The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_tc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /* $NetBSD: kern_tc.c,v 1.37 2008/07/19 10:33:58 kardel Exp $ */
    2 
    3 /*-
    4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   26  * POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 /*-
   30  * ----------------------------------------------------------------------------
   31  * "THE BEER-WARE LICENSE" (Revision 42):
   32  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
   33  * can do whatever you want with this stuff. If we meet some day, and you think
   34  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
   35  * ---------------------------------------------------------------------------
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
   40 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.37 2008/07/19 10:33:58 kardel Exp $");
   41 
   42 #include "opt_ntp.h"
   43 
   44 #include <sys/param.h>
   45 #include <sys/kernel.h>
   46 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
   47 #include <sys/sysctl.h>
   48 #include <sys/syslog.h>
   49 #include <sys/systm.h>
   50 #include <sys/timepps.h>
   51 #include <sys/timetc.h>
   52 #include <sys/timex.h>
   53 #include <sys/evcnt.h>
   54 #include <sys/kauth.h>
   55 #include <sys/mutex.h>
   56 #include <sys/atomic.h>
   57 
   58 /*
   59  * A large step happens on boot.  This constant detects such steps.
   60  * It is relatively small so that ntp_update_second gets called enough
   61  * in the typical 'missed a couple of seconds' case, but doesn't loop
   62  * forever when the time step is large.
   63  */
   64 #define LARGE_STEP      200
   65 
   66 /*
   67  * Implement a dummy timecounter which we can use until we get a real one
   68  * in the air.  This allows the console and other early stuff to use
   69  * time services.
   70  */
   71 
   72 static u_int
   73 dummy_get_timecount(struct timecounter *tc)
   74 {
   75         static u_int now;
   76 
   77         return (++now);
   78 }
   79 
   80 static struct timecounter dummy_timecounter = {
   81         dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
   82 };
   83 
   84 struct timehands {
   85         /* These fields must be initialized by the driver. */
   86         struct timecounter      *th_counter;
   87         int64_t                 th_adjustment;
   88         u_int64_t               th_scale;
   89         u_int                   th_offset_count;
   90         struct bintime          th_offset;
   91         struct timeval          th_microtime;
   92         struct timespec         th_nanotime;
   93         /* Fields not to be copied in tc_windup start with th_generation. */
   94         volatile u_int          th_generation;
   95         struct timehands        *th_next;
   96 };
   97 
   98 static struct timehands th0;
   99 static struct timehands th9 = { .th_next = &th0, };
  100 static struct timehands th8 = { .th_next = &th9, };
  101 static struct timehands th7 = { .th_next = &th8, };
  102 static struct timehands th6 = { .th_next = &th7, };
  103 static struct timehands th5 = { .th_next = &th6, };
  104 static struct timehands th4 = { .th_next = &th5, };
  105 static struct timehands th3 = { .th_next = &th4, };
  106 static struct timehands th2 = { .th_next = &th3, };
  107 static struct timehands th1 = { .th_next = &th2, };
  108 static struct timehands th0 = {
  109         .th_counter = &dummy_timecounter,
  110         .th_scale = (uint64_t)-1 / 1000000,
  111         .th_offset = { .sec = 1, .frac = 0 },
  112         .th_generation = 1,
  113         .th_next = &th1,
  114 };
  115 
  116 static struct timehands *volatile timehands = &th0;
  117 struct timecounter *timecounter = &dummy_timecounter;
  118 static struct timecounter *timecounters = &dummy_timecounter;
  119 
  120 time_t time_second = 1;
  121 time_t time_uptime = 1;
  122 
  123 static struct bintime timebasebin;
  124 
  125 static int timestepwarnings;
  126 
  127 kmutex_t timecounter_lock;
  128 static u_int timecounter_mods;
  129 static u_int timecounter_bad;
  130 
  131 #ifdef __FreeBSD__
  132 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
  133     &timestepwarnings, 0, "");
  134 #endif /* __FreeBSD__ */
  135 
  136 /*
  137  * sysctl helper routine for kern.timercounter.hardware
  138  */
  139 static int
  140 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
  141 {
  142         struct sysctlnode node;
  143         int error;
  144         char newname[MAX_TCNAMELEN];
  145         struct timecounter *newtc, *tc;
  146 
  147         tc = timecounter;
  148 
  149         strlcpy(newname, tc->tc_name, sizeof(newname));
  150 
  151         node = *rnode;
  152         node.sysctl_data = newname;
  153         node.sysctl_size = sizeof(newname);
  154 
  155         error = sysctl_lookup(SYSCTLFN_CALL(&node));
  156 
  157         if (error ||
  158             newp == NULL ||
  159             strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
  160                 return error;
  161 
  162         if (l != NULL && (error = kauth_authorize_system(l->l_cred, 
  163             KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
  164             NULL, NULL)) != 0)
  165                 return (error);
  166 
  167         if (!cold)
  168                 mutex_spin_enter(&timecounter_lock);
  169         error = EINVAL;
  170         for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
  171                 if (strcmp(newname, newtc->tc_name) != 0)
  172                         continue;
  173                 /* Warm up new timecounter. */
  174                 (void)newtc->tc_get_timecount(newtc);
  175                 (void)newtc->tc_get_timecount(newtc);
  176                 timecounter = newtc;
  177                 error = 0;
  178                 break;
  179         }
  180         if (!cold)
  181                 mutex_spin_exit(&timecounter_lock);
  182         return error;
  183 }
  184 
  185 static int
  186 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
  187 {
  188         char buf[MAX_TCNAMELEN+48];
  189         char *where;
  190         const char *spc;
  191         struct timecounter *tc;
  192         size_t needed, left, slen;
  193         int error, mods;
  194 
  195         if (newp != NULL)
  196                 return (EPERM);
  197         if (namelen != 0)
  198                 return (EINVAL);
  199 
  200         mutex_spin_enter(&timecounter_lock);
  201  retry:
  202         spc = "";
  203         error = 0;
  204         needed = 0;
  205         left = *oldlenp;
  206         where = oldp;
  207         for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
  208                 if (where == NULL) {
  209                         needed += sizeof(buf);  /* be conservative */
  210                 } else {
  211                         slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
  212                                         " Hz)", spc, tc->tc_name, tc->tc_quality,
  213                                         tc->tc_frequency);
  214                         if (left < slen + 1)
  215                                 break;
  216                         mods = timecounter_mods;
  217                         mutex_spin_exit(&timecounter_lock);
  218                         error = copyout(buf, where, slen + 1);
  219                         mutex_spin_enter(&timecounter_lock);
  220                         if (mods != timecounter_mods) {
  221                                 goto retry;
  222                         }
  223                         spc = " ";
  224                         where += slen;
  225                         needed += slen;
  226                         left -= slen;
  227                 }
  228         }
  229         mutex_spin_exit(&timecounter_lock);
  230 
  231         *oldlenp = needed;
  232         return (error);
  233 }
  234 
  235 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
  236 {
  237         const struct sysctlnode *node;
  238 
  239         sysctl_createv(clog, 0, NULL, &node,
  240                        CTLFLAG_PERMANENT,
  241                        CTLTYPE_NODE, "timecounter",
  242                        SYSCTL_DESCR("time counter information"),
  243                        NULL, 0, NULL, 0,
  244                        CTL_KERN, CTL_CREATE, CTL_EOL);
  245 
  246         if (node != NULL) {
  247                 sysctl_createv(clog, 0, NULL, NULL,
  248                                CTLFLAG_PERMANENT,
  249                                CTLTYPE_STRING, "choice",
  250                                SYSCTL_DESCR("available counters"),
  251                                sysctl_kern_timecounter_choice, 0, NULL, 0,
  252                                CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
  253 
  254                 sysctl_createv(clog, 0, NULL, NULL,
  255                                CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
  256                                CTLTYPE_STRING, "hardware",
  257                                SYSCTL_DESCR("currently active time counter"),
  258                                sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
  259                                CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
  260 
  261                 sysctl_createv(clog, 0, NULL, NULL,
  262                                CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
  263                                CTLTYPE_INT, "timestepwarnings",
  264                                SYSCTL_DESCR("log time steps"),
  265                                NULL, 0, &timestepwarnings, 0,
  266                                CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
  267         }
  268 }
  269 
  270 #ifdef TC_COUNTERS
  271 #define TC_STATS(name)                                                  \
  272 static struct evcnt n##name =                                           \
  273     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name);     \
  274 EVCNT_ATTACH_STATIC(n##name)
  275 TC_STATS(binuptime);    TC_STATS(nanouptime);    TC_STATS(microuptime);
  276 TC_STATS(bintime);      TC_STATS(nanotime);      TC_STATS(microtime);
  277 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
  278 TC_STATS(getbintime);   TC_STATS(getnanotime);   TC_STATS(getmicrotime);
  279 TC_STATS(setclock);
  280 #define TC_COUNT(var)   var.ev_count++
  281 #undef TC_STATS
  282 #else
  283 #define TC_COUNT(var)   /* nothing */
  284 #endif  /* TC_COUNTERS */
  285 
  286 static void tc_windup(void);
  287 
  288 /*
  289  * Return the difference between the timehands' counter value now and what
  290  * was when we copied it to the timehands' offset_count.
  291  */
  292 static __inline u_int
  293 tc_delta(struct timehands *th)
  294 {
  295         struct timecounter *tc;
  296 
  297         tc = th->th_counter;
  298         return ((tc->tc_get_timecount(tc) - 
  299                  th->th_offset_count) & tc->tc_counter_mask);
  300 }
  301 
  302 /*
  303  * Functions for reading the time.  We have to loop until we are sure that
  304  * the timehands that we operated on was not updated under our feet.  See
  305  * the comment in <sys/timevar.h> for a description of these 12 functions.
  306  */
  307 
  308 void
  309 binuptime(struct bintime *bt)
  310 {
  311         struct timehands *th;
  312         u_int gen;
  313 
  314         TC_COUNT(nbinuptime);
  315         do {
  316                 th = timehands;
  317                 gen = th->th_generation;
  318                 *bt = th->th_offset;
  319                 bintime_addx(bt, th->th_scale * tc_delta(th));
  320         } while (gen == 0 || gen != th->th_generation);
  321 }
  322 
  323 void
  324 nanouptime(struct timespec *tsp)
  325 {
  326         struct bintime bt;
  327 
  328         TC_COUNT(nnanouptime);
  329         binuptime(&bt);
  330         bintime2timespec(&bt, tsp);
  331 }
  332 
  333 void
  334 microuptime(struct timeval *tvp)
  335 {
  336         struct bintime bt;
  337 
  338         TC_COUNT(nmicrouptime);
  339         binuptime(&bt);
  340         bintime2timeval(&bt, tvp);
  341 }
  342 
  343 void
  344 bintime(struct bintime *bt)
  345 {
  346 
  347         TC_COUNT(nbintime);
  348         binuptime(bt);
  349         bintime_add(bt, &timebasebin);
  350 }
  351 
  352 void
  353 nanotime(struct timespec *tsp)
  354 {
  355         struct bintime bt;
  356 
  357         TC_COUNT(nnanotime);
  358         bintime(&bt);
  359         bintime2timespec(&bt, tsp);
  360 }
  361 
  362 void
  363 microtime(struct timeval *tvp)
  364 {
  365         struct bintime bt;
  366 
  367         TC_COUNT(nmicrotime);
  368         bintime(&bt);
  369         bintime2timeval(&bt, tvp);
  370 }
  371 
  372 void
  373 getbinuptime(struct bintime *bt)
  374 {
  375         struct timehands *th;
  376         u_int gen;
  377 
  378         TC_COUNT(ngetbinuptime);
  379         do {
  380                 th = timehands;
  381                 gen = th->th_generation;
  382                 *bt = th->th_offset;
  383         } while (gen == 0 || gen != th->th_generation);
  384 }
  385 
  386 void
  387 getnanouptime(struct timespec *tsp)
  388 {
  389         struct timehands *th;
  390         u_int gen;
  391 
  392         TC_COUNT(ngetnanouptime);
  393         do {
  394                 th = timehands;
  395                 gen = th->th_generation;
  396                 bintime2timespec(&th->th_offset, tsp);
  397         } while (gen == 0 || gen != th->th_generation);
  398 }
  399 
  400 void
  401 getmicrouptime(struct timeval *tvp)
  402 {
  403         struct timehands *th;
  404         u_int gen;
  405 
  406         TC_COUNT(ngetmicrouptime);
  407         do {
  408                 th = timehands;
  409                 gen = th->th_generation;
  410                 bintime2timeval(&th->th_offset, tvp);
  411         } while (gen == 0 || gen != th->th_generation);
  412 }
  413 
  414 void
  415 getbintime(struct bintime *bt)
  416 {
  417         struct timehands *th;
  418         u_int gen;
  419 
  420         TC_COUNT(ngetbintime);
  421         do {
  422                 th = timehands;
  423                 gen = th->th_generation;
  424                 *bt = th->th_offset;
  425         } while (gen == 0 || gen != th->th_generation);
  426         bintime_add(bt, &timebasebin);
  427 }
  428 
  429 void
  430 getnanotime(struct timespec *tsp)
  431 {
  432         struct timehands *th;
  433         u_int gen;
  434 
  435         TC_COUNT(ngetnanotime);
  436         do {
  437                 th = timehands;
  438                 gen = th->th_generation;
  439                 *tsp = th->th_nanotime;
  440         } while (gen == 0 || gen != th->th_generation);
  441 }
  442 
  443 void
  444 getmicrotime(struct timeval *tvp)
  445 {
  446         struct timehands *th;
  447         u_int gen;
  448 
  449         TC_COUNT(ngetmicrotime);
  450         do {
  451                 th = timehands;
  452                 gen = th->th_generation;
  453                 *tvp = th->th_microtime;
  454         } while (gen == 0 || gen != th->th_generation);
  455 }
  456 
  457 /*
  458  * Initialize a new timecounter and possibly use it.
  459  */
  460 void
  461 tc_init(struct timecounter *tc)
  462 {
  463         u_int u;
  464 
  465         u = tc->tc_frequency / tc->tc_counter_mask;
  466         /* XXX: We need some margin here, 10% is a guess */
  467         u *= 11;
  468         u /= 10;
  469         if (u > hz && tc->tc_quality >= 0) {
  470                 tc->tc_quality = -2000;
  471                 aprint_verbose(
  472                     "timecounter: Timecounter \"%s\" frequency %ju Hz",
  473                             tc->tc_name, (uintmax_t)tc->tc_frequency);
  474                 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
  475         } else if (tc->tc_quality >= 0 || bootverbose) {
  476                 aprint_verbose(
  477                     "timecounter: Timecounter \"%s\" frequency %ju Hz "
  478                     "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
  479                     tc->tc_quality);
  480         }
  481 
  482         mutex_spin_enter(&timecounter_lock);
  483         tc->tc_next = timecounters;
  484         timecounters = tc;
  485         timecounter_mods++;
  486         /*
  487          * Never automatically use a timecounter with negative quality.
  488          * Even though we run on the dummy counter, switching here may be
  489          * worse since this timecounter may not be monotonous.
  490          */
  491         if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
  492             (tc->tc_quality == timecounter->tc_quality &&
  493             tc->tc_frequency > timecounter->tc_frequency))) {
  494                 (void)tc->tc_get_timecount(tc);
  495                 (void)tc->tc_get_timecount(tc);
  496                 timecounter = tc;
  497                 tc_windup();
  498         }
  499         mutex_spin_exit(&timecounter_lock);
  500 }
  501 
  502 /*
  503  * Pick a new timecounter due to the existing counter going bad.
  504  */
  505 static void
  506 tc_pick(void)
  507 {
  508         struct timecounter *best, *tc;
  509 
  510         KASSERT(mutex_owned(&timecounter_lock));
  511 
  512         for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
  513                 if (tc->tc_quality > best->tc_quality)
  514                         best = tc;
  515                 else if (tc->tc_quality < best->tc_quality)
  516                         continue;
  517                 else if (tc->tc_frequency > best->tc_frequency)
  518                         best = tc;
  519         }
  520         (void)best->tc_get_timecount(best);
  521         (void)best->tc_get_timecount(best);
  522         timecounter = best;
  523 }
  524 
  525 /*
  526  * A timecounter has gone bad, arrange to pick a new one at the next
  527  * clock tick.
  528  */
  529 void
  530 tc_gonebad(struct timecounter *tc)
  531 {
  532 
  533         tc->tc_quality = -100;
  534         membar_producer();
  535         atomic_inc_uint(&timecounter_bad);
  536 }
  537 
  538 /*
  539  * Stop using a timecounter and remove it from the timecounters list.
  540  */
  541 int
  542 tc_detach(struct timecounter *target)
  543 {
  544         struct timecounter *tc;
  545         struct timecounter **tcp = NULL;
  546         int rc = 0;
  547 
  548         mutex_spin_enter(&timecounter_lock);
  549         for (tcp = &timecounters, tc = timecounters;
  550              tc != NULL;
  551              tcp = &tc->tc_next, tc = tc->tc_next) {
  552                 if (tc == target)
  553                         break;
  554         }
  555         if (tc == NULL) {
  556                 rc = ESRCH;
  557         } else {
  558                 *tcp = tc->tc_next;
  559                 if (timecounter == target) {
  560                         tc_pick();
  561                         tc_windup();
  562                 }
  563                 timecounter_mods++;
  564         }
  565         mutex_spin_exit(&timecounter_lock);
  566         return rc;
  567 }
  568 
  569 /* Report the frequency of the current timecounter. */
  570 u_int64_t
  571 tc_getfrequency(void)
  572 {
  573 
  574         return (timehands->th_counter->tc_frequency);
  575 }
  576 
  577 /*
  578  * Step our concept of UTC.  This is done by modifying our estimate of
  579  * when we booted.
  580  */
  581 void
  582 tc_setclock(struct timespec *ts)
  583 {
  584         struct timespec ts2;
  585         struct bintime bt, bt2;
  586 
  587         mutex_spin_enter(&timecounter_lock);
  588         TC_COUNT(nsetclock);
  589         binuptime(&bt2);
  590         timespec2bintime(ts, &bt);
  591         bintime_sub(&bt, &bt2);
  592         bintime_add(&bt2, &timebasebin);
  593         timebasebin = bt;
  594         tc_windup();
  595         mutex_spin_exit(&timecounter_lock);
  596 
  597         if (timestepwarnings) {
  598                 bintime2timespec(&bt2, &ts2);
  599                 log(LOG_INFO, "Time stepped from %jd.%09ld to %jd.%09ld\n",
  600                     (intmax_t)ts2.tv_sec, ts2.tv_nsec,
  601                     (intmax_t)ts->tv_sec, ts->tv_nsec);
  602         }
  603 }
  604 
  605 /*
  606  * Initialize the next struct timehands in the ring and make
  607  * it the active timehands.  Along the way we might switch to a different
  608  * timecounter and/or do seconds processing in NTP.  Slightly magic.
  609  */
  610 static void
  611 tc_windup(void)
  612 {
  613         struct bintime bt;
  614         struct timehands *th, *tho;
  615         u_int64_t scale;
  616         u_int delta, ncount, ogen;
  617         int i, s_update;
  618         time_t t;
  619 
  620         KASSERT(mutex_owned(&timecounter_lock));
  621 
  622         s_update = 0;
  623 
  624         /*
  625          * Make the next timehands a copy of the current one, but do not
  626          * overwrite the generation or next pointer.  While we update
  627          * the contents, the generation must be zero.  Ensure global
  628          * visibility of the generation before proceeding.
  629          */
  630         tho = timehands;
  631         th = tho->th_next;
  632         ogen = th->th_generation;
  633         th->th_generation = 0;
  634         membar_producer();
  635         bcopy(tho, th, offsetof(struct timehands, th_generation));
  636 
  637         /*
  638          * Capture a timecounter delta on the current timecounter and if
  639          * changing timecounters, a counter value from the new timecounter.
  640          * Update the offset fields accordingly.
  641          */
  642         delta = tc_delta(th);
  643         if (th->th_counter != timecounter)
  644                 ncount = timecounter->tc_get_timecount(timecounter);
  645         else
  646                 ncount = 0;
  647         th->th_offset_count += delta;
  648         th->th_offset_count &= th->th_counter->tc_counter_mask;
  649         bintime_addx(&th->th_offset, th->th_scale * delta);
  650 
  651         /*
  652          * Hardware latching timecounters may not generate interrupts on
  653          * PPS events, so instead we poll them.  There is a finite risk that
  654          * the hardware might capture a count which is later than the one we
  655          * got above, and therefore possibly in the next NTP second which might
  656          * have a different rate than the current NTP second.  It doesn't
  657          * matter in practice.
  658          */
  659         if (tho->th_counter->tc_poll_pps)
  660                 tho->th_counter->tc_poll_pps(tho->th_counter);
  661 
  662         /*
  663          * Deal with NTP second processing.  The for loop normally
  664          * iterates at most once, but in extreme situations it might
  665          * keep NTP sane if timeouts are not run for several seconds.
  666          * At boot, the time step can be large when the TOD hardware
  667          * has been read, so on really large steps, we call
  668          * ntp_update_second only twice.  We need to call it twice in
  669          * case we missed a leap second.
  670          * If NTP is not compiled in ntp_update_second still calculates
  671          * the adjustment resulting from adjtime() calls.
  672          */
  673         bt = th->th_offset;
  674         bintime_add(&bt, &timebasebin);
  675         i = bt.sec - tho->th_microtime.tv_sec;
  676         if (i > LARGE_STEP)
  677                 i = 2;
  678         for (; i > 0; i--) {
  679                 t = bt.sec;
  680                 ntp_update_second(&th->th_adjustment, &bt.sec);
  681                 s_update = 1;
  682                 if (bt.sec != t)
  683                         timebasebin.sec += bt.sec - t;
  684         }
  685 
  686         /* Update the UTC timestamps used by the get*() functions. */
  687         /* XXX shouldn't do this here.  Should force non-`get' versions. */
  688         bintime2timeval(&bt, &th->th_microtime);
  689         bintime2timespec(&bt, &th->th_nanotime);
  690 
  691         /* Now is a good time to change timecounters. */
  692         if (th->th_counter != timecounter) {
  693                 th->th_counter = timecounter;
  694                 th->th_offset_count = ncount;
  695                 s_update = 1;
  696         }
  697 
  698         /*-
  699          * Recalculate the scaling factor.  We want the number of 1/2^64
  700          * fractions of a second per period of the hardware counter, taking
  701          * into account the th_adjustment factor which the NTP PLL/adjtime(2)
  702          * processing provides us with.
  703          *
  704          * The th_adjustment is nanoseconds per second with 32 bit binary
  705          * fraction and we want 64 bit binary fraction of second:
  706          *
  707          *       x = a * 2^32 / 10^9 = a * 4.294967296
  708          *
  709          * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
  710          * we can only multiply by about 850 without overflowing, but that
  711          * leaves suitably precise fractions for multiply before divide.
  712          *
  713          * Divide before multiply with a fraction of 2199/512 results in a
  714          * systematic undercompensation of 10PPM of th_adjustment.  On a
  715          * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
  716          *
  717          * We happily sacrifice the lowest of the 64 bits of our result
  718          * to the goddess of code clarity.
  719          *
  720          */
  721         if (s_update) {
  722                 scale = (u_int64_t)1 << 63;
  723                 scale += (th->th_adjustment / 1024) * 2199;
  724                 scale /= th->th_counter->tc_frequency;
  725                 th->th_scale = scale * 2;
  726         }
  727         /*
  728          * Now that the struct timehands is again consistent, set the new
  729          * generation number, making sure to not make it zero.  Ensure
  730          * changes are globally visible before changing.
  731          */
  732         if (++ogen == 0)
  733                 ogen = 1;
  734         membar_producer();
  735         th->th_generation = ogen;
  736 
  737         /*
  738          * Go live with the new struct timehands.  Ensure changes are
  739          * globally visible before changing.
  740          */
  741         time_second = th->th_microtime.tv_sec;
  742         time_uptime = th->th_offset.sec;
  743         membar_producer();
  744         timehands = th;
  745 
  746         /*
  747          * Force users of the old timehand to move on.  This is
  748          * necessary for MP systems; we need to ensure that the
  749          * consumers will move away from the old timehand before
  750          * we begin updating it again when we eventually wrap
  751          * around.
  752          */
  753         if (++tho->th_generation == 0)
  754                 tho->th_generation = 1;
  755 }
  756 
  757 /*
  758  * RFC 2783 PPS-API implementation.
  759  */
  760 
  761 int
  762 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
  763 {
  764         pps_params_t *app;
  765         pps_info_t *pipi;
  766 #ifdef PPS_SYNC
  767         int *epi;
  768 #endif
  769 
  770         KASSERT(mutex_owned(&timecounter_lock));
  771 
  772         KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_ioctl") */
  773         switch (cmd) {
  774         case PPS_IOC_CREATE:
  775                 return (0);
  776         case PPS_IOC_DESTROY:
  777                 return (0);
  778         case PPS_IOC_SETPARAMS:
  779                 app = (pps_params_t *)data;
  780                 if (app->mode & ~pps->ppscap)
  781                         return (EINVAL);
  782                 pps->ppsparam = *app;
  783                 return (0);
  784         case PPS_IOC_GETPARAMS:
  785                 app = (pps_params_t *)data;
  786                 *app = pps->ppsparam;
  787                 app->api_version = PPS_API_VERS_1;
  788                 return (0);
  789         case PPS_IOC_GETCAP:
  790                 *(int*)data = pps->ppscap;
  791                 return (0);
  792         case PPS_IOC_FETCH:
  793                 pipi = (pps_info_t *)data;
  794                 pps->ppsinfo.current_mode = pps->ppsparam.mode;
  795                 *pipi = pps->ppsinfo;
  796                 return (0);
  797         case PPS_IOC_KCBIND:
  798 #ifdef PPS_SYNC
  799                 epi = (int *)data;
  800                 /* XXX Only root should be able to do this */
  801                 if (*epi & ~pps->ppscap)
  802                         return (EINVAL);
  803                 pps->kcmode = *epi;
  804                 return (0);
  805 #else
  806                 return (EOPNOTSUPP);
  807 #endif
  808         default:
  809                 return (EPASSTHROUGH);
  810         }
  811 }
  812 
  813 void
  814 pps_init(struct pps_state *pps)
  815 {
  816 
  817         KASSERT(mutex_owned(&timecounter_lock));
  818 
  819         pps->ppscap |= PPS_TSFMT_TSPEC;
  820         if (pps->ppscap & PPS_CAPTUREASSERT)
  821                 pps->ppscap |= PPS_OFFSETASSERT;
  822         if (pps->ppscap & PPS_CAPTURECLEAR)
  823                 pps->ppscap |= PPS_OFFSETCLEAR;
  824 }
  825 
  826 void
  827 pps_capture(struct pps_state *pps)
  828 {
  829         struct timehands *th;
  830 
  831         KASSERT(mutex_owned(&timecounter_lock));
  832         KASSERT(pps != NULL);
  833 
  834         th = timehands;
  835         pps->capgen = th->th_generation;
  836         pps->capth = th;
  837         pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
  838         if (pps->capgen != th->th_generation)
  839                 pps->capgen = 0;
  840 }
  841 
  842 void
  843 pps_event(struct pps_state *pps, int event)
  844 {
  845         struct bintime bt;
  846         struct timespec ts, *tsp, *osp;
  847         u_int tcount, *pcount;
  848         int foff, fhard;
  849         pps_seq_t *pseq;
  850 
  851         KASSERT(mutex_owned(&timecounter_lock));
  852 
  853         KASSERT(pps != NULL); /* XXX ("NULL pps pointer in pps_event") */
  854         /* If the timecounter was wound up underneath us, bail out. */
  855         if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
  856                 return;
  857 
  858         /* Things would be easier with arrays. */
  859         if (event == PPS_CAPTUREASSERT) {
  860                 tsp = &pps->ppsinfo.assert_timestamp;
  861                 osp = &pps->ppsparam.assert_offset;
  862                 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
  863                 fhard = pps->kcmode & PPS_CAPTUREASSERT;
  864                 pcount = &pps->ppscount[0];
  865                 pseq = &pps->ppsinfo.assert_sequence;
  866         } else {
  867                 tsp = &pps->ppsinfo.clear_timestamp;
  868                 osp = &pps->ppsparam.clear_offset;
  869                 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
  870                 fhard = pps->kcmode & PPS_CAPTURECLEAR;
  871                 pcount = &pps->ppscount[1];
  872                 pseq = &pps->ppsinfo.clear_sequence;
  873         }
  874 
  875         /*
  876          * If the timecounter changed, we cannot compare the count values, so
  877          * we have to drop the rest of the PPS-stuff until the next event.
  878          */
  879         if (pps->ppstc != pps->capth->th_counter) {
  880                 pps->ppstc = pps->capth->th_counter;
  881                 *pcount = pps->capcount;
  882                 pps->ppscount[2] = pps->capcount;
  883                 return;
  884         }
  885 
  886         /* Convert the count to a timespec. */
  887         tcount = pps->capcount - pps->capth->th_offset_count;
  888         tcount &= pps->capth->th_counter->tc_counter_mask;
  889         bt = pps->capth->th_offset;
  890         bintime_addx(&bt, pps->capth->th_scale * tcount);
  891         bintime_add(&bt, &timebasebin);
  892         bintime2timespec(&bt, &ts);
  893 
  894         /* If the timecounter was wound up underneath us, bail out. */
  895         if (pps->capgen != pps->capth->th_generation)
  896                 return;
  897 
  898         *pcount = pps->capcount;
  899         (*pseq)++;
  900         *tsp = ts;
  901 
  902         if (foff) {
  903                 timespecadd(tsp, osp, tsp);
  904                 if (tsp->tv_nsec < 0) {
  905                         tsp->tv_nsec += 1000000000;
  906                         tsp->tv_sec -= 1;
  907                 }
  908         }
  909 #ifdef PPS_SYNC
  910         if (fhard) {
  911                 u_int64_t scale;
  912 
  913                 /*
  914                  * Feed the NTP PLL/FLL.
  915                  * The FLL wants to know how many (hardware) nanoseconds
  916                  * elapsed since the previous event.
  917                  */
  918                 tcount = pps->capcount - pps->ppscount[2];
  919                 pps->ppscount[2] = pps->capcount;
  920                 tcount &= pps->capth->th_counter->tc_counter_mask;
  921                 scale = (u_int64_t)1 << 63;
  922                 scale /= pps->capth->th_counter->tc_frequency;
  923                 scale *= 2;
  924                 bt.sec = 0;
  925                 bt.frac = 0;
  926                 bintime_addx(&bt, scale * tcount);
  927                 bintime2timespec(&bt, &ts);
  928                 hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
  929         }
  930 #endif
  931 }
  932 
  933 /*
  934  * Timecounters need to be updated every so often to prevent the hardware
  935  * counter from overflowing.  Updating also recalculates the cached values
  936  * used by the get*() family of functions, so their precision depends on
  937  * the update frequency.
  938  */
  939 
  940 static int tc_tick;
  941 
  942 void
  943 tc_ticktock(void)
  944 {
  945         static int count;
  946 
  947         if (++count < tc_tick)
  948                 return;
  949         count = 0;
  950         mutex_spin_enter(&timecounter_lock);
  951         if (timecounter_bad != 0) {
  952                 /* An existing timecounter has gone bad, pick a new one. */
  953                 (void)atomic_swap_uint(&timecounter_bad, 0);
  954                 if (timecounter->tc_quality < 0) {
  955                         tc_pick();
  956                 }
  957         }
  958         tc_windup();
  959         mutex_spin_exit(&timecounter_lock);
  960 }
  961 
  962 void
  963 inittimecounter(void)
  964 {
  965         u_int p;
  966 
  967         mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
  968 
  969         /*
  970          * Set the initial timeout to
  971          * max(1, <approx. number of hardclock ticks in a millisecond>).
  972          * People should probably not use the sysctl to set the timeout
  973          * to smaller than its inital value, since that value is the
  974          * smallest reasonable one.  If they want better timestamps they
  975          * should use the non-"get"* functions.
  976          */
  977         if (hz > 1000)
  978                 tc_tick = (hz + 500) / 1000;
  979         else
  980                 tc_tick = 1;
  981         p = (tc_tick * 1000000) / hz;
  982         aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
  983             p / 1000, p % 1000);
  984 
  985         /* warm up new timecounter (again) and get rolling. */
  986         (void)timecounter->tc_get_timecount(timecounter);
  987         (void)timecounter->tc_get_timecount(timecounter);
  988 }

Cache object: eef8a7c94eac672f59104f5ac265cbf9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.