The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_tc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: Beerware
    3  *
    4  * ----------------------------------------------------------------------------
    5  * "THE BEER-WARE LICENSE" (Revision 42):
    6  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
    7  * can do whatever you want with this stuff. If we meet some day, and you think
    8  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
    9  * ----------------------------------------------------------------------------
   10  *
   11  * Copyright (c) 2011, 2015, 2016 The FreeBSD Foundation
   12  * All rights reserved.
   13  *
   14  * Portions of this software were developed by Julien Ridoux at the University
   15  * of Melbourne under sponsorship from the FreeBSD Foundation.
   16  *
   17  * Portions of this software were developed by Konstantin Belousov
   18  * under sponsorship from the FreeBSD Foundation.
   19  */
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD: releng/12.0/sys/kern/kern_tc.c 336914 2018-07-30 15:46:40Z asomers $");
   23 
   24 #include "opt_ntp.h"
   25 #include "opt_ffclock.h"
   26 
   27 #include <sys/param.h>
   28 #include <sys/kernel.h>
   29 #include <sys/limits.h>
   30 #include <sys/lock.h>
   31 #include <sys/mutex.h>
   32 #include <sys/proc.h>
   33 #include <sys/sbuf.h>
   34 #include <sys/sleepqueue.h>
   35 #include <sys/sysctl.h>
   36 #include <sys/syslog.h>
   37 #include <sys/systm.h>
   38 #include <sys/timeffc.h>
   39 #include <sys/timepps.h>
   40 #include <sys/timetc.h>
   41 #include <sys/timex.h>
   42 #include <sys/vdso.h>
   43 
   44 /*
   45  * A large step happens on boot.  This constant detects such steps.
   46  * It is relatively small so that ntp_update_second gets called enough
   47  * in the typical 'missed a couple of seconds' case, but doesn't loop
   48  * forever when the time step is large.
   49  */
   50 #define LARGE_STEP      200
   51 
   52 /*
   53  * Implement a dummy timecounter which we can use until we get a real one
   54  * in the air.  This allows the console and other early stuff to use
   55  * time services.
   56  */
   57 
   58 static u_int
   59 dummy_get_timecount(struct timecounter *tc)
   60 {
   61         static u_int now;
   62 
   63         return (++now);
   64 }
   65 
   66 static struct timecounter dummy_timecounter = {
   67         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
   68 };
   69 
   70 struct timehands {
   71         /* These fields must be initialized by the driver. */
   72         struct timecounter      *th_counter;
   73         int64_t                 th_adjustment;
   74         uint64_t                th_scale;
   75         u_int                   th_offset_count;
   76         struct bintime          th_offset;
   77         struct bintime          th_bintime;
   78         struct timeval          th_microtime;
   79         struct timespec         th_nanotime;
   80         struct bintime          th_boottime;
   81         /* Fields not to be copied in tc_windup start with th_generation. */
   82         u_int                   th_generation;
   83         struct timehands        *th_next;
   84 };
   85 
   86 static struct timehands th0;
   87 static struct timehands th1 = {
   88         .th_next = &th0
   89 };
   90 static struct timehands th0 = {
   91         .th_counter = &dummy_timecounter,
   92         .th_scale = (uint64_t)-1 / 1000000,
   93         .th_offset = { .sec = 1 },
   94         .th_generation = 1,
   95         .th_next = &th1
   96 };
   97 
   98 static struct timehands *volatile timehands = &th0;
   99 struct timecounter *timecounter = &dummy_timecounter;
  100 static struct timecounter *timecounters = &dummy_timecounter;
  101 
  102 int tc_min_ticktock_freq = 1;
  103 
  104 volatile time_t time_second = 1;
  105 volatile time_t time_uptime = 1;
  106 
  107 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
  108 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
  109     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
  110 
  111 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
  112 static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
  113 
  114 static int timestepwarnings;
  115 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
  116     &timestepwarnings, 0, "Log time steps");
  117 
  118 struct bintime bt_timethreshold;
  119 struct bintime bt_tickthreshold;
  120 sbintime_t sbt_timethreshold;
  121 sbintime_t sbt_tickthreshold;
  122 struct bintime tc_tick_bt;
  123 sbintime_t tc_tick_sbt;
  124 int tc_precexp;
  125 int tc_timepercentage = TC_DEFAULTPERC;
  126 static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
  127 SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
  128     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
  129     sysctl_kern_timecounter_adjprecision, "I",
  130     "Allowed time interval deviation in percents");
  131 
  132 volatile int rtc_generation = 1;
  133 
  134 static int tc_chosen;   /* Non-zero if a specific tc was chosen via sysctl. */
  135 
  136 static void tc_windup(struct bintime *new_boottimebin);
  137 static void cpu_tick_calibrate(int);
  138 
  139 void dtrace_getnanotime(struct timespec *tsp);
  140 
  141 static int
  142 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
  143 {
  144         struct timeval boottime;
  145 
  146         getboottime(&boottime);
  147 
  148 #ifndef __mips__
  149 #ifdef SCTL_MASK32
  150         int tv[2];
  151 
  152         if (req->flags & SCTL_MASK32) {
  153                 tv[0] = boottime.tv_sec;
  154                 tv[1] = boottime.tv_usec;
  155                 return (SYSCTL_OUT(req, tv, sizeof(tv)));
  156         }
  157 #endif
  158 #endif
  159         return (SYSCTL_OUT(req, &boottime, sizeof(boottime)));
  160 }
  161 
  162 static int
  163 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
  164 {
  165         u_int ncount;
  166         struct timecounter *tc = arg1;
  167 
  168         ncount = tc->tc_get_timecount(tc);
  169         return (sysctl_handle_int(oidp, &ncount, 0, req));
  170 }
  171 
  172 static int
  173 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
  174 {
  175         uint64_t freq;
  176         struct timecounter *tc = arg1;
  177 
  178         freq = tc->tc_frequency;
  179         return (sysctl_handle_64(oidp, &freq, 0, req));
  180 }
  181 
  182 /*
  183  * Return the difference between the timehands' counter value now and what
  184  * was when we copied it to the timehands' offset_count.
  185  */
  186 static __inline u_int
  187 tc_delta(struct timehands *th)
  188 {
  189         struct timecounter *tc;
  190 
  191         tc = th->th_counter;
  192         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
  193             tc->tc_counter_mask);
  194 }
  195 
  196 /*
  197  * Functions for reading the time.  We have to loop until we are sure that
  198  * the timehands that we operated on was not updated under our feet.  See
  199  * the comment in <sys/time.h> for a description of these 12 functions.
  200  */
  201 
  202 #ifdef FFCLOCK
  203 void
  204 fbclock_binuptime(struct bintime *bt)
  205 {
  206         struct timehands *th;
  207         unsigned int gen;
  208 
  209         do {
  210                 th = timehands;
  211                 gen = atomic_load_acq_int(&th->th_generation);
  212                 *bt = th->th_offset;
  213                 bintime_addx(bt, th->th_scale * tc_delta(th));
  214                 atomic_thread_fence_acq();
  215         } while (gen == 0 || gen != th->th_generation);
  216 }
  217 
  218 void
  219 fbclock_nanouptime(struct timespec *tsp)
  220 {
  221         struct bintime bt;
  222 
  223         fbclock_binuptime(&bt);
  224         bintime2timespec(&bt, tsp);
  225 }
  226 
  227 void
  228 fbclock_microuptime(struct timeval *tvp)
  229 {
  230         struct bintime bt;
  231 
  232         fbclock_binuptime(&bt);
  233         bintime2timeval(&bt, tvp);
  234 }
  235 
  236 void
  237 fbclock_bintime(struct bintime *bt)
  238 {
  239         struct timehands *th;
  240         unsigned int gen;
  241 
  242         do {
  243                 th = timehands;
  244                 gen = atomic_load_acq_int(&th->th_generation);
  245                 *bt = th->th_bintime;
  246                 bintime_addx(bt, th->th_scale * tc_delta(th));
  247                 atomic_thread_fence_acq();
  248         } while (gen == 0 || gen != th->th_generation);
  249 }
  250 
  251 void
  252 fbclock_nanotime(struct timespec *tsp)
  253 {
  254         struct bintime bt;
  255 
  256         fbclock_bintime(&bt);
  257         bintime2timespec(&bt, tsp);
  258 }
  259 
  260 void
  261 fbclock_microtime(struct timeval *tvp)
  262 {
  263         struct bintime bt;
  264 
  265         fbclock_bintime(&bt);
  266         bintime2timeval(&bt, tvp);
  267 }
  268 
  269 void
  270 fbclock_getbinuptime(struct bintime *bt)
  271 {
  272         struct timehands *th;
  273         unsigned int gen;
  274 
  275         do {
  276                 th = timehands;
  277                 gen = atomic_load_acq_int(&th->th_generation);
  278                 *bt = th->th_offset;
  279                 atomic_thread_fence_acq();
  280         } while (gen == 0 || gen != th->th_generation);
  281 }
  282 
  283 void
  284 fbclock_getnanouptime(struct timespec *tsp)
  285 {
  286         struct timehands *th;
  287         unsigned int gen;
  288 
  289         do {
  290                 th = timehands;
  291                 gen = atomic_load_acq_int(&th->th_generation);
  292                 bintime2timespec(&th->th_offset, tsp);
  293                 atomic_thread_fence_acq();
  294         } while (gen == 0 || gen != th->th_generation);
  295 }
  296 
  297 void
  298 fbclock_getmicrouptime(struct timeval *tvp)
  299 {
  300         struct timehands *th;
  301         unsigned int gen;
  302 
  303         do {
  304                 th = timehands;
  305                 gen = atomic_load_acq_int(&th->th_generation);
  306                 bintime2timeval(&th->th_offset, tvp);
  307                 atomic_thread_fence_acq();
  308         } while (gen == 0 || gen != th->th_generation);
  309 }
  310 
  311 void
  312 fbclock_getbintime(struct bintime *bt)
  313 {
  314         struct timehands *th;
  315         unsigned int gen;
  316 
  317         do {
  318                 th = timehands;
  319                 gen = atomic_load_acq_int(&th->th_generation);
  320                 *bt = th->th_bintime;
  321                 atomic_thread_fence_acq();
  322         } while (gen == 0 || gen != th->th_generation);
  323 }
  324 
  325 void
  326 fbclock_getnanotime(struct timespec *tsp)
  327 {
  328         struct timehands *th;
  329         unsigned int gen;
  330 
  331         do {
  332                 th = timehands;
  333                 gen = atomic_load_acq_int(&th->th_generation);
  334                 *tsp = th->th_nanotime;
  335                 atomic_thread_fence_acq();
  336         } while (gen == 0 || gen != th->th_generation);
  337 }
  338 
  339 void
  340 fbclock_getmicrotime(struct timeval *tvp)
  341 {
  342         struct timehands *th;
  343         unsigned int gen;
  344 
  345         do {
  346                 th = timehands;
  347                 gen = atomic_load_acq_int(&th->th_generation);
  348                 *tvp = th->th_microtime;
  349                 atomic_thread_fence_acq();
  350         } while (gen == 0 || gen != th->th_generation);
  351 }
  352 #else /* !FFCLOCK */
  353 void
  354 binuptime(struct bintime *bt)
  355 {
  356         struct timehands *th;
  357         u_int gen;
  358 
  359         do {
  360                 th = timehands;
  361                 gen = atomic_load_acq_int(&th->th_generation);
  362                 *bt = th->th_offset;
  363                 bintime_addx(bt, th->th_scale * tc_delta(th));
  364                 atomic_thread_fence_acq();
  365         } while (gen == 0 || gen != th->th_generation);
  366 }
  367 
  368 void
  369 nanouptime(struct timespec *tsp)
  370 {
  371         struct bintime bt;
  372 
  373         binuptime(&bt);
  374         bintime2timespec(&bt, tsp);
  375 }
  376 
  377 void
  378 microuptime(struct timeval *tvp)
  379 {
  380         struct bintime bt;
  381 
  382         binuptime(&bt);
  383         bintime2timeval(&bt, tvp);
  384 }
  385 
  386 void
  387 bintime(struct bintime *bt)
  388 {
  389         struct timehands *th;
  390         u_int gen;
  391 
  392         do {
  393                 th = timehands;
  394                 gen = atomic_load_acq_int(&th->th_generation);
  395                 *bt = th->th_bintime;
  396                 bintime_addx(bt, th->th_scale * tc_delta(th));
  397                 atomic_thread_fence_acq();
  398         } while (gen == 0 || gen != th->th_generation);
  399 }
  400 
  401 void
  402 nanotime(struct timespec *tsp)
  403 {
  404         struct bintime bt;
  405 
  406         bintime(&bt);
  407         bintime2timespec(&bt, tsp);
  408 }
  409 
  410 void
  411 microtime(struct timeval *tvp)
  412 {
  413         struct bintime bt;
  414 
  415         bintime(&bt);
  416         bintime2timeval(&bt, tvp);
  417 }
  418 
  419 void
  420 getbinuptime(struct bintime *bt)
  421 {
  422         struct timehands *th;
  423         u_int gen;
  424 
  425         do {
  426                 th = timehands;
  427                 gen = atomic_load_acq_int(&th->th_generation);
  428                 *bt = th->th_offset;
  429                 atomic_thread_fence_acq();
  430         } while (gen == 0 || gen != th->th_generation);
  431 }
  432 
  433 void
  434 getnanouptime(struct timespec *tsp)
  435 {
  436         struct timehands *th;
  437         u_int gen;
  438 
  439         do {
  440                 th = timehands;
  441                 gen = atomic_load_acq_int(&th->th_generation);
  442                 bintime2timespec(&th->th_offset, tsp);
  443                 atomic_thread_fence_acq();
  444         } while (gen == 0 || gen != th->th_generation);
  445 }
  446 
  447 void
  448 getmicrouptime(struct timeval *tvp)
  449 {
  450         struct timehands *th;
  451         u_int gen;
  452 
  453         do {
  454                 th = timehands;
  455                 gen = atomic_load_acq_int(&th->th_generation);
  456                 bintime2timeval(&th->th_offset, tvp);
  457                 atomic_thread_fence_acq();
  458         } while (gen == 0 || gen != th->th_generation);
  459 }
  460 
  461 void
  462 getbintime(struct bintime *bt)
  463 {
  464         struct timehands *th;
  465         u_int gen;
  466 
  467         do {
  468                 th = timehands;
  469                 gen = atomic_load_acq_int(&th->th_generation);
  470                 *bt = th->th_bintime;
  471                 atomic_thread_fence_acq();
  472         } while (gen == 0 || gen != th->th_generation);
  473 }
  474 
  475 void
  476 getnanotime(struct timespec *tsp)
  477 {
  478         struct timehands *th;
  479         u_int gen;
  480 
  481         do {
  482                 th = timehands;
  483                 gen = atomic_load_acq_int(&th->th_generation);
  484                 *tsp = th->th_nanotime;
  485                 atomic_thread_fence_acq();
  486         } while (gen == 0 || gen != th->th_generation);
  487 }
  488 
  489 void
  490 getmicrotime(struct timeval *tvp)
  491 {
  492         struct timehands *th;
  493         u_int gen;
  494 
  495         do {
  496                 th = timehands;
  497                 gen = atomic_load_acq_int(&th->th_generation);
  498                 *tvp = th->th_microtime;
  499                 atomic_thread_fence_acq();
  500         } while (gen == 0 || gen != th->th_generation);
  501 }
  502 #endif /* FFCLOCK */
  503 
  504 void
  505 getboottime(struct timeval *boottime)
  506 {
  507         struct bintime boottimebin;
  508 
  509         getboottimebin(&boottimebin);
  510         bintime2timeval(&boottimebin, boottime);
  511 }
  512 
  513 void
  514 getboottimebin(struct bintime *boottimebin)
  515 {
  516         struct timehands *th;
  517         u_int gen;
  518 
  519         do {
  520                 th = timehands;
  521                 gen = atomic_load_acq_int(&th->th_generation);
  522                 *boottimebin = th->th_boottime;
  523                 atomic_thread_fence_acq();
  524         } while (gen == 0 || gen != th->th_generation);
  525 }
  526 
  527 #ifdef FFCLOCK
  528 /*
  529  * Support for feed-forward synchronization algorithms. This is heavily inspired
  530  * by the timehands mechanism but kept independent from it. *_windup() functions
  531  * have some connection to avoid accessing the timecounter hardware more than
  532  * necessary.
  533  */
  534 
  535 /* Feed-forward clock estimates kept updated by the synchronization daemon. */
  536 struct ffclock_estimate ffclock_estimate;
  537 struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
  538 uint32_t ffclock_status;                /* Feed-forward clock status. */
  539 int8_t ffclock_updated;                 /* New estimates are available. */
  540 struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
  541 
  542 struct fftimehands {
  543         struct ffclock_estimate cest;
  544         struct bintime          tick_time;
  545         struct bintime          tick_time_lerp;
  546         ffcounter               tick_ffcount;
  547         uint64_t                period_lerp;
  548         volatile uint8_t        gen;
  549         struct fftimehands      *next;
  550 };
  551 
  552 #define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
  553 
  554 static struct fftimehands ffth[10];
  555 static struct fftimehands *volatile fftimehands = ffth;
  556 
  557 static void
  558 ffclock_init(void)
  559 {
  560         struct fftimehands *cur;
  561         struct fftimehands *last;
  562 
  563         memset(ffth, 0, sizeof(ffth));
  564 
  565         last = ffth + NUM_ELEMENTS(ffth) - 1;
  566         for (cur = ffth; cur < last; cur++)
  567                 cur->next = cur + 1;
  568         last->next = ffth;
  569 
  570         ffclock_updated = 0;
  571         ffclock_status = FFCLOCK_STA_UNSYNC;
  572         mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
  573 }
  574 
  575 /*
  576  * Reset the feed-forward clock estimates. Called from inittodr() to get things
  577  * kick started and uses the timecounter nominal frequency as a first period
  578  * estimate. Note: this function may be called several time just after boot.
  579  * Note: this is the only function that sets the value of boot time for the
  580  * monotonic (i.e. uptime) version of the feed-forward clock.
  581  */
  582 void
  583 ffclock_reset_clock(struct timespec *ts)
  584 {
  585         struct timecounter *tc;
  586         struct ffclock_estimate cest;
  587 
  588         tc = timehands->th_counter;
  589         memset(&cest, 0, sizeof(struct ffclock_estimate));
  590 
  591         timespec2bintime(ts, &ffclock_boottime);
  592         timespec2bintime(ts, &(cest.update_time));
  593         ffclock_read_counter(&cest.update_ffcount);
  594         cest.leapsec_next = 0;
  595         cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
  596         cest.errb_abs = 0;
  597         cest.errb_rate = 0;
  598         cest.status = FFCLOCK_STA_UNSYNC;
  599         cest.leapsec_total = 0;
  600         cest.leapsec = 0;
  601 
  602         mtx_lock(&ffclock_mtx);
  603         bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
  604         ffclock_updated = INT8_MAX;
  605         mtx_unlock(&ffclock_mtx);
  606 
  607         printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
  608             (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
  609             (unsigned long)ts->tv_nsec);
  610 }
  611 
  612 /*
  613  * Sub-routine to convert a time interval measured in RAW counter units to time
  614  * in seconds stored in bintime format.
  615  * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
  616  * larger than the max value of u_int (on 32 bit architecture). Loop to consume
  617  * extra cycles.
  618  */
  619 static void
  620 ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
  621 {
  622         struct bintime bt2;
  623         ffcounter delta, delta_max;
  624 
  625         delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
  626         bintime_clear(bt);
  627         do {
  628                 if (ffdelta > delta_max)
  629                         delta = delta_max;
  630                 else
  631                         delta = ffdelta;
  632                 bt2.sec = 0;
  633                 bt2.frac = period;
  634                 bintime_mul(&bt2, (unsigned int)delta);
  635                 bintime_add(bt, &bt2);
  636                 ffdelta -= delta;
  637         } while (ffdelta > 0);
  638 }
  639 
  640 /*
  641  * Update the fftimehands.
  642  * Push the tick ffcount and time(s) forward based on current clock estimate.
  643  * The conversion from ffcounter to bintime relies on the difference clock
  644  * principle, whose accuracy relies on computing small time intervals. If a new
  645  * clock estimate has been passed by the synchronisation daemon, make it
  646  * current, and compute the linear interpolation for monotonic time if needed.
  647  */
  648 static void
  649 ffclock_windup(unsigned int delta)
  650 {
  651         struct ffclock_estimate *cest;
  652         struct fftimehands *ffth;
  653         struct bintime bt, gap_lerp;
  654         ffcounter ffdelta;
  655         uint64_t frac;
  656         unsigned int polling;
  657         uint8_t forward_jump, ogen;
  658 
  659         /*
  660          * Pick the next timehand, copy current ffclock estimates and move tick
  661          * times and counter forward.
  662          */
  663         forward_jump = 0;
  664         ffth = fftimehands->next;
  665         ogen = ffth->gen;
  666         ffth->gen = 0;
  667         cest = &ffth->cest;
  668         bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
  669         ffdelta = (ffcounter)delta;
  670         ffth->period_lerp = fftimehands->period_lerp;
  671 
  672         ffth->tick_time = fftimehands->tick_time;
  673         ffclock_convert_delta(ffdelta, cest->period, &bt);
  674         bintime_add(&ffth->tick_time, &bt);
  675 
  676         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
  677         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
  678         bintime_add(&ffth->tick_time_lerp, &bt);
  679 
  680         ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
  681 
  682         /*
  683          * Assess the status of the clock, if the last update is too old, it is
  684          * likely the synchronisation daemon is dead and the clock is free
  685          * running.
  686          */
  687         if (ffclock_updated == 0) {
  688                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
  689                 ffclock_convert_delta(ffdelta, cest->period, &bt);
  690                 if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
  691                         ffclock_status |= FFCLOCK_STA_UNSYNC;
  692         }
  693 
  694         /*
  695          * If available, grab updated clock estimates and make them current.
  696          * Recompute time at this tick using the updated estimates. The clock
  697          * estimates passed the feed-forward synchronisation daemon may result
  698          * in time conversion that is not monotonically increasing (just after
  699          * the update). time_lerp is a particular linear interpolation over the
  700          * synchronisation algo polling period that ensures monotonicity for the
  701          * clock ids requesting it.
  702          */
  703         if (ffclock_updated > 0) {
  704                 bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
  705                 ffdelta = ffth->tick_ffcount - cest->update_ffcount;
  706                 ffth->tick_time = cest->update_time;
  707                 ffclock_convert_delta(ffdelta, cest->period, &bt);
  708                 bintime_add(&ffth->tick_time, &bt);
  709 
  710                 /* ffclock_reset sets ffclock_updated to INT8_MAX */
  711                 if (ffclock_updated == INT8_MAX)
  712                         ffth->tick_time_lerp = ffth->tick_time;
  713 
  714                 if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
  715                         forward_jump = 1;
  716                 else
  717                         forward_jump = 0;
  718 
  719                 bintime_clear(&gap_lerp);
  720                 if (forward_jump) {
  721                         gap_lerp = ffth->tick_time;
  722                         bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
  723                 } else {
  724                         gap_lerp = ffth->tick_time_lerp;
  725                         bintime_sub(&gap_lerp, &ffth->tick_time);
  726                 }
  727 
  728                 /*
  729                  * The reset from the RTC clock may be far from accurate, and
  730                  * reducing the gap between real time and interpolated time
  731                  * could take a very long time if the interpolated clock insists
  732                  * on strict monotonicity. The clock is reset under very strict
  733                  * conditions (kernel time is known to be wrong and
  734                  * synchronization daemon has been restarted recently.
  735                  * ffclock_boottime absorbs the jump to ensure boot time is
  736                  * correct and uptime functions stay consistent.
  737                  */
  738                 if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
  739                     ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
  740                     ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
  741                         if (forward_jump)
  742                                 bintime_add(&ffclock_boottime, &gap_lerp);
  743                         else
  744                                 bintime_sub(&ffclock_boottime, &gap_lerp);
  745                         ffth->tick_time_lerp = ffth->tick_time;
  746                         bintime_clear(&gap_lerp);
  747                 }
  748 
  749                 ffclock_status = cest->status;
  750                 ffth->period_lerp = cest->period;
  751 
  752                 /*
  753                  * Compute corrected period used for the linear interpolation of
  754                  * time. The rate of linear interpolation is capped to 5000PPM
  755                  * (5ms/s).
  756                  */
  757                 if (bintime_isset(&gap_lerp)) {
  758                         ffdelta = cest->update_ffcount;
  759                         ffdelta -= fftimehands->cest.update_ffcount;
  760                         ffclock_convert_delta(ffdelta, cest->period, &bt);
  761                         polling = bt.sec;
  762                         bt.sec = 0;
  763                         bt.frac = 5000000 * (uint64_t)18446744073LL;
  764                         bintime_mul(&bt, polling);
  765                         if (bintime_cmp(&gap_lerp, &bt, >))
  766                                 gap_lerp = bt;
  767 
  768                         /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
  769                         frac = 0;
  770                         if (gap_lerp.sec > 0) {
  771                                 frac -= 1;
  772                                 frac /= ffdelta / gap_lerp.sec;
  773                         }
  774                         frac += gap_lerp.frac / ffdelta;
  775 
  776                         if (forward_jump)
  777                                 ffth->period_lerp += frac;
  778                         else
  779                                 ffth->period_lerp -= frac;
  780                 }
  781 
  782                 ffclock_updated = 0;
  783         }
  784         if (++ogen == 0)
  785                 ogen = 1;
  786         ffth->gen = ogen;
  787         fftimehands = ffth;
  788 }
  789 
  790 /*
  791  * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
  792  * the old and new hardware counter cannot be read simultaneously. tc_windup()
  793  * does read the two counters 'back to back', but a few cycles are effectively
  794  * lost, and not accumulated in tick_ffcount. This is a fairly radical
  795  * operation for a feed-forward synchronization daemon, and it is its job to not
  796  * pushing irrelevant data to the kernel. Because there is no locking here,
  797  * simply force to ignore pending or next update to give daemon a chance to
  798  * realize the counter has changed.
  799  */
  800 static void
  801 ffclock_change_tc(struct timehands *th)
  802 {
  803         struct fftimehands *ffth;
  804         struct ffclock_estimate *cest;
  805         struct timecounter *tc;
  806         uint8_t ogen;
  807 
  808         tc = th->th_counter;
  809         ffth = fftimehands->next;
  810         ogen = ffth->gen;
  811         ffth->gen = 0;
  812 
  813         cest = &ffth->cest;
  814         bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
  815         cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
  816         cest->errb_abs = 0;
  817         cest->errb_rate = 0;
  818         cest->status |= FFCLOCK_STA_UNSYNC;
  819 
  820         ffth->tick_ffcount = fftimehands->tick_ffcount;
  821         ffth->tick_time_lerp = fftimehands->tick_time_lerp;
  822         ffth->tick_time = fftimehands->tick_time;
  823         ffth->period_lerp = cest->period;
  824 
  825         /* Do not lock but ignore next update from synchronization daemon. */
  826         ffclock_updated--;
  827 
  828         if (++ogen == 0)
  829                 ogen = 1;
  830         ffth->gen = ogen;
  831         fftimehands = ffth;
  832 }
  833 
  834 /*
  835  * Retrieve feed-forward counter and time of last kernel tick.
  836  */
  837 void
  838 ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
  839 {
  840         struct fftimehands *ffth;
  841         uint8_t gen;
  842 
  843         /*
  844          * No locking but check generation has not changed. Also need to make
  845          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
  846          */
  847         do {
  848                 ffth = fftimehands;
  849                 gen = ffth->gen;
  850                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
  851                         *bt = ffth->tick_time_lerp;
  852                 else
  853                         *bt = ffth->tick_time;
  854                 *ffcount = ffth->tick_ffcount;
  855         } while (gen == 0 || gen != ffth->gen);
  856 }
  857 
  858 /*
  859  * Absolute clock conversion. Low level function to convert ffcounter to
  860  * bintime. The ffcounter is converted using the current ffclock period estimate
  861  * or the "interpolated period" to ensure monotonicity.
  862  * NOTE: this conversion may have been deferred, and the clock updated since the
  863  * hardware counter has been read.
  864  */
  865 void
  866 ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
  867 {
  868         struct fftimehands *ffth;
  869         struct bintime bt2;
  870         ffcounter ffdelta;
  871         uint8_t gen;
  872 
  873         /*
  874          * No locking but check generation has not changed. Also need to make
  875          * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
  876          */
  877         do {
  878                 ffth = fftimehands;
  879                 gen = ffth->gen;
  880                 if (ffcount > ffth->tick_ffcount)
  881                         ffdelta = ffcount - ffth->tick_ffcount;
  882                 else
  883                         ffdelta = ffth->tick_ffcount - ffcount;
  884 
  885                 if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
  886                         *bt = ffth->tick_time_lerp;
  887                         ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
  888                 } else {
  889                         *bt = ffth->tick_time;
  890                         ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
  891                 }
  892 
  893                 if (ffcount > ffth->tick_ffcount)
  894                         bintime_add(bt, &bt2);
  895                 else
  896                         bintime_sub(bt, &bt2);
  897         } while (gen == 0 || gen != ffth->gen);
  898 }
  899 
  900 /*
  901  * Difference clock conversion.
  902  * Low level function to Convert a time interval measured in RAW counter units
  903  * into bintime. The difference clock allows measuring small intervals much more
  904  * reliably than the absolute clock.
  905  */
  906 void
  907 ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
  908 {
  909         struct fftimehands *ffth;
  910         uint8_t gen;
  911 
  912         /* No locking but check generation has not changed. */
  913         do {
  914                 ffth = fftimehands;
  915                 gen = ffth->gen;
  916                 ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
  917         } while (gen == 0 || gen != ffth->gen);
  918 }
  919 
  920 /*
  921  * Access to current ffcounter value.
  922  */
  923 void
  924 ffclock_read_counter(ffcounter *ffcount)
  925 {
  926         struct timehands *th;
  927         struct fftimehands *ffth;
  928         unsigned int gen, delta;
  929 
  930         /*
  931          * ffclock_windup() called from tc_windup(), safe to rely on
  932          * th->th_generation only, for correct delta and ffcounter.
  933          */
  934         do {
  935                 th = timehands;
  936                 gen = atomic_load_acq_int(&th->th_generation);
  937                 ffth = fftimehands;
  938                 delta = tc_delta(th);
  939                 *ffcount = ffth->tick_ffcount;
  940                 atomic_thread_fence_acq();
  941         } while (gen == 0 || gen != th->th_generation);
  942 
  943         *ffcount += delta;
  944 }
  945 
  946 void
  947 binuptime(struct bintime *bt)
  948 {
  949 
  950         binuptime_fromclock(bt, sysclock_active);
  951 }
  952 
  953 void
  954 nanouptime(struct timespec *tsp)
  955 {
  956 
  957         nanouptime_fromclock(tsp, sysclock_active);
  958 }
  959 
  960 void
  961 microuptime(struct timeval *tvp)
  962 {
  963 
  964         microuptime_fromclock(tvp, sysclock_active);
  965 }
  966 
  967 void
  968 bintime(struct bintime *bt)
  969 {
  970 
  971         bintime_fromclock(bt, sysclock_active);
  972 }
  973 
  974 void
  975 nanotime(struct timespec *tsp)
  976 {
  977 
  978         nanotime_fromclock(tsp, sysclock_active);
  979 }
  980 
  981 void
  982 microtime(struct timeval *tvp)
  983 {
  984 
  985         microtime_fromclock(tvp, sysclock_active);
  986 }
  987 
  988 void
  989 getbinuptime(struct bintime *bt)
  990 {
  991 
  992         getbinuptime_fromclock(bt, sysclock_active);
  993 }
  994 
  995 void
  996 getnanouptime(struct timespec *tsp)
  997 {
  998 
  999         getnanouptime_fromclock(tsp, sysclock_active);
 1000 }
 1001 
 1002 void
 1003 getmicrouptime(struct timeval *tvp)
 1004 {
 1005 
 1006         getmicrouptime_fromclock(tvp, sysclock_active);
 1007 }
 1008 
 1009 void
 1010 getbintime(struct bintime *bt)
 1011 {
 1012 
 1013         getbintime_fromclock(bt, sysclock_active);
 1014 }
 1015 
 1016 void
 1017 getnanotime(struct timespec *tsp)
 1018 {
 1019 
 1020         getnanotime_fromclock(tsp, sysclock_active);
 1021 }
 1022 
 1023 void
 1024 getmicrotime(struct timeval *tvp)
 1025 {
 1026 
 1027         getmicrouptime_fromclock(tvp, sysclock_active);
 1028 }
 1029 
 1030 #endif /* FFCLOCK */
 1031 
 1032 /*
 1033  * This is a clone of getnanotime and used for walltimestamps.
 1034  * The dtrace_ prefix prevents fbt from creating probes for
 1035  * it so walltimestamp can be safely used in all fbt probes.
 1036  */
 1037 void
 1038 dtrace_getnanotime(struct timespec *tsp)
 1039 {
 1040         struct timehands *th;
 1041         u_int gen;
 1042 
 1043         do {
 1044                 th = timehands;
 1045                 gen = atomic_load_acq_int(&th->th_generation);
 1046                 *tsp = th->th_nanotime;
 1047                 atomic_thread_fence_acq();
 1048         } while (gen == 0 || gen != th->th_generation);
 1049 }
 1050 
 1051 /*
 1052  * System clock currently providing time to the system. Modifiable via sysctl
 1053  * when the FFCLOCK option is defined.
 1054  */
 1055 int sysclock_active = SYSCLOCK_FBCK;
 1056 
 1057 /* Internal NTP status and error estimates. */
 1058 extern int time_status;
 1059 extern long time_esterror;
 1060 
 1061 /*
 1062  * Take a snapshot of sysclock data which can be used to compare system clocks
 1063  * and generate timestamps after the fact.
 1064  */
 1065 void
 1066 sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
 1067 {
 1068         struct fbclock_info *fbi;
 1069         struct timehands *th;
 1070         struct bintime bt;
 1071         unsigned int delta, gen;
 1072 #ifdef FFCLOCK
 1073         ffcounter ffcount;
 1074         struct fftimehands *ffth;
 1075         struct ffclock_info *ffi;
 1076         struct ffclock_estimate cest;
 1077 
 1078         ffi = &clock_snap->ff_info;
 1079 #endif
 1080 
 1081         fbi = &clock_snap->fb_info;
 1082         delta = 0;
 1083 
 1084         do {
 1085                 th = timehands;
 1086                 gen = atomic_load_acq_int(&th->th_generation);
 1087                 fbi->th_scale = th->th_scale;
 1088                 fbi->tick_time = th->th_offset;
 1089 #ifdef FFCLOCK
 1090                 ffth = fftimehands;
 1091                 ffi->tick_time = ffth->tick_time_lerp;
 1092                 ffi->tick_time_lerp = ffth->tick_time_lerp;
 1093                 ffi->period = ffth->cest.period;
 1094                 ffi->period_lerp = ffth->period_lerp;
 1095                 clock_snap->ffcount = ffth->tick_ffcount;
 1096                 cest = ffth->cest;
 1097 #endif
 1098                 if (!fast)
 1099                         delta = tc_delta(th);
 1100                 atomic_thread_fence_acq();
 1101         } while (gen == 0 || gen != th->th_generation);
 1102 
 1103         clock_snap->delta = delta;
 1104         clock_snap->sysclock_active = sysclock_active;
 1105 
 1106         /* Record feedback clock status and error. */
 1107         clock_snap->fb_info.status = time_status;
 1108         /* XXX: Very crude estimate of feedback clock error. */
 1109         bt.sec = time_esterror / 1000000;
 1110         bt.frac = ((time_esterror - bt.sec) * 1000000) *
 1111             (uint64_t)18446744073709ULL;
 1112         clock_snap->fb_info.error = bt;
 1113 
 1114 #ifdef FFCLOCK
 1115         if (!fast)
 1116                 clock_snap->ffcount += delta;
 1117 
 1118         /* Record feed-forward clock leap second adjustment. */
 1119         ffi->leapsec_adjustment = cest.leapsec_total;
 1120         if (clock_snap->ffcount > cest.leapsec_next)
 1121                 ffi->leapsec_adjustment -= cest.leapsec;
 1122 
 1123         /* Record feed-forward clock status and error. */
 1124         clock_snap->ff_info.status = cest.status;
 1125         ffcount = clock_snap->ffcount - cest.update_ffcount;
 1126         ffclock_convert_delta(ffcount, cest.period, &bt);
 1127         /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
 1128         bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
 1129         /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
 1130         bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
 1131         clock_snap->ff_info.error = bt;
 1132 #endif
 1133 }
 1134 
 1135 /*
 1136  * Convert a sysclock snapshot into a struct bintime based on the specified
 1137  * clock source and flags.
 1138  */
 1139 int
 1140 sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
 1141     int whichclock, uint32_t flags)
 1142 {
 1143         struct bintime boottimebin;
 1144 #ifdef FFCLOCK
 1145         struct bintime bt2;
 1146         uint64_t period;
 1147 #endif
 1148 
 1149         switch (whichclock) {
 1150         case SYSCLOCK_FBCK:
 1151                 *bt = cs->fb_info.tick_time;
 1152 
 1153                 /* If snapshot was created with !fast, delta will be >0. */
 1154                 if (cs->delta > 0)
 1155                         bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
 1156 
 1157                 if ((flags & FBCLOCK_UPTIME) == 0) {
 1158                         getboottimebin(&boottimebin);
 1159                         bintime_add(bt, &boottimebin);
 1160                 }
 1161                 break;
 1162 #ifdef FFCLOCK
 1163         case SYSCLOCK_FFWD:
 1164                 if (flags & FFCLOCK_LERP) {
 1165                         *bt = cs->ff_info.tick_time_lerp;
 1166                         period = cs->ff_info.period_lerp;
 1167                 } else {
 1168                         *bt = cs->ff_info.tick_time;
 1169                         period = cs->ff_info.period;
 1170                 }
 1171 
 1172                 /* If snapshot was created with !fast, delta will be >0. */
 1173                 if (cs->delta > 0) {
 1174                         ffclock_convert_delta(cs->delta, period, &bt2);
 1175                         bintime_add(bt, &bt2);
 1176                 }
 1177 
 1178                 /* Leap second adjustment. */
 1179                 if (flags & FFCLOCK_LEAPSEC)
 1180                         bt->sec -= cs->ff_info.leapsec_adjustment;
 1181 
 1182                 /* Boot time adjustment, for uptime/monotonic clocks. */
 1183                 if (flags & FFCLOCK_UPTIME)
 1184                         bintime_sub(bt, &ffclock_boottime);
 1185                 break;
 1186 #endif
 1187         default:
 1188                 return (EINVAL);
 1189                 break;
 1190         }
 1191 
 1192         return (0);
 1193 }
 1194 
 1195 /*
 1196  * Initialize a new timecounter and possibly use it.
 1197  */
 1198 void
 1199 tc_init(struct timecounter *tc)
 1200 {
 1201         u_int u;
 1202         struct sysctl_oid *tc_root;
 1203 
 1204         u = tc->tc_frequency / tc->tc_counter_mask;
 1205         /* XXX: We need some margin here, 10% is a guess */
 1206         u *= 11;
 1207         u /= 10;
 1208         if (u > hz && tc->tc_quality >= 0) {
 1209                 tc->tc_quality = -2000;
 1210                 if (bootverbose) {
 1211                         printf("Timecounter \"%s\" frequency %ju Hz",
 1212                             tc->tc_name, (uintmax_t)tc->tc_frequency);
 1213                         printf(" -- Insufficient hz, needs at least %u\n", u);
 1214                 }
 1215         } else if (tc->tc_quality >= 0 || bootverbose) {
 1216                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
 1217                     tc->tc_name, (uintmax_t)tc->tc_frequency,
 1218                     tc->tc_quality);
 1219         }
 1220 
 1221         tc->tc_next = timecounters;
 1222         timecounters = tc;
 1223         /*
 1224          * Set up sysctl tree for this counter.
 1225          */
 1226         tc_root = SYSCTL_ADD_NODE_WITH_LABEL(NULL,
 1227             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
 1228             CTLFLAG_RW, 0, "timecounter description", "timecounter");
 1229         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
 1230             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
 1231             "mask for implemented bits");
 1232         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
 1233             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
 1234             sysctl_kern_timecounter_get, "IU", "current timecounter value");
 1235         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
 1236             "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
 1237              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
 1238         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
 1239             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
 1240             "goodness of time counter");
 1241         /*
 1242          * Do not automatically switch if the current tc was specifically
 1243          * chosen.  Never automatically use a timecounter with negative quality.
 1244          * Even though we run on the dummy counter, switching here may be
 1245          * worse since this timecounter may not be monotonic.
 1246          */
 1247         if (tc_chosen)
 1248                 return;
 1249         if (tc->tc_quality < 0)
 1250                 return;
 1251         if (tc->tc_quality < timecounter->tc_quality)
 1252                 return;
 1253         if (tc->tc_quality == timecounter->tc_quality &&
 1254             tc->tc_frequency < timecounter->tc_frequency)
 1255                 return;
 1256         (void)tc->tc_get_timecount(tc);
 1257         (void)tc->tc_get_timecount(tc);
 1258         timecounter = tc;
 1259 }
 1260 
 1261 /* Report the frequency of the current timecounter. */
 1262 uint64_t
 1263 tc_getfrequency(void)
 1264 {
 1265 
 1266         return (timehands->th_counter->tc_frequency);
 1267 }
 1268 
 1269 static bool
 1270 sleeping_on_old_rtc(struct thread *td)
 1271 {
 1272 
 1273         /*
 1274          * td_rtcgen is modified by curthread when it is running,
 1275          * and by other threads in this function.  By finding the thread
 1276          * on a sleepqueue and holding the lock on the sleepqueue
 1277          * chain, we guarantee that the thread is not running and that
 1278          * modifying td_rtcgen is safe.  Setting td_rtcgen to zero informs
 1279          * the thread that it was woken due to a real-time clock adjustment.
 1280          * (The declaration of td_rtcgen refers to this comment.)
 1281          */
 1282         if (td->td_rtcgen != 0 && td->td_rtcgen != rtc_generation) {
 1283                 td->td_rtcgen = 0;
 1284                 return (true);
 1285         }
 1286         return (false);
 1287 }
 1288 
 1289 static struct mtx tc_setclock_mtx;
 1290 MTX_SYSINIT(tc_setclock_init, &tc_setclock_mtx, "tcsetc", MTX_SPIN);
 1291 
 1292 /*
 1293  * Step our concept of UTC.  This is done by modifying our estimate of
 1294  * when we booted.
 1295  */
 1296 void
 1297 tc_setclock(struct timespec *ts)
 1298 {
 1299         struct timespec tbef, taft;
 1300         struct bintime bt, bt2;
 1301 
 1302         timespec2bintime(ts, &bt);
 1303         nanotime(&tbef);
 1304         mtx_lock_spin(&tc_setclock_mtx);
 1305         cpu_tick_calibrate(1);
 1306         binuptime(&bt2);
 1307         bintime_sub(&bt, &bt2);
 1308 
 1309         /* XXX fiddle all the little crinkly bits around the fiords... */
 1310         tc_windup(&bt);
 1311         mtx_unlock_spin(&tc_setclock_mtx);
 1312 
 1313         /* Avoid rtc_generation == 0, since td_rtcgen == 0 is special. */
 1314         atomic_add_rel_int(&rtc_generation, 2);
 1315         sleepq_chains_remove_matching(sleeping_on_old_rtc);
 1316         if (timestepwarnings) {
 1317                 nanotime(&taft);
 1318                 log(LOG_INFO,
 1319                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
 1320                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
 1321                     (intmax_t)taft.tv_sec, taft.tv_nsec,
 1322                     (intmax_t)ts->tv_sec, ts->tv_nsec);
 1323         }
 1324 }
 1325 
 1326 /*
 1327  * Initialize the next struct timehands in the ring and make
 1328  * it the active timehands.  Along the way we might switch to a different
 1329  * timecounter and/or do seconds processing in NTP.  Slightly magic.
 1330  */
 1331 static void
 1332 tc_windup(struct bintime *new_boottimebin)
 1333 {
 1334         struct bintime bt;
 1335         struct timehands *th, *tho;
 1336         uint64_t scale;
 1337         u_int delta, ncount, ogen;
 1338         int i;
 1339         time_t t;
 1340 
 1341         /*
 1342          * Make the next timehands a copy of the current one, but do
 1343          * not overwrite the generation or next pointer.  While we
 1344          * update the contents, the generation must be zero.  We need
 1345          * to ensure that the zero generation is visible before the
 1346          * data updates become visible, which requires release fence.
 1347          * For similar reasons, re-reading of the generation after the
 1348          * data is read should use acquire fence.
 1349          */
 1350         tho = timehands;
 1351         th = tho->th_next;
 1352         ogen = th->th_generation;
 1353         th->th_generation = 0;
 1354         atomic_thread_fence_rel();
 1355         memcpy(th, tho, offsetof(struct timehands, th_generation));
 1356         if (new_boottimebin != NULL)
 1357                 th->th_boottime = *new_boottimebin;
 1358 
 1359         /*
 1360          * Capture a timecounter delta on the current timecounter and if
 1361          * changing timecounters, a counter value from the new timecounter.
 1362          * Update the offset fields accordingly.
 1363          */
 1364         delta = tc_delta(th);
 1365         if (th->th_counter != timecounter)
 1366                 ncount = timecounter->tc_get_timecount(timecounter);
 1367         else
 1368                 ncount = 0;
 1369 #ifdef FFCLOCK
 1370         ffclock_windup(delta);
 1371 #endif
 1372         th->th_offset_count += delta;
 1373         th->th_offset_count &= th->th_counter->tc_counter_mask;
 1374         while (delta > th->th_counter->tc_frequency) {
 1375                 /* Eat complete unadjusted seconds. */
 1376                 delta -= th->th_counter->tc_frequency;
 1377                 th->th_offset.sec++;
 1378         }
 1379         if ((delta > th->th_counter->tc_frequency / 2) &&
 1380             (th->th_scale * delta < ((uint64_t)1 << 63))) {
 1381                 /* The product th_scale * delta just barely overflows. */
 1382                 th->th_offset.sec++;
 1383         }
 1384         bintime_addx(&th->th_offset, th->th_scale * delta);
 1385 
 1386         /*
 1387          * Hardware latching timecounters may not generate interrupts on
 1388          * PPS events, so instead we poll them.  There is a finite risk that
 1389          * the hardware might capture a count which is later than the one we
 1390          * got above, and therefore possibly in the next NTP second which might
 1391          * have a different rate than the current NTP second.  It doesn't
 1392          * matter in practice.
 1393          */
 1394         if (tho->th_counter->tc_poll_pps)
 1395                 tho->th_counter->tc_poll_pps(tho->th_counter);
 1396 
 1397         /*
 1398          * Deal with NTP second processing.  The for loop normally
 1399          * iterates at most once, but in extreme situations it might
 1400          * keep NTP sane if timeouts are not run for several seconds.
 1401          * At boot, the time step can be large when the TOD hardware
 1402          * has been read, so on really large steps, we call
 1403          * ntp_update_second only twice.  We need to call it twice in
 1404          * case we missed a leap second.
 1405          */
 1406         bt = th->th_offset;
 1407         bintime_add(&bt, &th->th_boottime);
 1408         i = bt.sec - tho->th_microtime.tv_sec;
 1409         if (i > LARGE_STEP)
 1410                 i = 2;
 1411         for (; i > 0; i--) {
 1412                 t = bt.sec;
 1413                 ntp_update_second(&th->th_adjustment, &bt.sec);
 1414                 if (bt.sec != t)
 1415                         th->th_boottime.sec += bt.sec - t;
 1416         }
 1417         /* Update the UTC timestamps used by the get*() functions. */
 1418         th->th_bintime = bt;
 1419         bintime2timeval(&bt, &th->th_microtime);
 1420         bintime2timespec(&bt, &th->th_nanotime);
 1421 
 1422         /* Now is a good time to change timecounters. */
 1423         if (th->th_counter != timecounter) {
 1424 #ifndef __arm__
 1425                 if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
 1426                         cpu_disable_c2_sleep++;
 1427                 if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
 1428                         cpu_disable_c2_sleep--;
 1429 #endif
 1430                 th->th_counter = timecounter;
 1431                 th->th_offset_count = ncount;
 1432                 tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
 1433                     (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
 1434 #ifdef FFCLOCK
 1435                 ffclock_change_tc(th);
 1436 #endif
 1437         }
 1438 
 1439         /*-
 1440          * Recalculate the scaling factor.  We want the number of 1/2^64
 1441          * fractions of a second per period of the hardware counter, taking
 1442          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
 1443          * processing provides us with.
 1444          *
 1445          * The th_adjustment is nanoseconds per second with 32 bit binary
 1446          * fraction and we want 64 bit binary fraction of second:
 1447          *
 1448          *       x = a * 2^32 / 10^9 = a * 4.294967296
 1449          *
 1450          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
 1451          * we can only multiply by about 850 without overflowing, that
 1452          * leaves no suitably precise fractions for multiply before divide.
 1453          *
 1454          * Divide before multiply with a fraction of 2199/512 results in a
 1455          * systematic undercompensation of 10PPM of th_adjustment.  On a
 1456          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
 1457          *
 1458          * We happily sacrifice the lowest of the 64 bits of our result
 1459          * to the goddess of code clarity.
 1460          *
 1461          */
 1462         scale = (uint64_t)1 << 63;
 1463         scale += (th->th_adjustment / 1024) * 2199;
 1464         scale /= th->th_counter->tc_frequency;
 1465         th->th_scale = scale * 2;
 1466 
 1467         /*
 1468          * Now that the struct timehands is again consistent, set the new
 1469          * generation number, making sure to not make it zero.
 1470          */
 1471         if (++ogen == 0)
 1472                 ogen = 1;
 1473         atomic_store_rel_int(&th->th_generation, ogen);
 1474 
 1475         /* Go live with the new struct timehands. */
 1476 #ifdef FFCLOCK
 1477         switch (sysclock_active) {
 1478         case SYSCLOCK_FBCK:
 1479 #endif
 1480                 time_second = th->th_microtime.tv_sec;
 1481                 time_uptime = th->th_offset.sec;
 1482 #ifdef FFCLOCK
 1483                 break;
 1484         case SYSCLOCK_FFWD:
 1485                 time_second = fftimehands->tick_time_lerp.sec;
 1486                 time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
 1487                 break;
 1488         }
 1489 #endif
 1490 
 1491         timehands = th;
 1492         timekeep_push_vdso();
 1493 }
 1494 
 1495 /* Report or change the active timecounter hardware. */
 1496 static int
 1497 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
 1498 {
 1499         char newname[32];
 1500         struct timecounter *newtc, *tc;
 1501         int error;
 1502 
 1503         tc = timecounter;
 1504         strlcpy(newname, tc->tc_name, sizeof(newname));
 1505 
 1506         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
 1507         if (error != 0 || req->newptr == NULL)
 1508                 return (error);
 1509         /* Record that the tc in use now was specifically chosen. */
 1510         tc_chosen = 1;
 1511         if (strcmp(newname, tc->tc_name) == 0)
 1512                 return (0);
 1513         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
 1514                 if (strcmp(newname, newtc->tc_name) != 0)
 1515                         continue;
 1516 
 1517                 /* Warm up new timecounter. */
 1518                 (void)newtc->tc_get_timecount(newtc);
 1519                 (void)newtc->tc_get_timecount(newtc);
 1520 
 1521                 timecounter = newtc;
 1522 
 1523                 /*
 1524                  * The vdso timehands update is deferred until the next
 1525                  * 'tc_windup()'.
 1526                  *
 1527                  * This is prudent given that 'timekeep_push_vdso()' does not
 1528                  * use any locking and that it can be called in hard interrupt
 1529                  * context via 'tc_windup()'.
 1530                  */
 1531                 return (0);
 1532         }
 1533         return (EINVAL);
 1534 }
 1535 
 1536 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
 1537     0, 0, sysctl_kern_timecounter_hardware, "A",
 1538     "Timecounter hardware selected");
 1539 
 1540 
 1541 /* Report the available timecounter hardware. */
 1542 static int
 1543 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
 1544 {
 1545         struct sbuf sb;
 1546         struct timecounter *tc;
 1547         int error;
 1548 
 1549         sbuf_new_for_sysctl(&sb, NULL, 0, req);
 1550         for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
 1551                 if (tc != timecounters)
 1552                         sbuf_putc(&sb, ' ');
 1553                 sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
 1554         }
 1555         error = sbuf_finish(&sb);
 1556         sbuf_delete(&sb);
 1557         return (error);
 1558 }
 1559 
 1560 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
 1561     0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
 1562 
 1563 /*
 1564  * RFC 2783 PPS-API implementation.
 1565  */
 1566 
 1567 /*
 1568  *  Return true if the driver is aware of the abi version extensions in the
 1569  *  pps_state structure, and it supports at least the given abi version number.
 1570  */
 1571 static inline int
 1572 abi_aware(struct pps_state *pps, int vers)
 1573 {
 1574 
 1575         return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
 1576 }
 1577 
 1578 static int
 1579 pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
 1580 {
 1581         int err, timo;
 1582         pps_seq_t aseq, cseq;
 1583         struct timeval tv;
 1584 
 1585         if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
 1586                 return (EINVAL);
 1587 
 1588         /*
 1589          * If no timeout is requested, immediately return whatever values were
 1590          * most recently captured.  If timeout seconds is -1, that's a request
 1591          * to block without a timeout.  WITNESS won't let us sleep forever
 1592          * without a lock (we really don't need a lock), so just repeatedly
 1593          * sleep a long time.
 1594          */
 1595         if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
 1596                 if (fapi->timeout.tv_sec == -1)
 1597                         timo = 0x7fffffff;
 1598                 else {
 1599                         tv.tv_sec = fapi->timeout.tv_sec;
 1600                         tv.tv_usec = fapi->timeout.tv_nsec / 1000;
 1601                         timo = tvtohz(&tv);
 1602                 }
 1603                 aseq = atomic_load_int(&pps->ppsinfo.assert_sequence);
 1604                 cseq = atomic_load_int(&pps->ppsinfo.clear_sequence);
 1605                 while (aseq == atomic_load_int(&pps->ppsinfo.assert_sequence) &&
 1606                     cseq == atomic_load_int(&pps->ppsinfo.clear_sequence)) {
 1607                         if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
 1608                                 if (pps->flags & PPSFLAG_MTX_SPIN) {
 1609                                         err = msleep_spin(pps, pps->driver_mtx,
 1610                                             "ppsfch", timo);
 1611                                 } else {
 1612                                         err = msleep(pps, pps->driver_mtx, PCATCH,
 1613                                             "ppsfch", timo);
 1614                                 }
 1615                         } else {
 1616                                 err = tsleep(pps, PCATCH, "ppsfch", timo);
 1617                         }
 1618                         if (err == EWOULDBLOCK) {
 1619                                 if (fapi->timeout.tv_sec == -1) {
 1620                                         continue;
 1621                                 } else {
 1622                                         return (ETIMEDOUT);
 1623                                 }
 1624                         } else if (err != 0) {
 1625                                 return (err);
 1626                         }
 1627                 }
 1628         }
 1629 
 1630         pps->ppsinfo.current_mode = pps->ppsparam.mode;
 1631         fapi->pps_info_buf = pps->ppsinfo;
 1632 
 1633         return (0);
 1634 }
 1635 
 1636 int
 1637 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
 1638 {
 1639         pps_params_t *app;
 1640         struct pps_fetch_args *fapi;
 1641 #ifdef FFCLOCK
 1642         struct pps_fetch_ffc_args *fapi_ffc;
 1643 #endif
 1644 #ifdef PPS_SYNC
 1645         struct pps_kcbind_args *kapi;
 1646 #endif
 1647 
 1648         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
 1649         switch (cmd) {
 1650         case PPS_IOC_CREATE:
 1651                 return (0);
 1652         case PPS_IOC_DESTROY:
 1653                 return (0);
 1654         case PPS_IOC_SETPARAMS:
 1655                 app = (pps_params_t *)data;
 1656                 if (app->mode & ~pps->ppscap)
 1657                         return (EINVAL);
 1658 #ifdef FFCLOCK
 1659                 /* Ensure only a single clock is selected for ffc timestamp. */
 1660                 if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
 1661                         return (EINVAL);
 1662 #endif
 1663                 pps->ppsparam = *app;
 1664                 return (0);
 1665         case PPS_IOC_GETPARAMS:
 1666                 app = (pps_params_t *)data;
 1667                 *app = pps->ppsparam;
 1668                 app->api_version = PPS_API_VERS_1;
 1669                 return (0);
 1670         case PPS_IOC_GETCAP:
 1671                 *(int*)data = pps->ppscap;
 1672                 return (0);
 1673         case PPS_IOC_FETCH:
 1674                 fapi = (struct pps_fetch_args *)data;
 1675                 return (pps_fetch(fapi, pps));
 1676 #ifdef FFCLOCK
 1677         case PPS_IOC_FETCH_FFCOUNTER:
 1678                 fapi_ffc = (struct pps_fetch_ffc_args *)data;
 1679                 if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
 1680                     PPS_TSFMT_TSPEC)
 1681                         return (EINVAL);
 1682                 if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
 1683                         return (EOPNOTSUPP);
 1684                 pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
 1685                 fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
 1686                 /* Overwrite timestamps if feedback clock selected. */
 1687                 switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
 1688                 case PPS_TSCLK_FBCK:
 1689                         fapi_ffc->pps_info_buf_ffc.assert_timestamp =
 1690                             pps->ppsinfo.assert_timestamp;
 1691                         fapi_ffc->pps_info_buf_ffc.clear_timestamp =
 1692                             pps->ppsinfo.clear_timestamp;
 1693                         break;
 1694                 case PPS_TSCLK_FFWD:
 1695                         break;
 1696                 default:
 1697                         break;
 1698                 }
 1699                 return (0);
 1700 #endif /* FFCLOCK */
 1701         case PPS_IOC_KCBIND:
 1702 #ifdef PPS_SYNC
 1703                 kapi = (struct pps_kcbind_args *)data;
 1704                 /* XXX Only root should be able to do this */
 1705                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
 1706                         return (EINVAL);
 1707                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
 1708                         return (EINVAL);
 1709                 if (kapi->edge & ~pps->ppscap)
 1710                         return (EINVAL);
 1711                 pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
 1712                     (pps->kcmode & KCMODE_ABIFLAG);
 1713                 return (0);
 1714 #else
 1715                 return (EOPNOTSUPP);
 1716 #endif
 1717         default:
 1718                 return (ENOIOCTL);
 1719         }
 1720 }
 1721 
 1722 void
 1723 pps_init(struct pps_state *pps)
 1724 {
 1725         pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
 1726         if (pps->ppscap & PPS_CAPTUREASSERT)
 1727                 pps->ppscap |= PPS_OFFSETASSERT;
 1728         if (pps->ppscap & PPS_CAPTURECLEAR)
 1729                 pps->ppscap |= PPS_OFFSETCLEAR;
 1730 #ifdef FFCLOCK
 1731         pps->ppscap |= PPS_TSCLK_MASK;
 1732 #endif
 1733         pps->kcmode &= ~KCMODE_ABIFLAG;
 1734 }
 1735 
 1736 void
 1737 pps_init_abi(struct pps_state *pps)
 1738 {
 1739 
 1740         pps_init(pps);
 1741         if (pps->driver_abi > 0) {
 1742                 pps->kcmode |= KCMODE_ABIFLAG;
 1743                 pps->kernel_abi = PPS_ABI_VERSION;
 1744         }
 1745 }
 1746 
 1747 void
 1748 pps_capture(struct pps_state *pps)
 1749 {
 1750         struct timehands *th;
 1751 
 1752         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
 1753         th = timehands;
 1754         pps->capgen = atomic_load_acq_int(&th->th_generation);
 1755         pps->capth = th;
 1756 #ifdef FFCLOCK
 1757         pps->capffth = fftimehands;
 1758 #endif
 1759         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
 1760         atomic_thread_fence_acq();
 1761         if (pps->capgen != th->th_generation)
 1762                 pps->capgen = 0;
 1763 }
 1764 
 1765 void
 1766 pps_event(struct pps_state *pps, int event)
 1767 {
 1768         struct bintime bt;
 1769         struct timespec ts, *tsp, *osp;
 1770         u_int tcount, *pcount;
 1771         int foff;
 1772         pps_seq_t *pseq;
 1773 #ifdef FFCLOCK
 1774         struct timespec *tsp_ffc;
 1775         pps_seq_t *pseq_ffc;
 1776         ffcounter *ffcount;
 1777 #endif
 1778 #ifdef PPS_SYNC
 1779         int fhard;
 1780 #endif
 1781 
 1782         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
 1783         /* Nothing to do if not currently set to capture this event type. */
 1784         if ((event & pps->ppsparam.mode) == 0)
 1785                 return;
 1786         /* If the timecounter was wound up underneath us, bail out. */
 1787         if (pps->capgen == 0 || pps->capgen !=
 1788             atomic_load_acq_int(&pps->capth->th_generation))
 1789                 return;
 1790 
 1791         /* Things would be easier with arrays. */
 1792         if (event == PPS_CAPTUREASSERT) {
 1793                 tsp = &pps->ppsinfo.assert_timestamp;
 1794                 osp = &pps->ppsparam.assert_offset;
 1795                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
 1796 #ifdef PPS_SYNC
 1797                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
 1798 #endif
 1799                 pcount = &pps->ppscount[0];
 1800                 pseq = &pps->ppsinfo.assert_sequence;
 1801 #ifdef FFCLOCK
 1802                 ffcount = &pps->ppsinfo_ffc.assert_ffcount;
 1803                 tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
 1804                 pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
 1805 #endif
 1806         } else {
 1807                 tsp = &pps->ppsinfo.clear_timestamp;
 1808                 osp = &pps->ppsparam.clear_offset;
 1809                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
 1810 #ifdef PPS_SYNC
 1811                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
 1812 #endif
 1813                 pcount = &pps->ppscount[1];
 1814                 pseq = &pps->ppsinfo.clear_sequence;
 1815 #ifdef FFCLOCK
 1816                 ffcount = &pps->ppsinfo_ffc.clear_ffcount;
 1817                 tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
 1818                 pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
 1819 #endif
 1820         }
 1821 
 1822         /*
 1823          * If the timecounter changed, we cannot compare the count values, so
 1824          * we have to drop the rest of the PPS-stuff until the next event.
 1825          */
 1826         if (pps->ppstc != pps->capth->th_counter) {
 1827                 pps->ppstc = pps->capth->th_counter;
 1828                 *pcount = pps->capcount;
 1829                 pps->ppscount[2] = pps->capcount;
 1830                 return;
 1831         }
 1832 
 1833         /* Convert the count to a timespec. */
 1834         tcount = pps->capcount - pps->capth->th_offset_count;
 1835         tcount &= pps->capth->th_counter->tc_counter_mask;
 1836         bt = pps->capth->th_bintime;
 1837         bintime_addx(&bt, pps->capth->th_scale * tcount);
 1838         bintime2timespec(&bt, &ts);
 1839 
 1840         /* If the timecounter was wound up underneath us, bail out. */
 1841         atomic_thread_fence_acq();
 1842         if (pps->capgen != pps->capth->th_generation)
 1843                 return;
 1844 
 1845         *pcount = pps->capcount;
 1846         (*pseq)++;
 1847         *tsp = ts;
 1848 
 1849         if (foff) {
 1850                 timespecadd(tsp, osp, tsp);
 1851                 if (tsp->tv_nsec < 0) {
 1852                         tsp->tv_nsec += 1000000000;
 1853                         tsp->tv_sec -= 1;
 1854                 }
 1855         }
 1856 
 1857 #ifdef FFCLOCK
 1858         *ffcount = pps->capffth->tick_ffcount + tcount;
 1859         bt = pps->capffth->tick_time;
 1860         ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
 1861         bintime_add(&bt, &pps->capffth->tick_time);
 1862         bintime2timespec(&bt, &ts);
 1863         (*pseq_ffc)++;
 1864         *tsp_ffc = ts;
 1865 #endif
 1866 
 1867 #ifdef PPS_SYNC
 1868         if (fhard) {
 1869                 uint64_t scale;
 1870 
 1871                 /*
 1872                  * Feed the NTP PLL/FLL.
 1873                  * The FLL wants to know how many (hardware) nanoseconds
 1874                  * elapsed since the previous event.
 1875                  */
 1876                 tcount = pps->capcount - pps->ppscount[2];
 1877                 pps->ppscount[2] = pps->capcount;
 1878                 tcount &= pps->capth->th_counter->tc_counter_mask;
 1879                 scale = (uint64_t)1 << 63;
 1880                 scale /= pps->capth->th_counter->tc_frequency;
 1881                 scale *= 2;
 1882                 bt.sec = 0;
 1883                 bt.frac = 0;
 1884                 bintime_addx(&bt, scale * tcount);
 1885                 bintime2timespec(&bt, &ts);
 1886                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
 1887         }
 1888 #endif
 1889 
 1890         /* Wakeup anyone sleeping in pps_fetch().  */
 1891         wakeup(pps);
 1892 }
 1893 
 1894 /*
 1895  * Timecounters need to be updated every so often to prevent the hardware
 1896  * counter from overflowing.  Updating also recalculates the cached values
 1897  * used by the get*() family of functions, so their precision depends on
 1898  * the update frequency.
 1899  */
 1900 
 1901 static int tc_tick;
 1902 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
 1903     "Approximate number of hardclock ticks in a millisecond");
 1904 
 1905 void
 1906 tc_ticktock(int cnt)
 1907 {
 1908         static int count;
 1909 
 1910         if (mtx_trylock_spin(&tc_setclock_mtx)) {
 1911                 count += cnt;
 1912                 if (count >= tc_tick) {
 1913                         count = 0;
 1914                         tc_windup(NULL);
 1915                 }
 1916                 mtx_unlock_spin(&tc_setclock_mtx);
 1917         }
 1918 }
 1919 
 1920 static void __inline
 1921 tc_adjprecision(void)
 1922 {
 1923         int t;
 1924 
 1925         if (tc_timepercentage > 0) {
 1926                 t = (99 + tc_timepercentage) / tc_timepercentage;
 1927                 tc_precexp = fls(t + (t >> 1)) - 1;
 1928                 FREQ2BT(hz / tc_tick, &bt_timethreshold);
 1929                 FREQ2BT(hz, &bt_tickthreshold);
 1930                 bintime_shift(&bt_timethreshold, tc_precexp);
 1931                 bintime_shift(&bt_tickthreshold, tc_precexp);
 1932         } else {
 1933                 tc_precexp = 31;
 1934                 bt_timethreshold.sec = INT_MAX;
 1935                 bt_timethreshold.frac = ~(uint64_t)0;
 1936                 bt_tickthreshold = bt_timethreshold;
 1937         }
 1938         sbt_timethreshold = bttosbt(bt_timethreshold);
 1939         sbt_tickthreshold = bttosbt(bt_tickthreshold);
 1940 }
 1941 
 1942 static int
 1943 sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
 1944 {
 1945         int error, val;
 1946 
 1947         val = tc_timepercentage;
 1948         error = sysctl_handle_int(oidp, &val, 0, req);
 1949         if (error != 0 || req->newptr == NULL)
 1950                 return (error);
 1951         tc_timepercentage = val;
 1952         if (cold)
 1953                 goto done;
 1954         tc_adjprecision();
 1955 done:
 1956         return (0);
 1957 }
 1958 
 1959 static void
 1960 inittimecounter(void *dummy)
 1961 {
 1962         u_int p;
 1963         int tick_rate;
 1964 
 1965         /*
 1966          * Set the initial timeout to
 1967          * max(1, <approx. number of hardclock ticks in a millisecond>).
 1968          * People should probably not use the sysctl to set the timeout
 1969          * to smaller than its initial value, since that value is the
 1970          * smallest reasonable one.  If they want better timestamps they
 1971          * should use the non-"get"* functions.
 1972          */
 1973         if (hz > 1000)
 1974                 tc_tick = (hz + 500) / 1000;
 1975         else
 1976                 tc_tick = 1;
 1977         tc_adjprecision();
 1978         FREQ2BT(hz, &tick_bt);
 1979         tick_sbt = bttosbt(tick_bt);
 1980         tick_rate = hz / tc_tick;
 1981         FREQ2BT(tick_rate, &tc_tick_bt);
 1982         tc_tick_sbt = bttosbt(tc_tick_bt);
 1983         p = (tc_tick * 1000000) / hz;
 1984         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
 1985 
 1986 #ifdef FFCLOCK
 1987         ffclock_init();
 1988 #endif
 1989         /* warm up new timecounter (again) and get rolling. */
 1990         (void)timecounter->tc_get_timecount(timecounter);
 1991         (void)timecounter->tc_get_timecount(timecounter);
 1992         mtx_lock_spin(&tc_setclock_mtx);
 1993         tc_windup(NULL);
 1994         mtx_unlock_spin(&tc_setclock_mtx);
 1995 }
 1996 
 1997 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
 1998 
 1999 /* Cpu tick handling -------------------------------------------------*/
 2000 
 2001 static int cpu_tick_variable;
 2002 static uint64_t cpu_tick_frequency;
 2003 
 2004 DPCPU_DEFINE_STATIC(uint64_t, tc_cpu_ticks_base);
 2005 DPCPU_DEFINE_STATIC(unsigned, tc_cpu_ticks_last);
 2006 
 2007 static uint64_t
 2008 tc_cpu_ticks(void)
 2009 {
 2010         struct timecounter *tc;
 2011         uint64_t res, *base;
 2012         unsigned u, *last;
 2013 
 2014         critical_enter();
 2015         base = DPCPU_PTR(tc_cpu_ticks_base);
 2016         last = DPCPU_PTR(tc_cpu_ticks_last);
 2017         tc = timehands->th_counter;
 2018         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
 2019         if (u < *last)
 2020                 *base += (uint64_t)tc->tc_counter_mask + 1;
 2021         *last = u;
 2022         res = u + *base;
 2023         critical_exit();
 2024         return (res);
 2025 }
 2026 
 2027 void
 2028 cpu_tick_calibration(void)
 2029 {
 2030         static time_t last_calib;
 2031 
 2032         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
 2033                 cpu_tick_calibrate(0);
 2034                 last_calib = time_uptime;
 2035         }
 2036 }
 2037 
 2038 /*
 2039  * This function gets called every 16 seconds on only one designated
 2040  * CPU in the system from hardclock() via cpu_tick_calibration()().
 2041  *
 2042  * Whenever the real time clock is stepped we get called with reset=1
 2043  * to make sure we handle suspend/resume and similar events correctly.
 2044  */
 2045 
 2046 static void
 2047 cpu_tick_calibrate(int reset)
 2048 {
 2049         static uint64_t c_last;
 2050         uint64_t c_this, c_delta;
 2051         static struct bintime  t_last;
 2052         struct bintime t_this, t_delta;
 2053         uint32_t divi;
 2054 
 2055         if (reset) {
 2056                 /* The clock was stepped, abort & reset */
 2057                 t_last.sec = 0;
 2058                 return;
 2059         }
 2060 
 2061         /* we don't calibrate fixed rate cputicks */
 2062         if (!cpu_tick_variable)
 2063                 return;
 2064 
 2065         getbinuptime(&t_this);
 2066         c_this = cpu_ticks();
 2067         if (t_last.sec != 0) {
 2068                 c_delta = c_this - c_last;
 2069                 t_delta = t_this;
 2070                 bintime_sub(&t_delta, &t_last);
 2071                 /*
 2072                  * Headroom:
 2073                  *      2^(64-20) / 16[s] =
 2074                  *      2^(44) / 16[s] =
 2075                  *      17.592.186.044.416 / 16 =
 2076                  *      1.099.511.627.776 [Hz]
 2077                  */
 2078                 divi = t_delta.sec << 20;
 2079                 divi |= t_delta.frac >> (64 - 20);
 2080                 c_delta <<= 20;
 2081                 c_delta /= divi;
 2082                 if (c_delta > cpu_tick_frequency) {
 2083                         if (0 && bootverbose)
 2084                                 printf("cpu_tick increased to %ju Hz\n",
 2085                                     c_delta);
 2086                         cpu_tick_frequency = c_delta;
 2087                 }
 2088         }
 2089         c_last = c_this;
 2090         t_last = t_this;
 2091 }
 2092 
 2093 void
 2094 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
 2095 {
 2096 
 2097         if (func == NULL) {
 2098                 cpu_ticks = tc_cpu_ticks;
 2099         } else {
 2100                 cpu_tick_frequency = freq;
 2101                 cpu_tick_variable = var;
 2102                 cpu_ticks = func;
 2103         }
 2104 }
 2105 
 2106 uint64_t
 2107 cpu_tickrate(void)
 2108 {
 2109 
 2110         if (cpu_ticks == tc_cpu_ticks) 
 2111                 return (tc_getfrequency());
 2112         return (cpu_tick_frequency);
 2113 }
 2114 
 2115 /*
 2116  * We need to be slightly careful converting cputicks to microseconds.
 2117  * There is plenty of margin in 64 bits of microseconds (half a million
 2118  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
 2119  * before divide conversion (to retain precision) we find that the
 2120  * margin shrinks to 1.5 hours (one millionth of 146y).
 2121  * With a three prong approach we never lose significant bits, no
 2122  * matter what the cputick rate and length of timeinterval is.
 2123  */
 2124 
 2125 uint64_t
 2126 cputick2usec(uint64_t tick)
 2127 {
 2128 
 2129         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
 2130                 return (tick / (cpu_tickrate() / 1000000LL));
 2131         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
 2132                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
 2133         else
 2134                 return ((tick * 1000000LL) / cpu_tickrate());
 2135 }
 2136 
 2137 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
 2138 
 2139 static int vdso_th_enable = 1;
 2140 static int
 2141 sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
 2142 {
 2143         int old_vdso_th_enable, error;
 2144 
 2145         old_vdso_th_enable = vdso_th_enable;
 2146         error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
 2147         if (error != 0)
 2148                 return (error);
 2149         vdso_th_enable = old_vdso_th_enable;
 2150         return (0);
 2151 }
 2152 SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
 2153     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
 2154     NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
 2155 
 2156 uint32_t
 2157 tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
 2158 {
 2159         struct timehands *th;
 2160         uint32_t enabled;
 2161 
 2162         th = timehands;
 2163         vdso_th->th_scale = th->th_scale;
 2164         vdso_th->th_offset_count = th->th_offset_count;
 2165         vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
 2166         vdso_th->th_offset = th->th_offset;
 2167         vdso_th->th_boottime = th->th_boottime;
 2168         if (th->th_counter->tc_fill_vdso_timehands != NULL) {
 2169                 enabled = th->th_counter->tc_fill_vdso_timehands(vdso_th,
 2170                     th->th_counter);
 2171         } else
 2172                 enabled = 0;
 2173         if (!vdso_th_enable)
 2174                 enabled = 0;
 2175         return (enabled);
 2176 }
 2177 
 2178 #ifdef COMPAT_FREEBSD32
 2179 uint32_t
 2180 tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
 2181 {
 2182         struct timehands *th;
 2183         uint32_t enabled;
 2184 
 2185         th = timehands;
 2186         *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
 2187         vdso_th32->th_offset_count = th->th_offset_count;
 2188         vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
 2189         vdso_th32->th_offset.sec = th->th_offset.sec;
 2190         *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
 2191         vdso_th32->th_boottime.sec = th->th_boottime.sec;
 2192         *(uint64_t *)&vdso_th32->th_boottime.frac[0] = th->th_boottime.frac;
 2193         if (th->th_counter->tc_fill_vdso_timehands32 != NULL) {
 2194                 enabled = th->th_counter->tc_fill_vdso_timehands32(vdso_th32,
 2195                     th->th_counter);
 2196         } else
 2197                 enabled = 0;
 2198         if (!vdso_th_enable)
 2199                 enabled = 0;
 2200         return (enabled);
 2201 }
 2202 #endif

Cache object: e6bcbbf8d27f6d2c63bfa8394e6dc728


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.