclock_estimate cest;
  550 
  551         tc = timehands->th_counter;
  552         memset(&cest, 0, sizeof(struct ffclock_estimate));
  553 
  554         timespec2bintime(ts, &ffclock_boottime);
  555         timespec2bintime(ts, &(cest.update_time));
  556         ffclock_read_counter(&cest.update_ffcount);
  557         cest.leapsec_next = 0;
  558         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
  559         cest.errb_abs = 0;
  560         cest.errb_rate = 0;
  561         cest.status = FFCLOCK_STA_UNSYNC;
  562         cest.leapsec_total = 0;
  563         cest.leapsec = 0;
  564 
  565         mtx_lock(&ffclock_mtx);
  566         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
  567         ffclock_updated = INT8_MAX;
  568         mtx_unlock(&ffclock_mtx);
  569 
  570         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
  571             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
  572             (unsigned long)ts->tv_nsec);
  573 }
  574 
  575 /*
  576  * Sub-routine to convert a time interval measured in RAW counter units to time
  577  * in seconds stored in bintime format.
  578  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
  579  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
  580  * extra cycles.
  581  */
  582 static void
  583 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
  584 {
  585         struct bintime bt2;
  586         ffcounter delta, delta_max;
  587 
  588         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
  589         bintime_clear(bt);
  590         do {
  591                 if (ffdelta > delta_max)
  592                         delta = delta_max;
  593                 else
  594                         delta = ffdelta;
  595                 bt2.sec = 0;
  596                 bt2.frac = period;
  597                 bintime_mul(&bt2, (unsigned int)delta);
  598                 bintime_add(bt, &bt2);
  599                 ffdelta -= delta;
  600         } while (ffdelta > 0);
  601 }
  602 
  603 /*
  604  * Update the fftimehands.
  605  * Push the tick ffcount and time(s) forward based on current clock estimate.
  606  * The conversion from ffcounter to bintime relies on the difference clock
  607  * principle, whose accuracy relies on computing small time intervals. If a new
  608  * clock estimate has been passed by the synchronisation daemon, make it
  609  * current, and compute the linear interpolation for monotonic time if needed.
  610  */
  611 static void
  612 ffclock_windup(unsigned int delta)
  613 {
  614         struct ffclock_estimate *cest;
  615         struct fftimehands *ffth;
  616         struct bintime bt, gap_lerp;
  617         ffcounter ffdelta;
  618         uint64_t frac;
  619         unsigned int polling;
  620         uint8_t forward_jump, ogen;
  621 
  622         /*
  623          * Pick the next timehand, copy current ffclock estimates and move tick
  624          * times and counter forward.
  625          */
  626         forward_jump = 0;
  627         ffth = fftimehands->next;
  628         ogen = ffth->gen;
  629         ffth->gen = 0;
  630         cest = &ffth->cest;
  631         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
  632         ffdelta = (ffcounter)delta;
  633         ffth->period_lerp = fftimehands->period_lerp;
  634 
  635         ffth->tick_time = fftimehands->tick_time;
  636         ffclock_convert_delta(ffdelta, cest->period, &bt);
  637         bintime_add(&ffth->tick_time, &bt);
  638 
  639         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
  640         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
  641         bintime_add(&ffth->tick_time_lerp, &bt);
  642 
  643         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
  644 
  645         /*
  646          * Assess the status of the clock, if the last update is too old, it is
  647          * likely the synchronisation daemon is dead and the clock is free
  648          * running.
  649          */
  650         if (ffclock_updated == 0) {
  651                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
  652                 ffclock_convert_delta(ffdelta, cest->period, &bt);
  653                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
  654                         ffclock_status |= FFCLOCK_STA_UNSYNC;
  655         }
  656 
  657         /*
  658          * If available, grab updated clock estimates and make them current.
  659          * Recompute time at this tick using the updated estimates. The clock
  660          * estimates passed the feed-forward synchronisation daemon may result
  661          * in time conversion that is not monotonically increasing (just after
  662          * the update). time_lerp is a particular linear interpolation over the
  663          * synchronisation algo polling period that ensures monotonicity for the
  664          * clock ids requesting it.
  665          */
  666         if (ffclock_updated > 0) {
  667                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
  668                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
  669                 ffth->tick_time = cest->update_time;
  670                 ffclock_convert_delta(ffdelta, cest->period, &bt);
  671                 bintime_add(&ffth->tick_time, &bt);
  672 
  673                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
  674                 if (ffclock_updated == INT8_MAX)
  675                         ffth->tick_time_lerp = ffth->tick_time;
  676 
  677                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
  678                         forward_jump = 1;
  679                 else
  680                         forward_jump = 0;
  681 
  682                 bintime_clear(&gap_lerp);
  683                 if (forward_jump) {
  684                         gap_lerp = ffth->tick_time;
  685                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
  686                 } else {
  687                         gap_lerp = ffth->tick_time_lerp;
  688                         bintime_sub(&gap_lerp, &ffth->tick_time);
  689                 }
  690 
  691                 /*
  692                  * The reset from the RTC clock may be far from accurate, and
  693                  * reducing the gap between real time and interpolated time
  694                  * could take a very long time if the interpolated clock insists
  695                  * on strict monotonicity. The clock is reset under very strict
  696                  * conditions (kernel time is known to be wrong and
  697                  * synchronization daemon has been restarted recently.
  698                  * ffclock_boottime absorbs the jump to ensure boot time is
  699                  * correct and uptime functions stay consistent.
  700                  */
  701                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
  702                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
  703                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
  704                         if (forward_jump)
  705                                 bintime_add(&ffclock_boottime, &gap_lerp);
  706                         else
  707                                 bintime_sub(&ffclock_boottime, &gap_lerp);
  708                         ffth->tick_time_lerp = ffth->tick_time;
  709                         bintime_clear(&gap_lerp);
  710                 }
  711 
  712                 ffclock_status = cest->status;
  713                 ffth->period_lerp = cest->period;
  714 
  715                 /*
  716                  * Compute corrected period used for the linear interpolation of
  717                  * time. The rate of linear interpolation is capped to 5000PPM
  718                  * (5ms/s).
  719                  */
  720                 if (bintime_isset(&gap_lerp)) {
  721                         ffdelta = cest->update_ffcount;
  722                         ffdelta -= fftimehands->cest.update_ffcount;
  723                         ffclock_convert_delta(ffdelta, cest->period, &bt);
  724                         polling = bt.sec;
  725                         bt.sec = 0;
  726                         bt.frac = 5000000 * (uint64_t)18446744073LL;
  727                         bintime_mul(&bt, polling);
  728                         if (bintime_cmp(&gap_lerp, &bt, >))
  729                                 gap_lerp = bt;
  730 
  731                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
  732                         frac = 0;
  733                         if (gap_lerp.sec > 0) {
  734                                 frac -= 1;
  735                                 frac /= ffdelta / gap_lerp.sec;
  736                         }
  737                         frac += gap_lerp.frac / ffdelta;
  738 
  739                         if (forward_jump)
  740                                 ffth->period_lerp += frac;
  741                         else
  742                                 ffth->period_lerp -= frac;
  743                 }
  744 
  745                 ffclock_updated = 0;
  746         }
  747         if (++ogen == 0)
  748                 ogen = 1;
  749         ffth->gen = ogen;
  750         fftimehands = ffth;
  751 }
  752 
  753 /*
  754  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
  755  * the old and new hardware counter cannot be read simultaneously. tc_windup()
  756  * does read the two counters 'back to back', but a few cycles are effectively
  757  * lost, and not accumulated in tick_ffcount. This is a fairly radical
  758  * operation for a feed-forward synchronization daemon, and it is its job to not
  759  * pushing irrelevant data to the kernel. Because there is no locking here,
  760  * simply force to ignore pending or next update to give daemon a chance to
  761  * realize the counter has changed.
  762  */
  763 static void
  764 ffclock_change_tc(struct timehands *th)
  765 {
  766         struct fftimehands *ffth;
  767         struct ffclock_estimate *cest;
  768         struct timecounter *tc;
  769         uint8_t ogen;
  770 
  771         tc = th->th_counter;
  772         ffth = fftimehands->next;
  773         ogen = ffth->gen;
  774         ffth->gen = 0;
  775 
  776         cest = &ffth->cest;
  777         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
  778         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
  779         cest->errb_abs = 0;
  780         cest->errb_rate = 0;
  781         cest->status |= FFCLOCK_STA_UNSYNC;
  782 
  783         ffth->tick_ffcount = fftimehands->tick_ffcount;
  784         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
  785         ffth->tick_time = fftimehands->tick_time;
  786         ffth->period_lerp = cest->period;
  787 
  788         /* Do not lock but ignore next update from synchronization daemon. */
  789         ffclock_updated--;
  790 
  791         if (++ogen == 0)
  792                 ogen = 1;
  793         ffth->gen = ogen;
  794         fftimehands = ffth;
  795 }
  796 
  797 /*
  798  * Retrieve feed-forward counter and time of last kernel tick.
  799  */
  800 void
  801 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
  802 {
  803         struct fftimehands *ffth;
  804         uint8_t gen;
  805 
  806         /*
  807          * No locking but check generation has not changed. Also need to make
  808          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
  809          */
  810         do {
  811                 ffth = fftimehands;
  812                 gen = ffth->gen;
  813                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
  814                         *bt = ffth->tick_time_lerp;
  815                 else
  816                         *bt = ffth->tick_time;
  817                 *ffcount = ffth->tick_ffcount;
  818         } while (gen == 0 || gen != ffth->gen);
  819 }
  820 
  821 /*
  822  * Absolute clock conversion. Low level function to convert ffcounter to
  823  * bintime. The ffcounter is converted using the current ffclock period estimate
  824  * or the "interpolated period" to ensure monotonicity.
  825  * NOTE: this conversion may have been deferred, and the clock updated since the
  826  * hardware counter has been read.
  827  */
  828 void
  829 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
  830 {
  831         struct fftimehands *ffth;
  832         struct bintime bt2;
  833         ffcounter ffdelta;
  834         uint8_t gen;
  835 
  836         /*
  837          * No locking but check generation has not changed. Also need to make
  838          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
  839          */
  840         do {
  841                 ffth = fftimehands;
  842                 gen = ffth->gen;
  843                 if (ffcount > ffth->tick_ffcount)
  844                         ffdelta = ffcount - ffth->tick_ffcount;
  845                 else
  846                         ffdelta = ffth->tick_ffcount - ffcount;
  847 
  848                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
  849                         *bt = ffth->tick_time_lerp;
  850                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
  851                 } else {
  852                         *bt = ffth->tick_time;
  853                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
  854                 }
  855 
  856                 if (ffcount > ffth->tick_ffcount)
  857                         bintime_add(bt, &bt2);
  858                 else
  859                         bintime_sub(bt, &bt2);
  860         } while (gen == 0 || gen != ffth->gen);
  861 }
  862 
  863 /*
  864  * Difference clock conversion.
  865  * Low level function to Convert a time interval measured in RAW counter units
  866  * into bintime. The difference clock allows measuring small intervals much more
  867  * reliably than the absolute clock.
  868  */
  869 void
  870 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
  871 {
  872         struct fftimehands *ffth;
  873         uint8_t gen;
  874 
  875         /* No locking but check generation has not changed. */
  876         do {
  877                 ffth = fftimehands;
  878                 gen = ffth->gen;
  879                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
  880         } while (gen == 0 || gen != ffth->gen);
  881 }
  882 
  883 /*
  884  * Access to current ffcounter value.
  885  */
  886 void
  887 ffclock_read_counter(ffcounter *ffcount)
  888 {
  889         struct timehands *th;
  890         struct fftimehands *ffth;
  891         unsigned int gen, delta;
  892 
  893         /*
  894          * ffclock_windup() called from tc_windup(), safe to rely on
  895          * th->th_generation only, for correct delta and ffcounter.
  896          */
  897         do {
  898                 th = timehands;
  899                 gen = atomic_load_acq_int(&th->th_generation);
  900                 ffth = fftimehands;
  901                 delta = tc_delta(th);
  902                 *ffcount = ffth->tick_ffcount;
  903                 atomic_thread_fence_acq();
  904         } while (gen == 0 || gen != th->th_generation);
  905 
  906         *ffcount += delta;
  907 }
  908 
  909 void
  910 binuptime(struct bintime *bt)
  911 {
  912 
  913         binuptime_fromclock(bt, sysclock_active);
  914 }
  915 
  916 void
  917 nanouptime(struct timespec *tsp)
  918 {
  919 
  920         nanouptime_fromclock(tsp, sysclock_active);
  921 }
  922 
  923 void
  924 microuptime(struct timeval *tvp)
  925 {
  926 
  927         microuptime_fromclock(tvp, sysclock_active);
  928 }
  929 
  930 void
  931 bintime(struct bintime *bt)
  932 {
  933 
  934         bintime_fromclock(bt, sysclock_active);
  935 }
  936 
  937 void
  938 nanotime(struct timespec *tsp)
  939 {
  940 
  941         nanotime_fromclock(tsp, sysclock_active);
  942 }
  943 
  944 void
  945 microtime(struct timeval *tvp)
  946 {
  947 
  948         microtime_fromclock(tvp, sysclock_active);
  949 }
  950 
  951 void
  952 getbinuptime(struct bintime *bt)
  953 {
  954 
  955         getbinuptime_fromclock(bt, sysclock_active);
  956 }
  957 
  958 void
  959 getnanouptime(struct timespec *tsp)
  960 {
  961 
  962         getnanouptime_fromclock(tsp, sysclock_active);
  963 }
  964 
  965 void
  966 getmicrouptime(struct timeval *tvp)
  967 {
  968 
  969         getmicrouptime_fromclock(tvp, sysclock_active);
  970 }
  971 
  972 void
  973 getbintime(struct bintime *bt)
  974 {
  975 
  976         getbintime_fromclock(bt, sysclock_active);
  977 }
  978 
  979 void
  980 getnanotime(struct timespec *tsp)
  981 {
  982 
  983         getnanotime_fromclock(tsp, sysclock_active);
  984 }
  985 
  986 void
  987 getmicrotime(struct timeval *tvp)
  988 {
  989 
  990         getmicrouptime_fromclock(tvp, sysclock_active);
  991 }
  992 
  993 #endif /* FFCLOCK */
  994 
  995 /*
  996  * This is a clone of getnanotime and used for walltimestamps.
  997  * The dtrace_ prefix prevents fbt from creating probes for
  998  * it so walltimestamp can be safely used in all fbt probes.
  999  */
 1000 void
 1001 dtrace_getnanotime(struct timespec *tsp)
 1002 {
 1003         struct timehands *th;
 1004         u_int gen;
 1005 
 1006         do {
 1007                 th = timehands;
 1008                 gen = atomic_load_acq_int(&th->th_generation);
 1009                 *tsp = th->th_nanotime;
 1010                 atomic_thread_fence_acq();
 1011         } while (gen == 0 || gen != th->th_generation);
 1012 }
 1013 
 1014 /*
 1015  * System clock currently providing time to the system. Modifiable via sysctl
 1016  * when the FFCLOCK option is defined.
 1017  */
 1018 int sysclock_active = SYSCLOCK_FBCK;
 1019 
 1020 /* Internal NTP status and error estimates. */
 1021 extern int time_status;
 1022 extern long time_esterror;
 1023 
 1024 /*
 1025  * Take a snapshot of sysclock data which can be used to compare system clocks
 1026  * and generate timestamps after the fact.
 1027  */
 1028 void
 1029 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
 1030 {
 1031         struct fbclock_info *fbi;
 1032         struct timehands *th;
 1033         struct bintime bt;
 1034         unsigned int delta, gen;
 1035 #ifdef FFCLOCK
 1036         ffcounter ffcount;
 1037         struct fftimehands *ffth;
 1038         struct ffclock_info *ffi;
 1039         struct ffclock_estimate cest;
 1040 
 1041         ffi = &clock_snap->ff_info;
 1042 #endif
 1043 
 1044         fbi = &clock_snap->fb_info;
 1045         delta = 0;
 1046 
 1047         do {
 1048                 th = timehands;
 1049                 gen = atomic_load_acq_int(&th->th_generation);
 1050                 fbi->th_scale = th->th_scale;
 1051                 fbi->tick_time = th->th_offset;
 1052 #ifdef FFCLOCK
 1053                 ffth = fftimehands;
 1054                 ffi->tick_time = ffth->tick_time_lerp;
 1055                 ffi->tick_time_lerp = ffth->tick_time_lerp;
 1056                 ffi->period = ffth->cest.period;
 1057                 ffi->period_lerp = ffth->period_lerp;
 1058                 clock_snap->ffcount = ffth->tick_ffcount;
 1059                 cest = ffth->cest;
 1060 #endif
 1061                 if (!fast)
 1062                         delta = tc_delta(th);
 1063                 atomic_thread_fence_acq();
 1064         } while (gen == 0 || gen != th->th_generation);
 1065 
 1066         clock_snap->delta = delta;
 1067         clock_snap->sysclock_active = sysclock_active;
 1068 
 1069         /* Record feedback clock status and error. */
 1070         clock_snap->fb_info.status = time_status;
 1071         /* XXX: Very crude estimate of feedback clock error. */
 1072         bt.sec = time_esterror / 1000000;
 1073         bt.frac = ((time_esterror - bt.sec) * 1000000) *
 1074             (uint64_t)18446744073709ULL;
 1075         clock_snap->fb_info.error = bt;
 1076 
 1077 #ifdef FFCLOCK
 1078         if (!fast)
 1079                 clock_snap->ffcount += delta;
 1080 
 1081         /* Record feed-forward clock leap second adjustment. */
 1082         ffi->leapsec_adjustment = cest.leapsec_total;
 1083         if (clock_snap->ffcount > cest.leapsec_next)
 1084                 ffi->leapsec_adjustment -= cest.leapsec;
 1085 
 1086         /* Record feed-forward clock status and error. */
 1087         clock_snap->ff_info.status = cest.status;
 1088         ffcount = clock_snap->ffcount - cest.update_ffcount;
 1089         ffclock_convert_delta(ffcount, cest.period, &bt);
 1090         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
 1091         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
 1092         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
 1093         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
 1094         clock_snap->ff_info.error = bt;
 1095 #endif
 1096 }
 1097 
 1098 /*
 1099  * Convert a sysclock snapshot into a struct bintime based on the specified
 1100  * clock source and flags.
 1101  */
 1102 int
 1103 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
 1104     int whichclock, uint32_t flags)
 1105 {
 1106 #ifdef FFCLOCK
 1107         struct bintime bt2;
 1108         uint64_t period;
 1109 #endif
 1110 
 1111         switch (whichclock) {
 1112         case SYSCLOCK_FBCK:
 1113                 *bt = cs->fb_info.tick_time;
 1114 
 1115                 /* If snapshot was created with !fast, delta will be >0. */
 1116                 if (cs->delta > 0)
 1117                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
 1118 
 1119                 if ((flags & FBCLOCK_UPTIME) == 0)
 1120                         bintime_add(bt, &boottimebin);
 1121                 break;
 1122 #ifdef FFCLOCK
 1123         case SYSCLOCK_FFWD:
 1124                 if (flags & FFCLOCK_LERP) {
 1125                         *bt = cs->ff_info.tick_time_lerp;
 1126                         period = cs->ff_info.period_lerp;
 1127                 } else {
 1128                         *bt = cs->ff_info.tick_time;
 1129                         period = cs->ff_info.period;
 1130                 }
 1131 
 1132                 /* If snapshot was created with !fast, delta will be >0. */
 1133                 if (cs->delta > 0) {
 1134                         ffclock_convert_delta(cs->delta, period, &bt2);
 1135                         bintime_add(bt, &bt2);
 1136                 }
 1137 
 1138                 /* Leap second adjustment. */
 1139                 if (flags & FFCLOCK_LEAPSEC)
 1140                         bt->sec -= cs->ff_info.leapsec_adjustment;
 1141 
 1142                 /* Boot time adjustment, for uptime/monotonic clocks. */
 1143                 if (flags & FFCLOCK_UPTIME)
 1144                         bintime_sub(bt, &ffclock_boottime);
 1145                 break;
 1146 #endif
 1147         default:
 1148                 return (EINVAL);
 1149                 break;
 1150         }
 1151 
 1152         return (0);
 1153 }
 1154 
 1155 /*
 1156  * Initialize a new timecounter and possibly use it.
 1157  */
 1158 void
 1159 tc_init(struct timecounter *tc)
 1160 {
 1161         u_int u;
 1162         struct sysctl_oid *tc_root;
 1163 
 1164         u = tc->tc_frequency / tc->tc_counter_mask;
 1165         /* XXX: We need some margin here, 10% is a guess */
 1166         u *= 11;
 1167         u /= 10;
 1168         if (u > hz && tc->tc_quality >= 0) {
 1169                 tc->tc_quality = -2000;
 1170                 if (bootverbose) {
 1171                         printf("Timecounter \"%s\" frequency %ju Hz",
 1172                             tc->tc_name, (uintmax_t)tc->tc_frequency);
 1173                         printf(" -- Insufficient hz, needs at least %u\n", u);
 1174                 }
 1175         } else if (tc->tc_quality >= 0 || bootverbose) {
 1176                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
 1177                     tc->tc_name, (uintmax_t)tc->tc_frequency,
 1178                     tc->tc_quality);
 1179         }
 1180 
 1181         tc->tc_next = timecounters;
 1182         timecounters = tc;
 1183         /*
 1184          * Set up sysctl tree for this counter.
 1185          */
 1186         tc_root = SYSCTL_ADD_NODE(NULL,
 1187             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
 1188             CTLFLAG_RW, 0, "timecounter description");
 1189         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
 1190             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
 1191             "mask for implemented bits");
 1192         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
 1193             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
 1194             sysctl_kern_timecounter_get, "IU", "current timecounter value");
 1195         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
 1196             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
 1197              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
 1198         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
 1199             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
 1200             "goodness of time counter");
 1201         /*
 1202          * Do not automatically switch if the current tc was specifically
 1203          * chosen.  Never automatically use a timecounter with negative quality.
 1204          * Even though we run on the dummy counter, switching here may be
 1205          * worse since this timecounter may not be monotonic.
 1206          */
 1207         if (tc_chosen)
 1208                 return;
 1209         if (tc->tc_quality < 0)
 1210                 return;
 1211         if (tc->tc_quality < timecounter->tc_quality)
 1212                 return;
 1213         if (tc->tc_quality == timecounter->tc_quality &&
 1214             tc->tc_frequency < timecounter->tc_frequency)
 1215                 return;
 1216         (void)tc->tc_get_timecount(tc);
 1217         (void)tc->tc_get_timecount(tc);
 1218         timecounter = tc;
 1219 }
 1220 
 1221 /* Report the frequency of the current timecounter. */
 1222 uint64_t
 1223 tc_getfrequency(void)
 1224 {
 1225 
 1226         return (timehands->th_counter->tc_frequency);
 1227 }
 1228 
 1229 /*
 1230  * Step our concept of UTC.  This is done by modifying our estimate of
 1231  * when we booted.
 1232  * XXX: not locked.
 1233  */
 1234 void
 1235 tc_setclock(struct timespec *ts)
 1236 {
 1237         struct timespec tbef, taft;
 1238         struct bintime bt, bt2;
 1239 
 1240         cpu_tick_calibrate(1);
 1241         nanotime(&tbef);
 1242         timespec2bintime(ts, &bt);
 1243         binuptime(&bt2);
 1244         bintime_sub(&bt, &bt2);
 1245         bintime_add(&bt2, &boottimebin);
 1246         boottimebin = bt;
 1247         bintime2timeval(&bt, &boottime);
 1248 
 1249         /* XXX fiddle all the little crinkly bits around the fiords... */
 1250         tc_windup();
 1251         nanotime(&taft);
 1252         if (timestepwarnings) {
 1253                 log(LOG_INFO,
 1254                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
 1255                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
 1256                     (intmax_t)taft.tv_sec, taft.tv_nsec,
 1257                     (intmax_t)ts->tv_sec, ts->tv_nsec);
 1258         }
 1259         cpu_tick_calibrate(1);
 1260 }
 1261 
 1262 /*
 1263  * Initialize the next struct timehands in the ring and make
 1264  * it the active timehands.  Along the way we might switch to a different
 1265  * timecounter and/or do seconds processing in NTP.  Slightly magic.
 1266  */
 1267 static void
 1268 tc_windup(void)
 1269 {
 1270         struct bintime bt;
 1271         struct timehands *th, *tho;
 1272         uint64_t scale;
 1273         u_int delta, ncount, ogen;
 1274         int i;
 1275         time_t t;
 1276 
 1277         /*
 1278          * Make the next timehands a copy of the current one, but do
 1279          * not overwrite the generation or next pointer.  While we
 1280          * update the contents, the generation must be zero.  We need
 1281          * to ensure that the zero generation is visible before the
 1282          * data updates become visible, which requires release fence.
 1283          * For similar reasons, re-reading of the generation after the
 1284          * data is read should use acquire fence.
 1285          */
 1286         tho = timehands;
 1287         th = tho->th_next;
 1288         ogen = th->th_generation;
 1289         th->th_generation = 0;
 1290         atomic_thread_fence_rel();
 1291         bcopy(tho, th, offsetof(struct timehands, th_generation));
 1292 
 1293         /*
 1294          * Capture a timecounter delta on the current timecounter and if
 1295          * changing timecounters, a counter value from the new timecounter.
 1296          * Update the offset fields accordingly.
 1297          */
 1298         delta = tc_delta(th);
 1299         if (th->th_counter != timecounter)
 1300                 ncount = timecounter->tc_get_timecount(timecounter);
 1301         else
 1302                 ncount = 0;
 1303 #ifdef FFCLOCK
 1304         ffclock_windup(delta);
 1305 #endif
 1306         th->th_offset_count += delta;
 1307         th->th_offset_count &= th->th_counter->tc_counter_mask;
 1308         while (delta > th->th_counter->tc_frequency) {
 1309                 /* Eat complete unadjusted seconds. */
 1310                 delta -= th->th_counter->tc_frequency;
 1311                 th->th_offset.sec++;
 1312         }
 1313         if ((delta > th->th_counter->tc_frequency / 2) &&
 1314             (th->th_scale * delta < ((uint64_t)1 << 63))) {
 1315                 /* The product th_scale * delta just barely overflows. */
 1316                 th->th_offset.sec++;
 1317         }
 1318         bintime_addx(&th->th_offset, th->th_scale * delta);
 1319 
 1320         /*
 1321          * Hardware latching timecounters may not generate interrupts on
 1322          * PPS events, so instead we poll them.  There is a finite risk that
 1323          * the hardware might capture a count which is later than the one we
 1324          * got above, and therefore possibly in the next NTP second which might
 1325          * have a different rate than the current NTP second.  It doesn't
 1326          * matter in practice.
 1327          */
 1328         if (tho->th_counter->tc_poll_pps)
 1329                 tho->th_counter->tc_poll_pps(tho->th_counter);
 1330 
 1331         /*
 1332          * Deal with NTP second processing.  The for loop normally
 1333          * iterates at most once, but in extreme situations it might
 1334          * keep NTP sane if timeouts are not run for several seconds.
 1335          * At boot, the time step can be large when the TOD hardware
 1336          * has been read, so on really large steps, we call
 1337          * ntp_update_second only twice.  We need to call it twice in
 1338          * case we missed a leap second.
 1339          */
 1340         bt = th->th_offset;
 1341         bintime_add(&bt, &boottimebin);
 1342         i = bt.sec - tho->th_microtime.tv_sec;
 1343         if (i > LARGE_STEP)
 1344                 i = 2;
 1345         for (; i > 0; i--) {
 1346                 t = bt.sec;
 1347                 ntp_update_second(&th->th_adjustment, &bt.sec);
 1348                 if (bt.sec != t)
 1349                         boottimebin.sec += bt.sec - t;
 1350         }
 1351         /* Update the UTC timestamps used by the get*() functions. */
 1352         /* XXX shouldn't do this here.  Should force non-`get' versions. */
 1353         bintime2timeval(&bt, &th->th_microtime);
 1354         bintime2timespec(&bt, &th->th_nanotime);
 1355 
 1356         /* Now is a good time to change timecounters. */
 1357         if (th->th_counter != timecounter) {
 1358 #ifndef __arm__
 1359                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
 1360                         cpu_disable_c2_sleep++;
 1361                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
 1362                         cpu_disable_c2_sleep--;
 1363 #endif
 1364                 th->th_counter = timecounter;
 1365                 th->th_offset_count = ncount;
 1366                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
 1367                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
 1368 #ifdef FFCLOCK
 1369                 ffclock_change_tc(th);
 1370 #endif
 1371         }
 1372 
 1373         /*-
 1374          * Recalculate the scaling factor.  We want the number of 1/2^64
 1375          * fractions of a second per period of the hardware counter, taking
 1376          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
 1377          * processing provides us with.
 1378          *
 1379          * The th_adjustment is nanoseconds per second with 32 bit binary
 1380          * fraction and we want 64 bit binary fraction of second:
 1381          *
 1382          *       x = a * 2^32 / 10^9 = a * 4.294967296
 1383          *
 1384          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
 1385          * we can only multiply by about 850 without overflowing, that
 1386          * leaves no suitably precise fractions for multiply before divide.
 1387          *
 1388          * Divide before multiply with a fraction of 2199/512 results in a
 1389          * systematic undercompensation of 10PPM of th_adjustment.  On a
 1390          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
 1391          *
 1392          * We happily sacrifice the lowest of the 64 bits of our result
 1393          * to the goddess of code clarity.
 1394          *
 1395          */
 1396         scale = (uint64_t)1 << 63;
 1397         scale += (th->th_adjustment / 1024) * 2199;
 1398         scale /= th->th_counter->tc_frequency;
 1399         th->th_scale = scale * 2;
 1400 
 1401         /*
 1402          * Now that the struct timehands is again consistent, set the new
 1403          * generation number, making sure to not make it zero.
 1404          */
 1405         if (++ogen == 0)
 1406                 ogen = 1;
 1407         atomic_store_rel_int(&th->th_generation, ogen);
 1408 
 1409         /* Go live with the new struct timehands. */
 1410 #ifdef FFCLOCK
 1411         switch (sysclock_active) {
 1412         case SYSCLOCK_FBCK:
 1413 #endif
 1414                 time_second = th->th_microtime.tv_sec;
 1415                 time_uptime = th->th_offset.sec;
 1416 #ifdef FFCLOCK
 1417                 break;
 1418         case SYSCLOCK_FFWD:
 1419                 time_second = fftimehands->tick_time_lerp.sec;
 1420                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
 1421                 break;
 1422         }
 1423 #endif
 1424 
 1425         timehands = th;
 1426         timekeep_push_vdso();
 1427 }
 1428 
 1429 /* Report or change the active timecounter hardware. */
 1430 static int
 1431 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
 1432 {
 1433         char newname[32];
 1434         struct timecounter *newtc, *tc;
 1435         int error;
 1436 
 1437         tc = timecounter;
 1438         strlcpy(newname, tc->tc_name, sizeof(newname));
 1439 
 1440         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
 1441         if (error != 0 || req->newptr == NULL)
 1442                 return (error);
 1443         /* Record that the tc in use now was specifically chosen. */
 1444         tc_chosen = 1;
 1445         if (strcmp(newname, tc->tc_name) == 0)
 1446                 return (0);
 1447         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
 1448                 if (strcmp(newname, newtc->tc_name) != 0)
 1449                         continue;
 1450 
 1451                 /* Warm up new timecounter. */
 1452                 (void)newtc->tc_get_timecount(newtc);
 1453                 (void)newtc->tc_get_timecount(newtc);
 1454 
 1455                 timecounter = newtc;
 1456 
 1457                 /*
 1458                  * The vdso timehands update is deferred until the next
 1459                  * 'tc_windup()'.
 1460                  *
 1461                  * This is prudent given that 'timekeep_push_vdso()' does not
 1462                  * use any locking and that it can be called in hard interrupt
 1463                  * context via 'tc_windup()'.
 1464                  */
 1465                 return (0);
 1466         }
 1467         return (EINVAL);
 1468 }
 1469 
 1470 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
 1471     0, 0, sysctl_kern_timecounter_hardware, "A",
 1472     "Timecounter hardware selected");
 1473 
 1474 
 1475 /* Report the available timecounter hardware. */
 1476 static int
 1477 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
 1478 {
 1479         struct sbuf sb;
 1480         struct timecounter *tc;
 1481         int error;
 1482 
 1483         sbuf_new_for_sysctl(&sb, NULL, 0, req);
 1484         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
 1485                 if (tc != timecounters)
 1486                         sbuf_putc(&sb, ' ');
 1487                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
 1488         }
 1489         error = sbuf_finish(&sb);
 1490         sbuf_delete(&sb);
 1491         return (error);
 1492 }
 1493 
 1494 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
 1495     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
 1496 
 1497 /*
 1498  * RFC 2783 PPS-API implementation.
 1499  */
 1500 
 1501 /*
 1502  *  Return true if the driver is aware of the abi version extensions in the
 1503  *  pps_state structure, and it supports at least the given abi version number.
 1504  */
 1505 static inline int
 1506 abi_aware(struct pps_state *pps, int vers)
 1507 {
 1508 
 1509         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
 1510 }
 1511 
 1512 static int
 1513 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
 1514 {
 1515         int err, timo;
 1516         pps_seq_t aseq, cseq;
 1517         struct timeval tv;
 1518 
 1519         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
 1520                 return (EINVAL);
 1521 
 1522         /*
 1523          * If no timeout is requested, immediately return whatever values were
 1524          * most recently captured.  If timeout seconds is -1, that's a request
 1525          * to block without a timeout.  WITNESS won't let us sleep forever
 1526          * without a lock (we really don't need a lock), so just repeatedly
 1527          * sleep a long time.
 1528          */
 1529         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
 1530                 if (fapi->timeout.tv_sec == -1)
 1531                         timo = 0x7fffffff;
 1532                 else {
 1533                         tv.tv_sec = fapi->timeout.tv_sec;
 1534                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
 1535                         timo = tvtohz(&tv);
 1536                 }
 1537                 aseq = pps->ppsinfo.assert_sequence;
 1538                 cseq = pps->ppsinfo.clear_sequence;
 1539                 while (aseq == pps->ppsinfo.assert_sequence &&
 1540                     cseq == pps->ppsinfo.clear_sequence) {
 1541                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
 1542                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
 1543                                         err = msleep_spin(pps, pps->driver_mtx,
 1544                                             "ppsfch", timo);
 1545                                 } else {
 1546                                         err = msleep(pps, pps->driver_mtx, PCATCH,
 1547                                             "ppsfch", timo);
 1548                                 }
 1549                         } else {
 1550                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
 1551                         }
 1552                         if (err == EWOULDBLOCK) {
 1553                                 if (fapi->timeout.tv_sec == -1) {
 1554                                         continue;
 1555                                 } else {
 1556                                         return (ETIMEDOUT);
 1557                                 }
 1558                         } else if (err != 0) {
 1559                                 return (err);
 1560                         }
 1561                 }
 1562         }
 1563 
 1564         pps->ppsinfo.current_mode = pps->ppsparam.mode;
 1565         fapi->pps_info_buf = pps->ppsinfo;
 1566 
 1567         return (0);
 1568 }
 1569 
 1570 int
 1571 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
 1572 {
 1573         pps_params_t *app;
 1574         struct pps_fetch_args *fapi;
 1575 #ifdef FFCLOCK
 1576         struct pps_fetch_ffc_args *fapi_ffc;
 1577 #endif
 1578 #ifdef PPS_SYNC
 1579         struct pps_kcbind_args *kapi;
 1580 #endif
 1581 
 1582         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
 1583         switch (cmd) {
 1584         case PPS_IOC_CREATE:
 1585                 return (0);
 1586         case PPS_IOC_DESTROY:
 1587                 return (0);
 1588         case PPS_IOC_SETPARAMS:
 1589                 app = (pps_params_t *)data;
 1590                 if (app->mode & ~pps->ppscap)
 1591                         return (EINVAL);
 1592 #ifdef FFCLOCK
 1593                 /* Ensure only a single clock is selected for ffc timestamp. */
 1594                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
 1595                         return (EINVAL);
 1596 #endif
 1597                 pps->ppsparam = *app;
 1598                 return (0);
 1599         case PPS_IOC_GETPARAMS:
 1600                 app = (pps_params_t *)data;
 1601                 *app = pps->ppsparam;
 1602                 app->api_version = PPS_API_VERS_1;
 1603                 return (0);
 1604         case PPS_IOC_GETCAP:
 1605                 *(int*)data = pps->ppscap;
 1606                 return (0);
 1607         case PPS_IOC_FETCH:
 1608                 fapi = (struct pps_fetch_args *)data;
 1609                 return (pps_fetch(fapi, pps));
 1610 #ifdef FFCLOCK
 1611         case PPS_IOC_FETCH_FFCOUNTER:
 1612                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
 1613                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
 1614                     PPS_TSFMT_TSPEC)
 1615                         return (EINVAL);
 1616                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
 1617                         return (EOPNOTSUPP);
 1618                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
 1619                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
 1620                 /* Overwrite timestamps if feedback clock selected. */
 1621                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
 1622                 case PPS_TSCLK_FBCK:
 1623                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
 1624                             pps->ppsinfo.assert_timestamp;
 1625                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
 1626                             pps->ppsinfo.clear_timestamp;
 1627                         break;
 1628                 case PPS_TSCLK_FFWD:
 1629                         break;
 1630                 default:
 1631                         break;
 1632                 }
 1633                 return (0);
 1634 #endif /* FFCLOCK */
 1635         case PPS_IOC_KCBIND:
 1636 #ifdef PPS_SYNC
 1637                 kapi = (struct pps_kcbind_args *)data;
 1638                 /* XXX Only root should be able to do this */
 1639                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
 1640                         return (EINVAL);
 1641                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
 1642                         return (EINVAL);
 1643                 if (kapi->edge & ~pps->ppscap)
 1644                         return (EINVAL);
 1645                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
 1646                     (pps->kcmode & KCMODE_ABIFLAG);
 1647                 return (0);
 1648 #else
 1649                 return (EOPNOTSUPP);
 1650 #endif
 1651         default:
 1652                 return (ENOIOCTL);
 1653         }
 1654 }
 1655 
 1656 void
 1657 pps_init(struct pps_state *pps)
 1658 {
 1659         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
 1660         if (pps->ppscap & PPS_CAPTUREASSERT)
 1661                 pps->ppscap |= PPS_OFFSETASSERT;
 1662         if (pps->ppscap & PPS_CAPTURECLEAR)
 1663                 pps->ppscap |= PPS_OFFSETCLEAR;
 1664 #ifdef FFCLOCK
 1665         pps->ppscap |= PPS_TSCLK_MASK;
 1666 #endif
 1667         pps->kcmode &= ~KCMODE_ABIFLAG;
 1668 }
 1669 
 1670 void
 1671 pps_init_abi(struct pps_state *pps)
 1672 {
 1673 
 1674         pps_init(pps);
 1675         if (pps->driver_abi > 0) {
 1676                 pps->kcmode |= KCMODE_ABIFLAG;
 1677                 pps->kernel_abi = PPS_ABI_VERSION;
 1678         }
 1679 }
 1680 
 1681 void
 1682 pps_capture(struct pps_state *pps)
 1683 {
 1684         struct timehands *th;
 1685 
 1686         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
 1687         th = timehands;
 1688         pps->capgen = atomic_load_acq_int(&th->th_generation);
 1689         pps->capth = th;
 1690 #ifdef FFCLOCK
 1691         pps->capffth = fftimehands;
 1692 #endif
 1693         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
 1694         atomic_thread_fence_acq();
 1695         if (pps->capgen != th->th_generation)
 1696                 pps->capgen = 0;
 1697 }
 1698 
 1699 void
 1700 pps_event(struct pps_state *pps, int event)
 1701 {
 1702         struct bintime bt;
 1703         struct timespec ts, *tsp, *osp;
 1704         u_int tcount, *pcount;
 1705         int foff;
 1706         pps_seq_t *pseq;
 1707 #ifdef FFCLOCK
 1708         struct timespec *tsp_ffc;
 1709         pps_seq_t *pseq_ffc;
 1710         ffcounter *ffcount;
 1711 #endif
 1712 #ifdef PPS_SYNC
 1713         int fhard;
 1714 #endif
 1715 
 1716         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
 1717         /* Nothing to do if not currently set to capture this event type. */
 1718         if ((event & pps->ppsparam.mode) == 0)
 1719                 return;
 1720         /* If the timecounter was wound up underneath us, bail out. */
 1721         if (pps->capgen == 0 || pps->capgen !=
 1722             atomic_load_acq_int(&pps->capth->th_generation))
 1723                 return;
 1724 
 1725         /* Things would be easier with arrays. */
 1726         if (event == PPS_CAPTUREASSERT) {
 1727                 tsp = &pps->ppsinfo.assert_timestamp;
 1728                 osp = &pps->ppsparam.assert_offset;
 1729                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
 1730 #ifdef PPS_SYNC
 1731                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
 1732 #endif
 1733                 pcount = &pps->ppscount[0];
 1734                 pseq = &pps->ppsinfo.assert_sequence;
 1735 #ifdef FFCLOCK
 1736                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
 1737                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
 1738                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
 1739 #endif
 1740         } else {
 1741                 tsp = &pps->ppsinfo.clear_timestamp;
 1742                 osp = &pps->ppsparam.clear_offset;
 1743                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
 1744 #ifdef PPS_SYNC
 1745                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
 1746 #endif
 1747                 pcount = &pps->ppscount[1];
 1748                 pseq = &pps->ppsinfo.clear_sequence;
 1749 #ifdef FFCLOCK
 1750                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
 1751                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
 1752                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
 1753 #endif
 1754         }
 1755 
 1756         /*
 1757          * If the timecounter changed, we cannot compare the count values, so
 1758          * we have to drop the rest of the PPS-stuff until the next event.
 1759          */
 1760         if (pps->ppstc != pps->capth->th_counter) {
 1761                 pps->ppstc = pps->capth->th_counter;
 1762                 *pcount = pps->capcount;
 1763                 pps->ppscount[2] = pps->capcount;
 1764                 return;
 1765         }
 1766 
 1767         /* Convert the count to a timespec. */
 1768         tcount = pps->capcount - pps->capth->th_offset_count;
 1769         tcount &= pps->capth->th_counter->tc_counter_mask;
 1770         bt = pps->capth->th_offset;
 1771         bintime_addx(&bt, pps->capth->th_scale * tcount);
 1772         bintime_add(&bt, &boottimebin);
 1773         bintime2timespec(&bt, &ts);
 1774 
 1775         /* If the timecounter was wound up underneath us, bail out. */
 1776         atomic_thread_fence_acq();
 1777         if (pps->capgen != pps->capth->th_generation)
 1778                 return;
 1779 
 1780         *pcount = pps->capcount;
 1781         (*pseq)++;
 1782         *tsp = ts;
 1783 
 1784         if (foff) {
 1785                 timespecadd(tsp, osp);
 1786                 if (tsp->tv_nsec < 0) {
 1787                         tsp->tv_nsec += 1000000000;
 1788                         tsp->tv_sec -= 1;
 1789                 }
 1790         }
 1791 
 1792 #ifdef FFCLOCK
 1793         *ffcount = pps->capffth->tick_ffcount + tcount;
 1794         bt = pps->capffth->tick_time;
 1795         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
 1796         bintime_add(&bt, &pps->capffth->tick_time);
 1797         bintime2timespec(&bt, &ts);
 1798         (*pseq_ffc)++;
 1799         *tsp_ffc = ts;
 1800 #endif
 1801 
 1802 #ifdef PPS_SYNC
 1803         if (fhard) {
 1804                 uint64_t scale;
 1805 
 1806                 /*
 1807                  * Feed the NTP PLL/FLL.
 1808                  * The FLL wants to know how many (hardware) nanoseconds
 1809                  * elapsed since the previous event.
 1810                  */
 1811                 tcount = pps->capcount - pps->ppscount[2];
 1812                 pps->ppscount[2] = pps->capcount;
 1813                 tcount &= pps->capth->th_counter->tc_counter_mask;
 1814                 scale = (uint64_t)1 << 63;
 1815                 scale /= pps->capth->th_counter->tc_frequency;
 1816                 scale *= 2;
 1817                 bt.sec = 0;
 1818                 bt.frac = 0;
 1819                 bintime_addx(&bt, scale * tcount);
 1820                 bintime2timespec(&bt, &ts);
 1821                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
 1822         }
 1823 #endif
 1824 
 1825         /* Wakeup anyone sleeping in pps_fetch().  */
 1826         wakeup(pps);
 1827 }
 1828 
 1829 /*
 1830  * Timecounters need to be updated every so often to prevent the hardware
 1831  * counter from overflowing.  Updating also recalculates the cached values
 1832  * used by the get*() family of functions, so their precision depends on
 1833  * the update frequency.
 1834  */
 1835 
 1836 static int tc_tick;
 1837 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
 1838     "Approximate number of hardclock ticks in a millisecond");
 1839 
 1840 void
 1841 tc_ticktock(int cnt)
 1842 {
 1843         static int count;
 1844 
 1845         count += cnt;
 1846         if (count < tc_tick)
 1847                 return;
 1848         count = 0;
 1849         tc_windup();
 1850 }
 1851 
 1852 static void __inline
 1853 tc_adjprecision(void)
 1854 {
 1855         int t;
 1856 
 1857         if (tc_timepercentage > 0) {
 1858                 t = (99 + tc_timepercentage) / tc_timepercentage;
 1859                 tc_precexp = fls(t + (t >> 1)) - 1;
 1860                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
 1861                 FREQ2BT(hz, &bt_tickthreshold);
 1862                 bintime_shift(&bt_timethreshold, tc_precexp);
 1863                 bintime_shift(&bt_tickthreshold, tc_precexp);
 1864         } else {
 1865                 tc_precexp = 31;
 1866                 bt_timethreshold.sec = INT_MAX;
 1867                 bt_timethreshold.frac = ~(uint64_t)0;
 1868                 bt_tickthreshold = bt_timethreshold;
 1869         }
 1870         sbt_timethreshold = bttosbt(bt_timethreshold);
 1871         sbt_tickthreshold = bttosbt(bt_tickthreshold);
 1872 }
 1873 
 1874 static int
 1875 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
 1876 {
 1877         int error, val;
 1878 
 1879         val = tc_timepercentage;
 1880         error = sysctl_handle_int(oidp, &val, 0, req);
 1881         if (error != 0 || req->newptr == NULL)
 1882                 return (error);
 1883         tc_timepercentage = val;
 1884         if (cold)
 1885                 goto done;
 1886         tc_adjprecision();
 1887 done:
 1888         return (0);
 1889 }
 1890 
 1891 static void
 1892 inittimecounter(void *dummy)
 1893 {
 1894         u_int p;
 1895         int tick_rate;
 1896 
 1897         /*
 1898          * Set the initial timeout to
 1899          * max(1, <approx. number of hardclock ticks in a millisecond>).
 1900          * People should probably not use the sysctl to set the timeout
 1901          * to smaller than its initial value, since that value is the
 1902          * smallest reasonable one.  If they want better timestamps they
 1903          * should use the non-"get"* functions.
 1904          */
 1905         if (hz > 1000)
 1906                 tc_tick = (hz + 500) / 1000;
 1907         else
 1908                 tc_tick = 1;
 1909         tc_adjprecision();
 1910         FREQ2BT(hz, &tick_bt);
 1911         tick_sbt = bttosbt(tick_bt);
 1912         tick_rate = hz / tc_tick;
 1913         FREQ2BT(tick_rate, &tc_tick_bt);
 1914         tc_tick_sbt = bttosbt(tc_tick_bt);
 1915         p = (tc_tick * 1000000) / hz;
 1916         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
 1917 
 1918 #ifdef FFCLOCK
 1919         ffclock_init();
 1920 #endif
 1921         /* warm up new timecounter (again) and get rolling. */
 1922         (void)timecounter->tc_get_timecount(timecounter);
 1923         (void)timecounter->tc_get_timecount(timecounter);
 1924         tc_windup();
 1925 }
 1926 
 1927 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
 1928 
 1929 /* Cpu tick handling -------------------------------------------------*/
 1930 
 1931 static int cpu_tick_variable;
 1932 static uint64_t cpu_tick_frequency;
 1933 
 1934 static DPCPU_DEFINE(uint64_t, tc_cpu_ticks_base);
 1935 static DPCPU_DEFINE(unsigned, tc_cpu_ticks_last);
 1936 
 1937 static uint64_t
 1938 tc_cpu_ticks(void)
 1939 {
 1940         struct timecounter *tc;
 1941         uint64_t res, *base;
 1942         unsigned u, *last;
 1943 
 1944         critical_enter();
 1945         base = DPCPU_PTR(tc_cpu_ticks_base);
 1946         last = DPCPU_PTR(tc_cpu_ticks_last);
 1947         tc = timehands->th_counter;
 1948         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
 1949         if (u < *last)
 1950                 *base += (uint64_t)tc->tc_counter_mask + 1;
 1951         *last = u;
 1952         res = u + *base;
 1953         critical_exit();
 1954         return (res);
 1955 }
 1956 
 1957 void
 1958 cpu_tick_calibration(void)
 1959 {
 1960         static time_t last_calib;
 1961 
 1962         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
 1963                 cpu_tick_calibrate(0);
 1964                 last_calib = time_uptime;
 1965         }
 1966 }
 1967 
 1968 /*
 1969  * This function gets called every 16 seconds on only one designated
 1970  * CPU in the system from hardclock() via cpu_tick_calibration()().
 1971  *
 1972  * Whenever the real time clock is stepped we get called with reset=1
 1973  * to make sure we handle suspend/resume and similar events correctly.
 1974  */
 1975 
 1976 static void
 1977 cpu_tick_calibrate(int reset)
 1978 {
 1979         static uint64_t c_last;
 1980         uint64_t c_this, c_delta;
 1981         static struct bintime  t_last;
 1982         struct bintime t_this, t_delta;
 1983         uint32_t divi;
 1984 
 1985         if (reset) {
 1986                 /* The clock was stepped, abort & reset */
 1987                 t_last.sec = 0;
 1988                 return;
 1989         }
 1990 
 1991         /* we don't calibrate fixed rate cputicks */
 1992         if (!cpu_tick_variable)
 1993                 return;
 1994 
 1995         getbinuptime(&t_this);
 1996         c_this = cpu_ticks();
 1997         if (t_last.sec != 0) {
 1998                 c_delta = c_this - c_last;
 1999                 t_delta = t_this;
 2000                 bintime_sub(&t_delta, &t_last);
 2001                 /*
 2002                  * Headroom:
 2003                  *      2^(64-20) / 16[s] =
 2004                  *      2^(44) / 16[s] =
 2005                  *      17.592.186.044.416 / 16 =
 2006                  *      1.099.511.627.776 [Hz]
 2007                  */
 2008                 divi = t_delta.sec << 20;
 2009                 divi |= t_delta.frac >> (64 - 20);
 2010                 c_delta <<= 20;
 2011                 c_delta /= divi;
 2012                 if (c_delta > cpu_tick_frequency) {
 2013                         if (0 && bootverbose)
 2014                                 printf("cpu_tick increased to %ju Hz\n",
 2015                                     c_delta);
 2016                         cpu_tick_frequency = c_delta;
 2017                 }
 2018         }
 2019         c_last = c_this;
 2020         t_last = t_this;
 2021 }
 2022 
 2023 void
 2024 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
 2025 {
 2026 
 2027         if (func == NULL) {
 2028                 cpu_ticks = tc_cpu_ticks;
 2029         } else {
 2030                 cpu_tick_frequency = freq;
 2031                 cpu_tick_variable = var;
 2032                 cpu_ticks = func;
 2033         }
 2034 }
 2035 
 2036 uint64_t
 2037 cpu_tickrate(void)
 2038 {
 2039 
 2040         if (cpu_ticks == tc_cpu_ticks) 
 2041                 return (tc_getfrequency());
 2042         return (cpu_tick_frequency);
 2043 }
 2044 
 2045 /*
 2046  * We need to be slightly careful converting cputicks to microseconds.
 2047  * There is plenty of margin in 64 bits of microseconds (half a million
 2048  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
 2049  * before divide conversion (to retain precision) we find that the
 2050  * margin shrinks to 1.5 hours (one millionth of 146y).
 2051  * With a three prong approach we never lose significant bits, no
 2052  * matter what the cputick rate and length of timeinterval is.
 2053  */
 2054 
 2055 uint64_t
 2056 cputick2usec(uint64_t tick)
 2057 {
 2058 
 2059         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
 2060                 return (tick / (cpu_tickrate() / 1000000LL));
 2061         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
 2062                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
 2063         else
 2064                 return ((tick * 1000000LL) / cpu_tickrate());
 2065 }
 2066 
 2067 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
 2068 
 2069 static int vdso_th_enable = 1;
 2070 static int
 2071 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
 2072 {
 2073         int old_vdso_th_enable, error;
 2074 
 2075         old_vdso_th_enable = vdso_th_enable;
 2076         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
 2077         if (error != 0)
 2078                 return (error);
 2079         vdso_th_enable = old_vdso_th_enable;
 2080         return (0);
 2081 }
 2082 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
 2083     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
 2084     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
 2085 
 2086 uint32_t
 2087 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
 2088 {
 2089         struct timehands *th;
 2090         uint32_t enabled;
 2091 
 2092         th = timehands;
 2093         vdso_th->th_algo = VDSO_TH_ALGO_1;
 2094         vdso_th->th_scale = th->th_scale;
 2095         vdso_th->th_offset_count = th->th_offset_count;
 2096         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
 2097         vdso_th->th_offset = th->th_offset;
 2098         vdso_th->th_boottime = boottimebin;
 2099         enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter);
 2100         if (!vdso_th_enable)
 2101                 enabled = 0;
 2102         return (enabled);
 2103 }
 2104 
 2105 #ifdef COMPAT_FREEBSD32
 2106 uint32_t
 2107 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
 2108 {
 2109         struct timehands *th;
 2110         uint32_t enabled;
 2111 
 2112         th = timehands;
 2113         vdso_th32->th_algo = VDSO_TH_ALGO_1;
 2114         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
 2115         vdso_th32->th_offset_count = th->th_offset_count;
 2116         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
 2117         vdso_th32->th_offset.sec = th->th_offset.sec;
 2118         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
 2119         vdso_th32->th_boottime.sec = boottimebin.sec;
 2120         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
 2121         enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter);
 2122         if (!vdso_th_enable)
 2123                 enabled = 0;
 2124         return (enabled);
 2125 }
 2126 #endif

Cache object: 42b62932986dbe98b6fbe4b89693e891


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.