The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_thr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD: releng/6.2/sys/kern/kern_thr.c 164286 2006-11-14 20:42:41Z cvs2svn $");
   29 
   30 #include <sys/param.h>
   31 #include <sys/kernel.h>
   32 #include <sys/lock.h>
   33 #include <sys/mutex.h>
   34 #include <sys/proc.h>
   35 #include <sys/resourcevar.h>
   36 #include <sys/sched.h>
   37 #include <sys/sysctl.h>
   38 #include <sys/smp.h>
   39 #include <sys/sysent.h>
   40 #include <sys/systm.h>
   41 #include <sys/sysproto.h>
   42 #include <sys/signalvar.h>
   43 #include <sys/ucontext.h>
   44 #include <sys/thr.h>
   45 #include <sys/umtx.h>
   46 
   47 #include <machine/frame.h>
   48 
   49 extern int max_threads_per_proc;
   50 extern int max_groups_per_proc;
   51 
   52 SYSCTL_DECL(_kern_threads);
   53 static int thr_scope = 0;
   54 SYSCTL_INT(_kern_threads, OID_AUTO, thr_scope, CTLFLAG_RW,
   55         &thr_scope, 0, "sys or proc scope scheduling");
   56 
   57 static int thr_concurrency = 0;
   58 SYSCTL_INT(_kern_threads, OID_AUTO, thr_concurrency, CTLFLAG_RW,
   59         &thr_concurrency, 0, "a concurrency value if not default");
   60 
   61 static int create_thread(struct thread *td, mcontext_t *ctx,
   62                          void (*start_func)(void *), void *arg,
   63                          char *stack_base, size_t stack_size,
   64                          char *tls_base,
   65                          long *child_tid, long *parent_tid,
   66                          int flags);
   67 
   68 /*
   69  * System call interface.
   70  */
   71 int
   72 thr_create(struct thread *td, struct thr_create_args *uap)
   73     /* ucontext_t *ctx, long *id, int flags */
   74 {
   75         ucontext_t ctx;
   76         int error;
   77 
   78         if ((error = copyin(uap->ctx, &ctx, sizeof(ctx))))
   79                 return (error);
   80 
   81         error = create_thread(td, &ctx.uc_mcontext, NULL, NULL,
   82                 NULL, 0, NULL, uap->id, NULL, uap->flags);
   83         return (error);
   84 }
   85 
   86 int
   87 thr_new(struct thread *td, struct thr_new_args *uap)
   88     /* struct thr_param * */
   89 {
   90         struct thr_param param;
   91         int error;
   92 
   93         if (uap->param_size < sizeof(param))
   94                 return (EINVAL);
   95         if ((error = copyin(uap->param, &param, sizeof(param))))
   96                 return (error);
   97         error = create_thread(td, NULL, param.start_func, param.arg,
   98                 param.stack_base, param.stack_size, param.tls_base,
   99                 param.child_tid, param.parent_tid, param.flags);
  100         return (error);
  101 }
  102 
  103 static int
  104 create_thread(struct thread *td, mcontext_t *ctx,
  105             void (*start_func)(void *), void *arg,
  106             char *stack_base, size_t stack_size,
  107             char *tls_base,
  108             long *child_tid, long *parent_tid,
  109             int flags)
  110 {
  111         stack_t stack;
  112         struct thread *newtd;
  113         struct ksegrp *kg, *newkg;
  114         struct proc *p;
  115         long id;
  116         int error, scope_sys, linkkg;
  117 
  118         error = 0;
  119         p = td->td_proc;
  120         kg = td->td_ksegrp;
  121 
  122         /* Have race condition but it is cheap. */
  123         if ((p->p_numksegrps >= max_groups_per_proc) ||
  124             (p->p_numthreads >= max_threads_per_proc)) {
  125                 return (EPROCLIM);
  126         }
  127 
  128         /* Check PTHREAD_SCOPE_SYSTEM */
  129         scope_sys = (flags & THR_SYSTEM_SCOPE) != 0;
  130 
  131         /* sysctl overrides user's flag */
  132         if (thr_scope == 1)
  133                 scope_sys = 0;
  134         else if (thr_scope == 2)
  135                 scope_sys = 1;
  136 
  137         /* Initialize our td and new ksegrp.. */
  138         newtd = thread_alloc();
  139 
  140         /*
  141          * Try the copyout as soon as we allocate the td so we don't
  142          * have to tear things down in a failure case below.
  143          * Here we copy out tid to two places, one for child and one
  144          * for parent, because pthread can create a detached thread,
  145          * if parent wants to safely access child tid, it has to provide 
  146          * its storage, because child thread may exit quickly and
  147          * memory is freed before parent thread can access it.
  148          */
  149         id = newtd->td_tid;
  150         if ((child_tid != NULL &&
  151             (error = copyout(&id, child_tid, sizeof(long)))) ||
  152             (parent_tid != NULL &&
  153             (error = copyout(&id, parent_tid, sizeof(long))))) {
  154                 thread_free(newtd);
  155                 return (error);
  156         }
  157         bzero(&newtd->td_startzero,
  158             __rangeof(struct thread, td_startzero, td_endzero));
  159         bcopy(&td->td_startcopy, &newtd->td_startcopy,
  160             __rangeof(struct thread, td_startcopy, td_endcopy));
  161         newtd->td_proc = td->td_proc;
  162         newtd->td_ucred = crhold(td->td_ucred);
  163 
  164         cpu_set_upcall(newtd, td);
  165 
  166         if (ctx != NULL) { /* old way to set user context */
  167                 error = set_mcontext(newtd, ctx);
  168                 if (error != 0) {
  169                         thread_free(newtd);
  170                         crfree(td->td_ucred);
  171                         return (error);
  172                 }
  173         } else {
  174                 /* Set up our machine context. */
  175                 stack.ss_sp = stack_base;
  176                 stack.ss_size = stack_size;
  177                 /* Set upcall address to user thread entry function. */
  178                 cpu_set_upcall_kse(newtd, start_func, arg, &stack);
  179                 /* Setup user TLS address and TLS pointer register. */
  180                 error = cpu_set_user_tls(newtd, tls_base);
  181                 if (error != 0) {
  182                         thread_free(newtd);
  183                         crfree(td->td_ucred);
  184                         return (error);
  185                 }
  186         }
  187 
  188         if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
  189                 /* Treat initial thread as it has PTHREAD_SCOPE_PROCESS. */
  190                 p->p_procscopegrp = kg;
  191                 mtx_lock_spin(&sched_lock);
  192                 sched_set_concurrency(kg,
  193                     thr_concurrency ? thr_concurrency : (2*mp_ncpus));
  194                 mtx_unlock_spin(&sched_lock);
  195         }
  196 
  197         linkkg = 0;
  198         if (scope_sys) {
  199                 linkkg = 1;
  200                 newkg = ksegrp_alloc();
  201                 bzero(&newkg->kg_startzero,
  202                     __rangeof(struct ksegrp, kg_startzero, kg_endzero));
  203                 bcopy(&kg->kg_startcopy, &newkg->kg_startcopy,
  204                     __rangeof(struct ksegrp, kg_startcopy, kg_endcopy));
  205                 sched_init_concurrency(newkg);
  206                 PROC_LOCK(td->td_proc);
  207         } else {
  208                 /*
  209                  * Try to create a KSE group which will be shared
  210                  * by all PTHREAD_SCOPE_PROCESS threads.
  211                  */
  212 retry:
  213                 PROC_LOCK(td->td_proc);
  214                 if ((newkg = p->p_procscopegrp) == NULL) {
  215                         PROC_UNLOCK(p);
  216                         newkg = ksegrp_alloc();
  217                         bzero(&newkg->kg_startzero,
  218                             __rangeof(struct ksegrp, kg_startzero, kg_endzero));
  219                         bcopy(&kg->kg_startcopy, &newkg->kg_startcopy,
  220                             __rangeof(struct ksegrp, kg_startcopy, kg_endcopy));
  221                         PROC_LOCK(p);
  222                         if (p->p_procscopegrp == NULL) {
  223                                 p->p_procscopegrp = newkg;
  224                                 sched_init_concurrency(newkg);
  225                                 sched_set_concurrency(newkg,
  226                                     thr_concurrency ? thr_concurrency : (2*mp_ncpus));
  227                                 linkkg = 1;
  228                         } else {
  229                                 PROC_UNLOCK(p);
  230                                 ksegrp_free(newkg);
  231                                 goto retry;
  232                         }
  233                 }
  234         }
  235 
  236         td->td_proc->p_flag |= P_HADTHREADS;
  237         newtd->td_sigmask = td->td_sigmask;
  238         mtx_lock_spin(&sched_lock);
  239         if (linkkg)
  240                 ksegrp_link(newkg, p);
  241         thread_link(newtd, newkg);
  242         PROC_UNLOCK(p);
  243 
  244         /* let the scheduler know about these things. */
  245         if (linkkg)
  246                 sched_fork_ksegrp(td, newkg);
  247         sched_fork_thread(td, newtd);
  248         TD_SET_CAN_RUN(newtd);
  249         /* if ((flags & THR_SUSPENDED) == 0) */
  250                 setrunqueue(newtd, SRQ_BORING);
  251         mtx_unlock_spin(&sched_lock);
  252 
  253         return (error);
  254 }
  255 
  256 int
  257 thr_self(struct thread *td, struct thr_self_args *uap)
  258     /* long *id */
  259 {
  260         long id;
  261         int error;
  262 
  263         id = td->td_tid;
  264         if ((error = copyout(&id, uap->id, sizeof(long))))
  265                 return (error);
  266 
  267         return (0);
  268 }
  269 
  270 int
  271 thr_exit(struct thread *td, struct thr_exit_args *uap)
  272     /* long *state */
  273 {
  274         struct proc *p;
  275 
  276         p = td->td_proc;
  277 
  278         /* Signal userland that it can free the stack. */
  279         if ((void *)uap->state != NULL) {
  280                 suword((void *)uap->state, 1);
  281                 kern_umtx_wake(td, uap->state, INT_MAX);
  282         }
  283 
  284         PROC_LOCK(p);
  285         mtx_lock_spin(&sched_lock);
  286 
  287         /*
  288          * Shutting down last thread in the proc.  This will actually
  289          * call exit() in the trampoline when it returns.
  290          */
  291         if (p->p_numthreads != 1) {
  292                 thread_stopped(p);
  293                 thread_exit();
  294                 /* NOTREACHED */
  295         }
  296         mtx_unlock_spin(&sched_lock);
  297         PROC_UNLOCK(p);
  298         return (0);
  299 }
  300 
  301 int
  302 thr_kill(struct thread *td, struct thr_kill_args *uap)
  303     /* long id, int sig */
  304 {
  305         struct thread *ttd;
  306         struct proc *p;
  307         int error;
  308 
  309         p = td->td_proc;
  310         error = 0;
  311         PROC_LOCK(p);
  312         if (uap->id == -1) {
  313                 if (uap->sig != 0 && !_SIG_VALID(uap->sig)) {
  314                         error = EINVAL;
  315                 } else {
  316                         error = ESRCH;
  317                         FOREACH_THREAD_IN_PROC(p, ttd) {
  318                                 if (ttd != td) {
  319                                         error = 0;
  320                                         if (uap->sig == 0)
  321                                                 break;
  322                                         tdsignal(ttd, uap->sig, SIGTARGET_TD);
  323                                 }
  324                         }
  325                 }
  326         } else {
  327                 if (uap->id != td->td_tid) {
  328                         FOREACH_THREAD_IN_PROC(p, ttd) {
  329                                 if (ttd->td_tid == uap->id)
  330                                         break;
  331                         }
  332                 } else
  333                         ttd = td;
  334                 if (ttd == NULL)
  335                         error = ESRCH;
  336                 else if (uap->sig == 0)
  337                         ;
  338                 else if (!_SIG_VALID(uap->sig))
  339                         error = EINVAL;
  340                 else
  341                         tdsignal(ttd, uap->sig, SIGTARGET_TD);
  342         }
  343         PROC_UNLOCK(p);
  344         return (error);
  345 }
  346 
  347 int
  348 thr_suspend(struct thread *td, struct thr_suspend_args *uap)
  349         /* const struct timespec *timeout */
  350 {
  351         struct timespec ts;
  352         struct timeval  tv;
  353         int error;
  354         int hz;
  355 
  356         hz = 0;
  357         error = 0;
  358         if (uap->timeout != NULL) {
  359                 error = copyin((const void *)uap->timeout, (void *)&ts,
  360                     sizeof(struct timespec));
  361                 if (error != 0)
  362                         return (error);
  363                 if (ts.tv_nsec < 0 || ts.tv_nsec > 1000000000)
  364                         return (EINVAL);
  365                 if (ts.tv_sec == 0 && ts.tv_nsec == 0)
  366                         return (ETIMEDOUT);
  367                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
  368                 hz = tvtohz(&tv);
  369         }
  370         PROC_LOCK(td->td_proc);
  371         if ((td->td_flags & TDF_THRWAKEUP) == 0)
  372                 error = msleep((void *)td, &td->td_proc->p_mtx, PCATCH, "lthr",
  373                     hz);
  374         if (td->td_flags & TDF_THRWAKEUP) {
  375                 mtx_lock_spin(&sched_lock);
  376                 td->td_flags &= ~TDF_THRWAKEUP;
  377                 mtx_unlock_spin(&sched_lock);
  378                 PROC_UNLOCK(td->td_proc);
  379                 return (0);
  380         }
  381         PROC_UNLOCK(td->td_proc);
  382         if (error == EWOULDBLOCK)
  383                 error = ETIMEDOUT;
  384         else if (error == ERESTART) {
  385                 if (hz != 0)
  386                         error = EINTR;
  387         }
  388         return (error);
  389 }
  390 
  391 int
  392 thr_wake(struct thread *td, struct thr_wake_args *uap)
  393         /* long id */
  394 {
  395         struct thread *ttd;
  396 
  397         PROC_LOCK(td->td_proc);
  398         FOREACH_THREAD_IN_PROC(td->td_proc, ttd) {
  399                 if (ttd->td_tid == uap->id)
  400                         break;
  401         }
  402         if (ttd == NULL) {
  403                 PROC_UNLOCK(td->td_proc);
  404                 return (ESRCH);
  405         }
  406         mtx_lock_spin(&sched_lock);
  407         ttd->td_flags |= TDF_THRWAKEUP;
  408         mtx_unlock_spin(&sched_lock);
  409         wakeup((void *)ttd);
  410         PROC_UNLOCK(td->td_proc);
  411         return (0);
  412 }

Cache object: a56f20e17fbbeae29137daa81c81bef8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.