The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_tc.c

Version: -  FREEBSD  -  FREEBSD11  -  FREEBSD10  -  FREEBSD9  -  FREEBSD92  -  FREEBSD91  -  FREEBSD90  -  FREEBSD8  -  FREEBSD82  -  FREEBSD81  -  FREEBSD80  -  FREEBSD7  -  FREEBSD74  -  FREEBSD73  -  FREEBSD72  -  FREEBSD71  -  FREEBSD70  -  FREEBSD6  -  FREEBSD64  -  FREEBSD63  -  FREEBSD62  -  FREEBSD61  -  FREEBSD60  -  FREEBSD5  -  FREEBSD55  -  FREEBSD54  -  FREEBSD53  -  FREEBSD52  -  FREEBSD51  -  FREEBSD50  -  FREEBSD4  -  FREEBSD3  -  FREEBSD22  -  linux-2.6  -  linux-2.4.22  -  MK83  -  MK84  -  PLAN9  -  DFBSD  -  NETBSD  -  NETBSD5  -  NETBSD4  -  NETBSD3  -  NETBSD20  -  OPENBSD  -  xnu-517  -  xnu-792  -  xnu-792.6.70  -  xnu-1228  -  xnu-1456.1.26  -  xnu-1699.24.8  -  xnu-2050.18.24  -  OPENSOLARIS  -  minix-3-1-1 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * ----------------------------------------------------------------------------
    3  * "THE BEER-WARE LICENSE" (Revision 42):
    4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
    5  * can do whatever you want with this stuff. If we meet some day, and you think
    6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
    7  * ----------------------------------------------------------------------------
    8  */
    9 
   10 #include <sys/cdefs.h>
   11 __FBSDID("$FreeBSD$");
   12 
   13 #include "opt_ntp.h"
   14 
   15 #include <sys/param.h>
   16 #include <sys/kernel.h>
   17 #include <sys/sysctl.h>
   18 #include <sys/syslog.h>
   19 #include <sys/systm.h>
   20 #include <sys/timepps.h>
   21 #include <sys/timetc.h>
   22 #include <sys/timex.h>
   23 
   24 /*
   25  * A large step happens on boot.  This constant detects such steps.
   26  * It is relatively small so that ntp_update_second gets called enough
   27  * in the typical 'missed a couple of seconds' case, but doesn't loop
   28  * forever when the time step is large.
   29  */
   30 #define LARGE_STEP      200
   31 
   32 /*
   33  * Implement a dummy timecounter which we can use until we get a real one
   34  * in the air.  This allows the console and other early stuff to use
   35  * time services.
   36  */
   37 
   38 static u_int
   39 dummy_get_timecount(struct timecounter *tc)
   40 {
   41         static u_int now;
   42 
   43         return (++now);
   44 }
   45 
   46 static struct timecounter dummy_timecounter = {
   47         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
   48 };
   49 
   50 struct timehands {
   51         /* These fields must be initialized by the driver. */
   52         struct timecounter      *th_counter;
   53         int64_t                 th_adjustment;
   54         u_int64_t               th_scale;
   55         u_int                   th_offset_count;
   56         struct bintime          th_offset;
   57         struct timeval          th_microtime;
   58         struct timespec         th_nanotime;
   59         /* Fields not to be copied in tc_windup start with th_generation. */
   60         volatile u_int          th_generation;
   61         struct timehands        *th_next;
   62 };
   63 
   64 static struct timehands th0;
   65 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
   66 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
   67 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
   68 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
   69 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
   70 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
   71 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
   72 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
   73 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
   74 static struct timehands th0 = {
   75         &dummy_timecounter,
   76         0,
   77         (uint64_t)-1 / 1000000,
   78         0,
   79         {1, 0},
   80         {0, 0},
   81         {0, 0},
   82         1,
   83         &th1
   84 };
   85 
   86 static struct timehands *volatile timehands = &th0;
   87 struct timecounter *timecounter = &dummy_timecounter;
   88 static struct timecounter *timecounters = &dummy_timecounter;
   89 
   90 time_t time_second = 1;
   91 time_t time_uptime = 1;
   92 
   93 static struct bintime boottimebin;
   94 struct timeval boottime;
   95 static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
   96 SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
   97     NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
   98 
   99 SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
  100 SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
  101 
  102 static int timestepwarnings;
  103 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
  104     &timestepwarnings, 0, "");
  105 
  106 #ifdef TC_COUNTERS
  107 #define TC_STATS(foo) \
  108         static u_int foo; \
  109         SYSCTL_UINT(_kern_timecounter, OID_AUTO, foo, CTLFLAG_RD, &foo, 0, "");\
  110         struct __hack
  111 
  112 TC_STATS(nbinuptime);    TC_STATS(nnanouptime);    TC_STATS(nmicrouptime);
  113 TC_STATS(nbintime);      TC_STATS(nnanotime);      TC_STATS(nmicrotime);
  114 TC_STATS(ngetbinuptime); TC_STATS(ngetnanouptime); TC_STATS(ngetmicrouptime);
  115 TC_STATS(ngetbintime);   TC_STATS(ngetnanotime);   TC_STATS(ngetmicrotime);
  116 TC_STATS(nsetclock);
  117 
  118 #define TC_COUNT(var)   var++
  119 #undef TC_STATS
  120 #else
  121 #define TC_COUNT(var)   /* nothing */
  122 #endif /* TC_COUNTERS */
  123 
  124 static void tc_windup(void);
  125 static void cpu_tick_calibrate(int);
  126 
  127 static int
  128 sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
  129 {
  130 #ifdef SCTL_MASK32
  131         int tv[2];
  132 
  133         if (req->flags & SCTL_MASK32) {
  134                 tv[0] = boottime.tv_sec;
  135                 tv[1] = boottime.tv_usec;
  136                 return SYSCTL_OUT(req, tv, sizeof(tv));
  137         } else
  138 #endif
  139                 return SYSCTL_OUT(req, &boottime, sizeof(boottime));
  140 }
  141 
  142 static int
  143 sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
  144 {
  145         u_int ncount;
  146         struct timecounter *tc = arg1;
  147 
  148         ncount = tc->tc_get_timecount(tc);
  149         return sysctl_handle_int(oidp, &ncount, 0, req);
  150 }
  151 
  152 static int
  153 sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
  154 {
  155         u_int64_t freq;
  156         struct timecounter *tc = arg1;
  157 
  158         freq = tc->tc_frequency;
  159         return sysctl_handle_quad(oidp, &freq, 0, req);
  160 }
  161 
  162 /*
  163  * Return the difference between the timehands' counter value now and what
  164  * was when we copied it to the timehands' offset_count.
  165  */
  166 static __inline u_int
  167 tc_delta(struct timehands *th)
  168 {
  169         struct timecounter *tc;
  170 
  171         tc = th->th_counter;
  172         return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
  173             tc->tc_counter_mask);
  174 }
  175 
  176 /*
  177  * Functions for reading the time.  We have to loop until we are sure that
  178  * the timehands that we operated on was not updated under our feet.  See
  179  * the comment in <sys/time.h> for a description of these 12 functions.
  180  */
  181 
  182 void
  183 binuptime(struct bintime *bt)
  184 {
  185         struct timehands *th;
  186         u_int gen;
  187 
  188         TC_COUNT(nbinuptime);
  189         do {
  190                 th = timehands;
  191                 gen = th->th_generation;
  192                 *bt = th->th_offset;
  193                 bintime_addx(bt, th->th_scale * tc_delta(th));
  194         } while (gen == 0 || gen != th->th_generation);
  195 }
  196 
  197 void
  198 nanouptime(struct timespec *tsp)
  199 {
  200         struct bintime bt;
  201 
  202         TC_COUNT(nnanouptime);
  203         binuptime(&bt);
  204         bintime2timespec(&bt, tsp);
  205 }
  206 
  207 void
  208 microuptime(struct timeval *tvp)
  209 {
  210         struct bintime bt;
  211 
  212         TC_COUNT(nmicrouptime);
  213         binuptime(&bt);
  214         bintime2timeval(&bt, tvp);
  215 }
  216 
  217 void
  218 bintime(struct bintime *bt)
  219 {
  220 
  221         TC_COUNT(nbintime);
  222         binuptime(bt);
  223         bintime_add(bt, &boottimebin);
  224 }
  225 
  226 void
  227 nanotime(struct timespec *tsp)
  228 {
  229         struct bintime bt;
  230 
  231         TC_COUNT(nnanotime);
  232         bintime(&bt);
  233         bintime2timespec(&bt, tsp);
  234 }
  235 
  236 void
  237 microtime(struct timeval *tvp)
  238 {
  239         struct bintime bt;
  240 
  241         TC_COUNT(nmicrotime);
  242         bintime(&bt);
  243         bintime2timeval(&bt, tvp);
  244 }
  245 
  246 void
  247 getbinuptime(struct bintime *bt)
  248 {
  249         struct timehands *th;
  250         u_int gen;
  251 
  252         TC_COUNT(ngetbinuptime);
  253         do {
  254                 th = timehands;
  255                 gen = th->th_generation;
  256                 *bt = th->th_offset;
  257         } while (gen == 0 || gen != th->th_generation);
  258 }
  259 
  260 void
  261 getnanouptime(struct timespec *tsp)
  262 {
  263         struct timehands *th;
  264         u_int gen;
  265 
  266         TC_COUNT(ngetnanouptime);
  267         do {
  268                 th = timehands;
  269                 gen = th->th_generation;
  270                 bintime2timespec(&th->th_offset, tsp);
  271         } while (gen == 0 || gen != th->th_generation);
  272 }
  273 
  274 void
  275 getmicrouptime(struct timeval *tvp)
  276 {
  277         struct timehands *th;
  278         u_int gen;
  279 
  280         TC_COUNT(ngetmicrouptime);
  281         do {
  282                 th = timehands;
  283                 gen = th->th_generation;
  284                 bintime2timeval(&th->th_offset, tvp);
  285         } while (gen == 0 || gen != th->th_generation);
  286 }
  287 
  288 void
  289 getbintime(struct bintime *bt)
  290 {
  291         struct timehands *th;
  292         u_int gen;
  293 
  294         TC_COUNT(ngetbintime);
  295         do {
  296                 th = timehands;
  297                 gen = th->th_generation;
  298                 *bt = th->th_offset;
  299         } while (gen == 0 || gen != th->th_generation);
  300         bintime_add(bt, &boottimebin);
  301 }
  302 
  303 void
  304 getnanotime(struct timespec *tsp)
  305 {
  306         struct timehands *th;
  307         u_int gen;
  308 
  309         TC_COUNT(ngetnanotime);
  310         do {
  311                 th = timehands;
  312                 gen = th->th_generation;
  313                 *tsp = th->th_nanotime;
  314         } while (gen == 0 || gen != th->th_generation);
  315 }
  316 
  317 void
  318 getmicrotime(struct timeval *tvp)
  319 {
  320         struct timehands *th;
  321         u_int gen;
  322 
  323         TC_COUNT(ngetmicrotime);
  324         do {
  325                 th = timehands;
  326                 gen = th->th_generation;
  327                 *tvp = th->th_microtime;
  328         } while (gen == 0 || gen != th->th_generation);
  329 }
  330 
  331 /*
  332  * Initialize a new timecounter and possibly use it.
  333  */
  334 void
  335 tc_init(struct timecounter *tc)
  336 {
  337         u_int u;
  338         struct sysctl_oid *tc_root;
  339 
  340         u = tc->tc_frequency / tc->tc_counter_mask;
  341         /* XXX: We need some margin here, 10% is a guess */
  342         u *= 11;
  343         u /= 10;
  344         if (u > hz && tc->tc_quality >= 0) {
  345                 tc->tc_quality = -2000;
  346                 if (bootverbose) {
  347                         printf("Timecounter \"%s\" frequency %ju Hz",
  348                             tc->tc_name, (uintmax_t)tc->tc_frequency);
  349                         printf(" -- Insufficient hz, needs at least %u\n", u);
  350                 }
  351         } else if (tc->tc_quality >= 0 || bootverbose) {
  352                 printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
  353                     tc->tc_name, (uintmax_t)tc->tc_frequency,
  354                     tc->tc_quality);
  355         }
  356 
  357         tc->tc_next = timecounters;
  358         timecounters = tc;
  359         /*
  360          * Set up sysctl tree for this counter.
  361          */
  362         tc_root = SYSCTL_ADD_NODE(NULL,
  363             SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
  364             CTLFLAG_RW, 0, "timecounter description");
  365         SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
  366             "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
  367             "mask for implemented bits");
  368         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
  369             "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
  370             sysctl_kern_timecounter_get, "IU", "current timecounter value");
  371         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
  372             "frequency", CTLTYPE_QUAD | CTLFLAG_RD, tc, sizeof(*tc),
  373              sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
  374         SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
  375             "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
  376             "goodness of time counter");
  377         /*
  378          * Never automatically use a timecounter with negative quality.
  379          * Even though we run on the dummy counter, switching here may be
  380          * worse since this timecounter may not be monotonous.
  381          */
  382         if (tc->tc_quality < 0)
  383                 return;
  384         if (tc->tc_quality < timecounter->tc_quality)
  385                 return;
  386         if (tc->tc_quality == timecounter->tc_quality &&
  387             tc->tc_frequency < timecounter->tc_frequency)
  388                 return;
  389         (void)tc->tc_get_timecount(tc);
  390         (void)tc->tc_get_timecount(tc);
  391         timecounter = tc;
  392 }
  393 
  394 /* Report the frequency of the current timecounter. */
  395 u_int64_t
  396 tc_getfrequency(void)
  397 {
  398 
  399         return (timehands->th_counter->tc_frequency);
  400 }
  401 
  402 /*
  403  * Step our concept of UTC.  This is done by modifying our estimate of
  404  * when we booted.
  405  * XXX: not locked.
  406  */
  407 void
  408 tc_setclock(struct timespec *ts)
  409 {
  410         struct timespec tbef, taft;
  411         struct bintime bt, bt2;
  412 
  413         cpu_tick_calibrate(1);
  414         TC_COUNT(nsetclock);
  415         nanotime(&tbef);
  416         timespec2bintime(ts, &bt);
  417         binuptime(&bt2);
  418         bintime_sub(&bt, &bt2);
  419         bintime_add(&bt2, &boottimebin);
  420         boottimebin = bt;
  421         bintime2timeval(&bt, &boottime);
  422 
  423         /* XXX fiddle all the little crinkly bits around the fiords... */
  424         tc_windup();
  425         nanotime(&taft);
  426         if (timestepwarnings) {
  427                 log(LOG_INFO,
  428                     "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
  429                     (intmax_t)tbef.tv_sec, tbef.tv_nsec,
  430                     (intmax_t)taft.tv_sec, taft.tv_nsec,
  431                     (intmax_t)ts->tv_sec, ts->tv_nsec);
  432         }
  433         cpu_tick_calibrate(1);
  434 }
  435 
  436 /*
  437  * Initialize the next struct timehands in the ring and make
  438  * it the active timehands.  Along the way we might switch to a different
  439  * timecounter and/or do seconds processing in NTP.  Slightly magic.
  440  */
  441 static void
  442 tc_windup(void)
  443 {
  444         struct bintime bt;
  445         struct timehands *th, *tho;
  446         u_int64_t scale;
  447         u_int delta, ncount, ogen;
  448         int i;
  449         time_t t;
  450 
  451         /*
  452          * Make the next timehands a copy of the current one, but do not
  453          * overwrite the generation or next pointer.  While we update
  454          * the contents, the generation must be zero.
  455          */
  456         tho = timehands;
  457         th = tho->th_next;
  458         ogen = th->th_generation;
  459         th->th_generation = 0;
  460         bcopy(tho, th, offsetof(struct timehands, th_generation));
  461 
  462         /*
  463          * Capture a timecounter delta on the current timecounter and if
  464          * changing timecounters, a counter value from the new timecounter.
  465          * Update the offset fields accordingly.
  466          */
  467         delta = tc_delta(th);
  468         if (th->th_counter != timecounter)
  469                 ncount = timecounter->tc_get_timecount(timecounter);
  470         else
  471                 ncount = 0;
  472         th->th_offset_count += delta;
  473         th->th_offset_count &= th->th_counter->tc_counter_mask;
  474         bintime_addx(&th->th_offset, th->th_scale * delta);
  475 
  476         /*
  477          * Hardware latching timecounters may not generate interrupts on
  478          * PPS events, so instead we poll them.  There is a finite risk that
  479          * the hardware might capture a count which is later than the one we
  480          * got above, and therefore possibly in the next NTP second which might
  481          * have a different rate than the current NTP second.  It doesn't
  482          * matter in practice.
  483          */
  484         if (tho->th_counter->tc_poll_pps)
  485                 tho->th_counter->tc_poll_pps(tho->th_counter);
  486 
  487         /*
  488          * Deal with NTP second processing.  The for loop normally
  489          * iterates at most once, but in extreme situations it might
  490          * keep NTP sane if timeouts are not run for several seconds.
  491          * At boot, the time step can be large when the TOD hardware
  492          * has been read, so on really large steps, we call
  493          * ntp_update_second only twice.  We need to call it twice in
  494          * case we missed a leap second.
  495          */
  496         bt = th->th_offset;
  497         bintime_add(&bt, &boottimebin);
  498         i = bt.sec - tho->th_microtime.tv_sec;
  499         if (i > LARGE_STEP)
  500                 i = 2;
  501         for (; i > 0; i--) {
  502                 t = bt.sec;
  503                 ntp_update_second(&th->th_adjustment, &bt.sec);
  504                 if (bt.sec != t)
  505                         boottimebin.sec += bt.sec - t;
  506         }
  507         /* Update the UTC timestamps used by the get*() functions. */
  508         /* XXX shouldn't do this here.  Should force non-`get' versions. */
  509         bintime2timeval(&bt, &th->th_microtime);
  510         bintime2timespec(&bt, &th->th_nanotime);
  511 
  512         /* Now is a good time to change timecounters. */
  513         if (th->th_counter != timecounter) {
  514                 th->th_counter = timecounter;
  515                 th->th_offset_count = ncount;
  516         }
  517 
  518         /*-
  519          * Recalculate the scaling factor.  We want the number of 1/2^64
  520          * fractions of a second per period of the hardware counter, taking
  521          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
  522          * processing provides us with.
  523          *
  524          * The th_adjustment is nanoseconds per second with 32 bit binary
  525          * fraction and we want 64 bit binary fraction of second:
  526          *
  527          *       x = a * 2^32 / 10^9 = a * 4.294967296
  528          *
  529          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
  530          * we can only multiply by about 850 without overflowing, that
  531          * leaves no suitably precise fractions for multiply before divide.
  532          *
  533          * Divide before multiply with a fraction of 2199/512 results in a
  534          * systematic undercompensation of 10PPM of th_adjustment.  On a
  535          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
  536          *
  537          * We happily sacrifice the lowest of the 64 bits of our result
  538          * to the goddess of code clarity.
  539          *
  540          */
  541         scale = (u_int64_t)1 << 63;
  542         scale += (th->th_adjustment / 1024) * 2199;
  543         scale /= th->th_counter->tc_frequency;
  544         th->th_scale = scale * 2;
  545 
  546         /*
  547          * Now that the struct timehands is again consistent, set the new
  548          * generation number, making sure to not make it zero.
  549          */
  550         if (++ogen == 0)
  551                 ogen = 1;
  552         th->th_generation = ogen;
  553 
  554         /* Go live with the new struct timehands. */
  555         time_second = th->th_microtime.tv_sec;
  556         time_uptime = th->th_offset.sec;
  557         timehands = th;
  558 }
  559 
  560 /* Report or change the active timecounter hardware. */
  561 static int
  562 sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
  563 {
  564         char newname[32];
  565         struct timecounter *newtc, *tc;
  566         int error;
  567 
  568         tc = timecounter;
  569         strlcpy(newname, tc->tc_name, sizeof(newname));
  570 
  571         error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
  572         if (error != 0 || req->newptr == NULL ||
  573             strcmp(newname, tc->tc_name) == 0)
  574                 return (error);
  575         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
  576                 if (strcmp(newname, newtc->tc_name) != 0)
  577                         continue;
  578 
  579                 /* Warm up new timecounter. */
  580                 (void)newtc->tc_get_timecount(newtc);
  581                 (void)newtc->tc_get_timecount(newtc);
  582 
  583                 timecounter = newtc;
  584                 return (0);
  585         }
  586         return (EINVAL);
  587 }
  588 
  589 SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
  590     0, 0, sysctl_kern_timecounter_hardware, "A", "");
  591 
  592 
  593 /* Report or change the active timecounter hardware. */
  594 static int
  595 sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
  596 {
  597         char buf[32], *spc;
  598         struct timecounter *tc;
  599         int error;
  600 
  601         spc = "";
  602         error = 0;
  603         for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
  604                 sprintf(buf, "%s%s(%d)",
  605                     spc, tc->tc_name, tc->tc_quality);
  606                 error = SYSCTL_OUT(req, buf, strlen(buf));
  607                 spc = " ";
  608         }
  609         return (error);
  610 }
  611 
  612 SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
  613     0, 0, sysctl_kern_timecounter_choice, "A", "");
  614 
  615 /*
  616  * RFC 2783 PPS-API implementation.
  617  */
  618 
  619 int
  620 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
  621 {
  622         pps_params_t *app;
  623         struct pps_fetch_args *fapi;
  624 #ifdef PPS_SYNC
  625         struct pps_kcbind_args *kapi;
  626 #endif
  627 
  628         KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
  629         switch (cmd) {
  630         case PPS_IOC_CREATE:
  631                 return (0);
  632         case PPS_IOC_DESTROY:
  633                 return (0);
  634         case PPS_IOC_SETPARAMS:
  635                 app = (pps_params_t *)data;
  636                 if (app->mode & ~pps->ppscap)
  637                         return (EINVAL);
  638                 pps->ppsparam = *app;
  639                 return (0);
  640         case PPS_IOC_GETPARAMS:
  641                 app = (pps_params_t *)data;
  642                 *app = pps->ppsparam;
  643                 app->api_version = PPS_API_VERS_1;
  644                 return (0);
  645         case PPS_IOC_GETCAP:
  646                 *(int*)data = pps->ppscap;
  647                 return (0);
  648         case PPS_IOC_FETCH:
  649                 fapi = (struct pps_fetch_args *)data;
  650                 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
  651                         return (EINVAL);
  652                 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
  653                         return (EOPNOTSUPP);
  654                 pps->ppsinfo.current_mode = pps->ppsparam.mode;
  655                 fapi->pps_info_buf = pps->ppsinfo;
  656                 return (0);
  657         case PPS_IOC_KCBIND:
  658 #ifdef PPS_SYNC
  659                 kapi = (struct pps_kcbind_args *)data;
  660                 /* XXX Only root should be able to do this */
  661                 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
  662                         return (EINVAL);
  663                 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
  664                         return (EINVAL);
  665                 if (kapi->edge & ~pps->ppscap)
  666                         return (EINVAL);
  667                 pps->kcmode = kapi->edge;
  668                 return (0);
  669 #else
  670                 return (EOPNOTSUPP);
  671 #endif
  672         default:
  673                 return (ENOIOCTL);
  674         }
  675 }
  676 
  677 void
  678 pps_init(struct pps_state *pps)
  679 {
  680         pps->ppscap |= PPS_TSFMT_TSPEC;
  681         if (pps->ppscap & PPS_CAPTUREASSERT)
  682                 pps->ppscap |= PPS_OFFSETASSERT;
  683         if (pps->ppscap & PPS_CAPTURECLEAR)
  684                 pps->ppscap |= PPS_OFFSETCLEAR;
  685 }
  686 
  687 void
  688 pps_capture(struct pps_state *pps)
  689 {
  690         struct timehands *th;
  691 
  692         KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
  693         th = timehands;
  694         pps->capgen = th->th_generation;
  695         pps->capth = th;
  696         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
  697         if (pps->capgen != th->th_generation)
  698                 pps->capgen = 0;
  699 }
  700 
  701 void
  702 pps_event(struct pps_state *pps, int event)
  703 {
  704         struct bintime bt;
  705         struct timespec ts, *tsp, *osp;
  706         u_int tcount, *pcount;
  707         int foff, fhard;
  708         pps_seq_t *pseq;
  709 
  710         KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
  711         /* If the timecounter was wound up underneath us, bail out. */
  712         if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
  713                 return;
  714 
  715         /* Things would be easier with arrays. */
  716         if (event == PPS_CAPTUREASSERT) {
  717                 tsp = &pps->ppsinfo.assert_timestamp;
  718                 osp = &pps->ppsparam.assert_offset;
  719                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
  720                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
  721                 pcount = &pps->ppscount[0];
  722                 pseq = &pps->ppsinfo.assert_sequence;
  723         } else {
  724                 tsp = &pps->ppsinfo.clear_timestamp;
  725                 osp = &pps->ppsparam.clear_offset;
  726                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
  727                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
  728                 pcount = &pps->ppscount[1];
  729                 pseq = &pps->ppsinfo.clear_sequence;
  730         }
  731 
  732         /*
  733          * If the timecounter changed, we cannot compare the count values, so
  734          * we have to drop the rest of the PPS-stuff until the next event.
  735          */
  736         if (pps->ppstc != pps->capth->th_counter) {
  737                 pps->ppstc = pps->capth->th_counter;
  738                 *pcount = pps->capcount;
  739                 pps->ppscount[2] = pps->capcount;
  740                 return;
  741         }
  742 
  743         /* Convert the count to a timespec. */
  744         tcount = pps->capcount - pps->capth->th_offset_count;
  745         tcount &= pps->capth->th_counter->tc_counter_mask;
  746         bt = pps->capth->th_offset;
  747         bintime_addx(&bt, pps->capth->th_scale * tcount);
  748         bintime_add(&bt, &boottimebin);
  749         bintime2timespec(&bt, &ts);
  750 
  751         /* If the timecounter was wound up underneath us, bail out. */
  752         if (pps->capgen != pps->capth->th_generation)
  753                 return;
  754 
  755         *pcount = pps->capcount;
  756         (*pseq)++;
  757         *tsp = ts;
  758 
  759         if (foff) {
  760                 timespecadd(tsp, osp);
  761                 if (tsp->tv_nsec < 0) {
  762                         tsp->tv_nsec += 1000000000;
  763                         tsp->tv_sec -= 1;
  764                 }
  765         }
  766 #ifdef PPS_SYNC
  767         if (fhard) {
  768                 u_int64_t scale;
  769 
  770                 /*
  771                  * Feed the NTP PLL/FLL.
  772                  * The FLL wants to know how many (hardware) nanoseconds
  773                  * elapsed since the previous event.
  774                  */
  775                 tcount = pps->capcount - pps->ppscount[2];
  776                 pps->ppscount[2] = pps->capcount;
  777                 tcount &= pps->capth->th_counter->tc_counter_mask;
  778                 scale = (u_int64_t)1 << 63;
  779                 scale /= pps->capth->th_counter->tc_frequency;
  780                 scale *= 2;
  781                 bt.sec = 0;
  782                 bt.frac = 0;
  783                 bintime_addx(&bt, scale * tcount);
  784                 bintime2timespec(&bt, &ts);
  785                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
  786         }
  787 #endif
  788 }
  789 
  790 /*
  791  * Timecounters need to be updated every so often to prevent the hardware
  792  * counter from overflowing.  Updating also recalculates the cached values
  793  * used by the get*() family of functions, so their precision depends on
  794  * the update frequency.
  795  */
  796 
  797 static int tc_tick;
  798 SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0, "");
  799 
  800 void
  801 tc_ticktock(void)
  802 {
  803         static int count;
  804         static time_t last_calib;
  805 
  806         if (++count < tc_tick)
  807                 return;
  808         count = 0;
  809         tc_windup();
  810         if (time_uptime != last_calib && !(time_uptime & 0xf)) {
  811                 cpu_tick_calibrate(0);
  812                 last_calib = time_uptime;
  813         }
  814 }
  815 
  816 static void
  817 inittimecounter(void *dummy)
  818 {
  819         u_int p;
  820 
  821         /*
  822          * Set the initial timeout to
  823          * max(1, <approx. number of hardclock ticks in a millisecond>).
  824          * People should probably not use the sysctl to set the timeout
  825          * to smaller than its inital value, since that value is the
  826          * smallest reasonable one.  If they want better timestamps they
  827          * should use the non-"get"* functions.
  828          */
  829         if (hz > 1000)
  830                 tc_tick = (hz + 500) / 1000;
  831         else
  832                 tc_tick = 1;
  833         p = (tc_tick * 1000000) / hz;
  834         printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
  835 
  836         /* warm up new timecounter (again) and get rolling. */
  837         (void)timecounter->tc_get_timecount(timecounter);
  838         (void)timecounter->tc_get_timecount(timecounter);
  839 }
  840 
  841 SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
  842 
  843 /* Cpu tick handling -------------------------------------------------*/
  844 
  845 static int cpu_tick_variable;
  846 static uint64_t cpu_tick_frequency;
  847 
  848 static uint64_t
  849 tc_cpu_ticks(void)
  850 {
  851         static uint64_t base;
  852         static unsigned last;
  853         unsigned u;
  854         struct timecounter *tc;
  855 
  856         tc = timehands->th_counter;
  857         u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
  858         if (u < last)
  859                 base += (uint64_t)tc->tc_counter_mask + 1;
  860         last = u;
  861         return (u + base);
  862 }
  863 
  864 /*
  865  * This function gets called ever 16 seconds on only one designated
  866  * CPU in the system from hardclock() via tc_ticktock().
  867  *
  868  * Whenever the real time clock is stepped we get called with reset=1
  869  * to make sure we handle suspend/resume and similar events correctly.
  870  */
  871 
  872 static void
  873 cpu_tick_calibrate(int reset)
  874 {
  875         static uint64_t c_last;
  876         uint64_t c_this, c_delta;
  877         static struct bintime  t_last;
  878         struct bintime t_this, t_delta;
  879         uint32_t divi;
  880 
  881         if (reset) {
  882                 /* The clock was stepped, abort & reset */
  883                 t_last.sec = 0;
  884                 return;
  885         }
  886 
  887         /* we don't calibrate fixed rate cputicks */
  888         if (!cpu_tick_variable)
  889                 return;
  890 
  891         getbinuptime(&t_this);
  892         c_this = cpu_ticks();
  893         if (t_last.sec != 0) {
  894                 c_delta = c_this - c_last;
  895                 t_delta = t_this;
  896                 bintime_sub(&t_delta, &t_last);
  897                 /*
  898                  * Validate that 16 +/- 1/256 seconds passed. 
  899                  * After division by 16 this gives us a precision of
  900                  * roughly 250PPM which is sufficient
  901                  */
  902                 if (t_delta.sec > 16 || (
  903                     t_delta.sec == 16 && t_delta.frac >= (0x01LL << 56))) {
  904                         /* too long */
  905                         if (bootverbose)
  906                                 printf("t_delta %ju.%016jx too long\n",
  907                                     (uintmax_t)t_delta.sec,
  908                                     (uintmax_t)t_delta.frac);
  909                 } else if (t_delta.sec < 15 ||
  910                     (t_delta.sec == 15 && t_delta.frac <= (0xffLL << 56))) {
  911                         /* too short */
  912                         if (bootverbose)
  913                                 printf("t_delta %ju.%016jx too short\n",
  914                                     (uintmax_t)t_delta.sec,
  915                                     (uintmax_t)t_delta.frac);
  916                 } else {
  917                         /* just right */
  918                         /*
  919                          * Headroom:
  920                          *      2^(64-20) / 16[s] =
  921                          *      2^(44) / 16[s] =
  922                          *      17.592.186.044.416 / 16 =
  923                          *      1.099.511.627.776 [Hz]
  924                          */
  925                         divi = t_delta.sec << 20;
  926                         divi |= t_delta.frac >> (64 - 20);
  927                         c_delta <<= 20;
  928                         c_delta /= divi;
  929                         if (c_delta  > cpu_tick_frequency) {
  930                                 if (0 && bootverbose)
  931                                         printf("cpu_tick increased to %ju Hz\n",
  932                                             c_delta);
  933                                 cpu_tick_frequency = c_delta;
  934                         }
  935                 }
  936         }
  937         c_last = c_this;
  938         t_last = t_this;
  939 }
  940 
  941 void
  942 set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
  943 {
  944 
  945         if (func == NULL) {
  946                 cpu_ticks = tc_cpu_ticks;
  947         } else {
  948                 cpu_tick_frequency = freq;
  949                 cpu_tick_variable = var;
  950                 cpu_ticks = func;
  951         }
  952 }
  953 
  954 uint64_t
  955 cpu_tickrate(void)
  956 {
  957 
  958         if (cpu_ticks == tc_cpu_ticks) 
  959                 return (tc_getfrequency());
  960         return (cpu_tick_frequency);
  961 }
  962 
  963 /*
  964  * We need to be slightly careful converting cputicks to microseconds.
  965  * There is plenty of margin in 64 bits of microseconds (half a million
  966  * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
  967  * before divide conversion (to retain precision) we find that the
  968  * margin shrinks to 1.5 hours (one millionth of 146y).
  969  * With a three prong approach we never lose significant bits, no
  970  * matter what the cputick rate and length of timeinterval is.
  971  */
  972 
  973 uint64_t
  974 cputick2usec(uint64_t tick)
  975 {
  976 
  977         if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
  978                 return (tick / (cpu_tickrate() / 1000000LL));
  979         else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
  980                 return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
  981         else
  982                 return ((tick * 1000000LL) / cpu_tickrate());
  983 }
  984 
  985 cpu_tick_f      *cpu_ticks = tc_cpu_ticks;

Cache object: 078fc84e194f69817f3dadff4281af84


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.