The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_tc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * ----------------------------------------------------------------------------
    3  * "THE BEER-WARE LICENSE" (Revision 42):
    4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
    5  * can do whatever you want with this stuff. If we meet some day, and you think
    6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
    7  * ----------------------------------------------------------------------------
    8  */
    9 
   10 #include <sys/cdefs.h>
   11 __FBSDID("$FreeBSD: releng/6.2/sys/kern/kern_tc.c 164286 2006-11-14 20:42:41Z cvs2svn $");
   12 
   13 #include "opt_ntp.h"
   14 
   15 #include <sys/param.h>
   16 #include <sys/kernel.h>
   17 #include <sys/sysctl.h>
   18 #include <sys/syslog.h>
   19 #include <sys/systm.h>
   20 #include <sys/timepps.h>
   21 #include <sys/timetc.h>
   22 #include <sys/timex.h>
   23 
   24 /*
   25  * A large step happens on boot.  This constant detects such steps.
   26  * It is relatively small so that ntp_update_second gets called enough
   27  * in the typical 'missed a couple of seconds' case, but doesn't loop
   28  * forever when the time step is large.
   29  */
   30 #define LARGE_STEP      200
   31 
   32 /*
   33  * Implement a dummy timecounter which we can use until we get a real one
   34  * in the air.  This allows the console and other early stuff to use
   35  * time services.
   36  */
   37 
   38 static u_int
   39 dummy_get_timecount(struct timecounter *tc)
   40 {
   41         static u_int now;
   42 
   43         return (++now);
   44 }
   45 
   46 static struct timecounter dummy_timecounter = {
   47         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
   48 };
   49 
   50 struct timehands {
   51         /* These fields must be initialized by the driver. */
   52         struct timecounter      *th_counter;
   53         int64_t                 th_adjustment;
   54         u_int64_t               th_scale;
   55         u_int                   th_offset_count;
   56         struct bintime          th_offset;
   57         struct timeval          th_microtime;
   58         struct timespec         th_nanotime;
   59         /* Fields not to be copied in tc_windup start with th_generation. */
   60         volatile u_int          th_generation;
   61         struct timehands        *th_next;
   62 };
   63 
   64 extern struct timehands th0;
   65 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
   66 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
   67 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
   68 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
   69 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
   70 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
   71 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
   72 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
   73 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
   74 static struct timehands th0 = {
   75         &dummy_timecounter,
   76         0,
   77         (uint64_t)-1 / 1000000,
   78         0,
   79         {1, 0},
   80         {0, 0},
   81         {0, 0},
   82         1,
   83         &th1
   84 };
   85 
   86 static struct timehands *volatile timehands = &th0;
   87 struct timecounter *timecounter = &dummy_timecounter;
   88 static struct timecounter *timecounters = &dummy_timecounter;
   89 
   90 time_t time_second = 1;
   91 time_t time_uptime = 0;
   92 
   93 static struct bintime boottimebin;
   94 struct timeval boottime;
   95 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
   96 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
   97     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
   98 
   99 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
  100 
  101 static int timestepwarnings;
  102 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
  103     &timestepwarnings, 0, "");
  104 
  105 #define TC_STATS(foo) \
  106         static u_int foo; \
  107         SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
  108         struct __hack
  109 
  110 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
  111 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
  112 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
  113 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
  114 TC_STATS(nsetclock);
  115 
  116 #undef TC_STATS
  117 
  118 static void tc_windup(void);
  119 
  120 static int
  121 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
  122 {
  123 #ifdef SCTL_MASK32
  124         int tv[2];
  125 
  126         if (req->flags & SCTL_MASK32) {
  127                 tv[0] = boottime.tv_sec;
  128                 tv[1] = boottime.tv_usec;
  129                 return SYSCTL_OUT(req, tv, sizeof(tv));
  130         } else
  131 #endif
  132                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
  133 }
  134 /*
  135  * Return the difference between the timehands' counter value now and what
  136  * was when we copied it to the timehands' offset_count.
  137  */
  138 static __inline u_int
  139 tc_delta(struct timehands *th)
  140 {
  141         struct timecounter *tc;
  142 
  143         tc = th->th_counter;
  144         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
  145             tc->tc_counter_mask);
  146 }
  147 
  148 /*
  149  * Functions for reading the time.  We have to loop until we are sure that
  150  * the timehands that we operated on was not updated under our feet.  See
  151  * the comment in <sys/time.h> for a description of these 12 functions.
  152  */
  153 
  154 void
  155 binuptime(struct bintime *bt)
  156 {
  157         struct timehands *th;
  158         u_int gen;
  159 
  160         nbinuptime++;
  161         do {
  162                 th = timehands;
  163                 gen = th->th_generation;
  164                 *bt = th->th_offset;
  165                 bintime_addx(bt, th->th_scale * tc_delta(th));
  166         } while (gen == 0 || gen != th->th_generation);
  167 }
  168 
  169 void
  170 nanouptime(struct timespec *tsp)
  171 {
  172         struct bintime bt;
  173 
  174         nnanouptime++;
  175         binuptime(&bt);
  176         bintime2timespec(&bt, tsp);
  177 }
  178 
  179 void
  180 microuptime(struct timeval *tvp)
  181 {
  182         struct bintime bt;
  183 
  184         nmicrouptime++;
  185         binuptime(&bt);
  186         bintime2timeval(&bt, tvp);
  187 }
  188 
  189 void
  190 bintime(struct bintime *bt)
  191 {
  192 
  193         nbintime++;
  194         binuptime(bt);
  195         bintime_add(bt, &boottimebin);
  196 }
  197 
  198 void
  199 nanotime(struct timespec *tsp)
  200 {
  201         struct bintime bt;
  202 
  203         nnanotime++;
  204         bintime(&bt);
  205         bintime2timespec(&bt, tsp);
  206 }
  207 
  208 void
  209 microtime(struct timeval *tvp)
  210 {
  211         struct bintime bt;
  212 
  213         nmicrotime++;
  214         bintime(&bt);
  215         bintime2timeval(&bt, tvp);
  216 }
  217 
  218 void
  219 getbinuptime(struct bintime *bt)
  220 {
  221         struct timehands *th;
  222         u_int gen;
  223 
  224         ngetbinuptime++;
  225         do {
  226                 th = timehands;
  227                 gen = th->th_generation;
  228                 *bt = th->th_offset;
  229         } while (gen == 0 || gen != th->th_generation);
  230 }
  231 
  232 void
  233 getnanouptime(struct timespec *tsp)
  234 {
  235         struct timehands *th;
  236         u_int gen;
  237 
  238         ngetnanouptime++;
  239         do {
  240                 th = timehands;
  241                 gen = th->th_generation;
  242                 bintime2timespec(&th->th_offset, tsp);
  243         } while (gen == 0 || gen != th->th_generation);
  244 }
  245 
  246 void
  247 getmicrouptime(struct timeval *tvp)
  248 {
  249         struct timehands *th;
  250         u_int gen;
  251 
  252         ngetmicrouptime++;
  253         do {
  254                 th = timehands;
  255                 gen = th->th_generation;
  256                 bintime2timeval(&th->th_offset, tvp);
  257         } while (gen == 0 || gen != th->th_generation);
  258 }
  259 
  260 void
  261 getbintime(struct bintime *bt)
  262 {
  263         struct timehands *th;
  264         u_int gen;
  265 
  266         ngetbintime++;
  267         do {
  268                 th = timehands;
  269                 gen = th->th_generation;
  270                 *bt = th->th_offset;
  271         } while (gen == 0 || gen != th->th_generation);
  272         bintime_add(bt, &boottimebin);
  273 }
  274 
  275 void
  276 getnanotime(struct timespec *tsp)
  277 {
  278         struct timehands *th;
  279         u_int gen;
  280 
  281         ngetnanotime++;
  282         do {
  283                 th = timehands;
  284                 gen = th->th_generation;
  285                 *tsp = th->th_nanotime;
  286         } while (gen == 0 || gen != th->th_generation);
  287 }
  288 
  289 void
  290 getmicrotime(struct timeval *tvp)
  291 {
  292         struct timehands *th;
  293         u_int gen;
  294 
  295         ngetmicrotime++;
  296         do {
  297                 th = timehands;
  298                 gen = th->th_generation;
  299                 *tvp = th->th_microtime;
  300         } while (gen == 0 || gen != th->th_generation);
  301 }
  302 
  303 /*
  304  * Initialize a new timecounter and possibly use it.
  305  */
  306 void
  307 tc_init(struct timecounter *tc)
  308 {
  309         u_int u;
  310 
  311         u = tc->tc_frequency / tc->tc_counter_mask;
  312         /* XXX: We need some margin here, 10% is a guess */
  313         u *= 11;
  314         u /= 10;
  315         if (u > hz && tc->tc_quality >= 0) {
  316                 tc->tc_quality = -2000;
  317                 if (bootverbose) {
  318                         printf("Timecounter \"%s\" frequency %ju Hz",
  319                             tc->tc_name, (uintmax_t)tc->tc_frequency);
  320                         printf(" -- Insufficient hz, needs at least %u\n", u);
  321                 }
  322         } else if (tc->tc_quality >= 0 || bootverbose) {
  323                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
  324                     tc->tc_name, (uintmax_t)tc->tc_frequency,
  325                     tc->tc_quality);
  326         }
  327 
  328         tc->tc_next = timecounters;
  329         timecounters = tc;
  330         /*
  331          * Never automatically use a timecounter with negative quality.
  332          * Even though we run on the dummy counter, switching here may be
  333          * worse since this timecounter may not be monotonous.
  334          */
  335         if (tc->tc_quality < 0)
  336                 return;
  337         if (tc->tc_quality < timecounter->tc_quality)
  338                 return;
  339         if (tc->tc_quality == timecounter->tc_quality &&
  340             tc->tc_frequency < timecounter->tc_frequency)
  341                 return;
  342         (void)tc->tc_get_timecount(tc);
  343         (void)tc->tc_get_timecount(tc);
  344         timecounter = tc;
  345 }
  346 
  347 /* Report the frequency of the current timecounter. */
  348 u_int64_t
  349 tc_getfrequency(void)
  350 {
  351 
  352         return (timehands->th_counter->tc_frequency);
  353 }
  354 
  355 /*
  356  * Step our concept of UTC.  This is done by modifying our estimate of
  357  * when we booted.
  358  * XXX: not locked.
  359  */
  360 void
  361 tc_setclock(struct timespec *ts)
  362 {
  363         struct timespec ts2;
  364         struct bintime bt, bt2;
  365 
  366         nsetclock++;
  367         binuptime(&bt2);
  368         timespec2bintime(ts, &bt);
  369         bintime_sub(&bt, &bt2);
  370         bintime_add(&bt2, &boottimebin);
  371         boottimebin = bt;
  372         bintime2timeval(&bt, &boottime);
  373 
  374         /* XXX fiddle all the little crinkly bits around the fiords... */
  375         tc_windup();
  376         if (timestepwarnings) {
  377                 bintime2timespec(&bt2, &ts2);
  378                 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
  379                     (intmax_t)ts2.tv_sec, ts2.tv_nsec,
  380                     (intmax_t)ts->tv_sec, ts->tv_nsec);
  381         }
  382 }
  383 
  384 /*
  385  * Initialize the next struct timehands in the ring and make
  386  * it the active timehands.  Along the way we might switch to a different
  387  * timecounter and/or do seconds processing in NTP.  Slightly magic.
  388  */
  389 static void
  390 tc_windup(void)
  391 {
  392         struct bintime bt;
  393         struct timehands *th, *tho;
  394         u_int64_t scale;
  395         u_int delta, ncount, ogen;
  396         int i;
  397         time_t t;
  398 
  399         /*
  400          * Make the next timehands a copy of the current one, but do not
  401          * overwrite the generation or next pointer.  While we update
  402          * the contents, the generation must be zero.
  403          */
  404         tho = timehands;
  405         th = tho->th_next;
  406         ogen = th->th_generation;
  407         th->th_generation = 0;
  408         bcopy(tho, th, offsetof(struct timehands, th_generation));
  409 
  410         /*
  411          * Capture a timecounter delta on the current timecounter and if
  412          * changing timecounters, a counter value from the new timecounter.
  413          * Update the offset fields accordingly.
  414          */
  415         delta = tc_delta(th);
  416         if (th->th_counter != timecounter)
  417                 ncount = timecounter->tc_get_timecount(timecounter);
  418         else
  419                 ncount = 0;
  420         th->th_offset_count += delta;
  421         th->th_offset_count &= th->th_counter->tc_counter_mask;
  422         bintime_addx(&th->th_offset, th->th_scale * delta);
  423 
  424         /*
  425          * Hardware latching timecounters may not generate interrupts on
  426          * PPS events, so instead we poll them.  There is a finite risk that
  427          * the hardware might capture a count which is later than the one we
  428          * got above, and therefore possibly in the next NTP second which might
  429          * have a different rate than the current NTP second.  It doesn't
  430          * matter in practice.
  431          */
  432         if (tho->th_counter->tc_poll_pps)
  433                 tho->th_counter->tc_poll_pps(tho->th_counter);
  434 
  435         /*
  436          * Deal with NTP second processing.  The for loop normally
  437          * iterates at most once, but in extreme situations it might
  438          * keep NTP sane if timeouts are not run for several seconds.
  439          * At boot, the time step can be large when the TOD hardware
  440          * has been read, so on really large steps, we call
  441          * ntp_update_second only twice.  We need to call it twice in
  442          * case we missed a leap second.
  443          */
  444         bt = th->th_offset;
  445         bintime_add(&bt, &boottimebin);
  446         i = bt.sec - tho->th_microtime.tv_sec;
  447         if (i > LARGE_STEP)
  448                 i = 2;
  449         for (; i > 0; i--) {
  450                 t = bt.sec;
  451                 ntp_update_second(&th->th_adjustment, &bt.sec);
  452                 if (bt.sec != t)
  453                         boottimebin.sec += bt.sec - t;
  454         }
  455         /* Update the UTC timestamps used by the get*() functions. */
  456         /* XXX shouldn't do this here.  Should force non-`get' versions. */
  457         bintime2timeval(&bt, &th->th_microtime);
  458         bintime2timespec(&bt, &th->th_nanotime);
  459 
  460         /* Now is a good time to change timecounters. */
  461         if (th->th_counter != timecounter) {
  462                 th->th_counter = timecounter;
  463                 th->th_offset_count = ncount;
  464         }
  465 
  466         /*-
  467          * Recalculate the scaling factor.  We want the number of 1/2^64
  468          * fractions of a second per period of the hardware counter, taking
  469          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
  470          * processing provides us with.
  471          *
  472          * The th_adjustment is nanoseconds per second with 32 bit binary
  473          * fraction and we want 64 bit binary fraction of second:
  474          *
  475          *       x = a * 2^32 / 10^9 = a * 4.294967296
  476          *
  477          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
  478          * we can only multiply by about 850 without overflowing, but that
  479          * leaves suitably precise fractions for multiply before divide.
  480          *
  481          * Divide before multiply with a fraction of 2199/512 results in a
  482          * systematic undercompensation of 10PPM of th_adjustment.  On a
  483          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
  484          *
  485          * We happily sacrifice the lowest of the 64 bits of our result
  486          * to the goddess of code clarity.
  487          *
  488          */
  489         scale = (u_int64_t)1 << 63;
  490         scale += (th->th_adjustment / 1024) * 2199;
  491         scale /= th->th_counter->tc_frequency;
  492         th->th_scale = scale * 2;
  493 
  494         /*
  495          * Now that the struct timehands is again consistent, set the new
  496          * generation number, making sure to not make it zero.
  497          */
  498         if (++ogen == 0)
  499                 ogen = 1;
  500         th->th_generation = ogen;
  501 
  502         /* Go live with the new struct timehands. */
  503         time_second = th->th_microtime.tv_sec;
  504         time_uptime = th->th_offset.sec;
  505         timehands = th;
  506 }
  507 
  508 /* Report or change the active timecounter hardware. */
  509 static int
  510 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
  511 {
  512         char newname[32];
  513         struct timecounter *newtc, *tc;
  514         int error;
  515 
  516         tc = timecounter;
  517         strlcpy(newname, tc->tc_name, sizeof(newname));
  518 
  519         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
  520         if (error != 0 || req->newptr == NULL ||
  521             strcmp(newname, tc->tc_name) == 0)
  522                 return (error);
  523         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
  524                 if (strcmp(newname, newtc->tc_name) != 0)
  525                         continue;
  526 
  527                 /* Warm up new timecounter. */
  528                 (void)newtc->tc_get_timecount(newtc);
  529                 (void)newtc->tc_get_timecount(newtc);
  530 
  531                 timecounter = newtc;
  532                 return (0);
  533         }
  534         return (EINVAL);
  535 }
  536 
  537 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
  538     0, 0, sysctl_kern_timecounter_hardware, "A", "");
  539 
  540 
  541 /* Report or change the active timecounter hardware. */
  542 static int
  543 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
  544 {
  545         char buf[32], *spc;
  546         struct timecounter *tc;
  547         int error;
  548 
  549         spc = "";
  550         error = 0;
  551         for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
  552                 sprintf(buf, "%s%s(%d)",
  553                     spc, tc->tc_name, tc->tc_quality);
  554                 error = SYSCTL_OUT(req, buf, strlen(buf));
  555                 spc = " ";
  556         }
  557         return (error);
  558 }
  559 
  560 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
  561     0, 0, sysctl_kern_timecounter_choice, "A", "");
  562 
  563 /*
  564  * RFC 2783 PPS-API implementation.
  565  */
  566 
  567 int
  568 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
  569 {
  570         pps_params_t *app;
  571         struct pps_fetch_args *fapi;
  572 #ifdef PPS_SYNC
  573         struct pps_kcbind_args *kapi;
  574 #endif
  575 
  576         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
  577         switch (cmd) {
  578         case PPS_IOC_CREATE:
  579                 return (0);
  580         case PPS_IOC_DESTROY:
  581                 return (0);
  582         case PPS_IOC_SETPARAMS:
  583                 app = (pps_params_t *)data;
  584                 if (app->mode & ~pps->ppscap)
  585                         return (EINVAL);
  586                 pps->ppsparam = *app;
  587                 return (0);
  588         case PPS_IOC_GETPARAMS:
  589                 app = (pps_params_t *)data;
  590                 *app = pps->ppsparam;
  591                 app->api_version = PPS_API_VERS_1;
  592                 return (0);
  593         case PPS_IOC_GETCAP:
  594                 *(int*)data = pps->ppscap;
  595                 return (0);
  596         case PPS_IOC_FETCH:
  597                 fapi = (struct pps_fetch_args *)data;
  598                 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
  599                         return (EINVAL);
  600                 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
  601                         return (EOPNOTSUPP);
  602                 pps->ppsinfo.current_mode = pps->ppsparam.mode;
  603                 fapi->pps_info_buf = pps->ppsinfo;
  604                 return (0);
  605         case PPS_IOC_KCBIND:
  606 #ifdef PPS_SYNC
  607                 kapi = (struct pps_kcbind_args *)data;
  608                 /* XXX Only root should be able to do this */
  609                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
  610                         return (EINVAL);
  611                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
  612                         return (EINVAL);
  613                 if (kapi->edge & ~pps->ppscap)
  614                         return (EINVAL);
  615                 pps->kcmode = kapi->edge;
  616                 return (0);
  617 #else
  618                 return (EOPNOTSUPP);
  619 #endif
  620         default:
  621                 return (ENOIOCTL);
  622         }
  623 }
  624 
  625 void
  626 pps_init(struct pps_state *pps)
  627 {
  628         pps->ppscap |= PPS_TSFMT_TSPEC;
  629         if (pps->ppscap & PPS_CAPTUREASSERT)
  630                 pps->ppscap |= PPS_OFFSETASSERT;
  631         if (pps->ppscap & PPS_CAPTURECLEAR)
  632                 pps->ppscap |= PPS_OFFSETCLEAR;
  633 }
  634 
  635 void
  636 pps_capture(struct pps_state *pps)
  637 {
  638         struct timehands *th;
  639 
  640         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
  641         th = timehands;
  642         pps->capgen = th->th_generation;
  643         pps->capth = th;
  644         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
  645         if (pps->capgen != th->th_generation)
  646                 pps->capgen = 0;
  647 }
  648 
  649 void
  650 pps_event(struct pps_state *pps, int event)
  651 {
  652         struct bintime bt;
  653         struct timespec ts, *tsp, *osp;
  654         u_int tcount, *pcount;
  655         int foff, fhard;
  656         pps_seq_t *pseq;
  657 
  658         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
  659         /* If the timecounter was wound up underneath us, bail out. */
  660         if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
  661                 return;
  662 
  663         /* Things would be easier with arrays. */
  664         if (event == PPS_CAPTUREASSERT) {
  665                 tsp = &pps->ppsinfo.assert_timestamp;
  666                 osp = &pps->ppsparam.assert_offset;
  667                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
  668                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
  669                 pcount = &pps->ppscount[0];
  670                 pseq = &pps->ppsinfo.assert_sequence;
  671         } else {
  672                 tsp = &pps->ppsinfo.clear_timestamp;
  673                 osp = &pps->ppsparam.clear_offset;
  674                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
  675                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
  676                 pcount = &pps->ppscount[1];
  677                 pseq = &pps->ppsinfo.clear_sequence;
  678         }
  679 
  680         /*
  681          * If the timecounter changed, we cannot compare the count values, so
  682          * we have to drop the rest of the PPS-stuff until the next event.
  683          */
  684         if (pps->ppstc != pps->capth->th_counter) {
  685                 pps->ppstc = pps->capth->th_counter;
  686                 *pcount = pps->capcount;
  687                 pps->ppscount[2] = pps->capcount;
  688                 return;
  689         }
  690 
  691         /* Convert the count to a timespec. */
  692         tcount = pps->capcount - pps->capth->th_offset_count;
  693         tcount &= pps->capth->th_counter->tc_counter_mask;
  694         bt = pps->capth->th_offset;
  695         bintime_addx(&bt, pps->capth->th_scale * tcount);
  696         bintime_add(&bt, &boottimebin);
  697         bintime2timespec(&bt, &ts);
  698 
  699         /* If the timecounter was wound up underneath us, bail out. */
  700         if (pps->capgen != pps->capth->th_generation)
  701                 return;
  702 
  703         *pcount = pps->capcount;
  704         (*pseq)++;
  705         *tsp = ts;
  706 
  707         if (foff) {
  708                 timespecadd(tsp, osp);
  709                 if (tsp->tv_nsec < 0) {
  710                         tsp->tv_nsec += 1000000000;
  711                         tsp->tv_sec -= 1;
  712                 }
  713         }
  714 #ifdef PPS_SYNC
  715         if (fhard) {
  716                 u_int64_t scale;
  717 
  718                 /*
  719                  * Feed the NTP PLL/FLL.
  720                  * The FLL wants to know how many (hardware) nanoseconds
  721                  * elapsed since the previous event.
  722                  */
  723                 tcount = pps->capcount - pps->ppscount[2];
  724                 pps->ppscount[2] = pps->capcount;
  725                 tcount &= pps->capth->th_counter->tc_counter_mask;
  726                 scale = (u_int64_t)1 << 63;
  727                 scale /= pps->capth->th_counter->tc_frequency;
  728                 scale *= 2;
  729                 bt.sec = 0;
  730                 bt.frac = 0;
  731                 bintime_addx(&bt, scale * tcount);
  732                 bintime2timespec(&bt, &ts);
  733                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
  734         }
  735 #endif
  736 }
  737 
  738 /*
  739  * Timecounters need to be updated every so often to prevent the hardware
  740  * counter from overflowing.  Updating also recalculates the cached values
  741  * used by the get*() family of functions, so their precision depends on
  742  * the update frequency.
  743  */
  744 
  745 static int tc_tick;
  746 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
  747 
  748 void
  749 tc_ticktock(void)
  750 {
  751         static int count;
  752 
  753         if (++count < tc_tick)
  754                 return;
  755         count = 0;
  756         tc_windup();
  757 }
  758 
  759 static void
  760 inittimecounter(void *dummy)
  761 {
  762         u_int p;
  763 
  764         /*
  765          * Set the initial timeout to
  766          * max(1, <approx. number of hardclock ticks in a millisecond>).
  767          * People should probably not use the sysctl to set the timeout
  768          * to smaller than its inital value, since that value is the
  769          * smallest reasonable one.  If they want better timestamps they
  770          * should use the non-"get"* functions.
  771          */
  772         if (hz > 1000)
  773                 tc_tick = (hz + 500) / 1000;
  774         else
  775                 tc_tick = 1;
  776         p = (tc_tick * 1000000) / hz;
  777         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
  778 
  779         /* warm up new timecounter (again) and get rolling. */
  780         (void)timecounter->tc_get_timecount(timecounter);
  781         (void)timecounter->tc_get_timecount(timecounter);
  782 }
  783 
  784 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL)

Cache object: 09ef39d9ecf83cba5ac20e7f368dcd7a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.