The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_thr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice unmodified, this list of conditions, and the following
   10  *    disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   25  */
   26 
   27 #include <sys/cdefs.h>
   28 __FBSDID("$FreeBSD$");
   29 
   30 #include "opt_compat.h"
   31 #include "opt_posix.h"
   32 #include <sys/param.h>
   33 #include <sys/kernel.h>
   34 #include <sys/lock.h>
   35 #include <sys/mutex.h>
   36 #include <sys/priv.h>
   37 #include <sys/proc.h>
   38 #include <sys/posix4.h>
   39 #include <sys/resourcevar.h>
   40 #include <sys/sched.h>
   41 #include <sys/sysctl.h>
   42 #include <sys/smp.h>
   43 #include <sys/syscallsubr.h>
   44 #include <sys/sysent.h>
   45 #include <sys/systm.h>
   46 #include <sys/sysproto.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/ucontext.h>
   49 #include <sys/thr.h>
   50 #include <sys/rtprio.h>
   51 #include <sys/umtx.h>
   52 #include <sys/limits.h>
   53 
   54 #include <machine/frame.h>
   55 
   56 #include <security/audit/audit.h>
   57 
   58 #ifdef COMPAT_IA32
   59 
   60 extern struct sysentvec ia32_freebsd_sysvec;
   61 
   62 static inline int
   63 suword_lwpid(void *addr, lwpid_t lwpid)
   64 {
   65         int error;
   66 
   67         if (curproc->p_sysent != &ia32_freebsd_sysvec)
   68                 error = suword(addr, lwpid);
   69         else
   70                 error = suword32(addr, lwpid);
   71         return (error);
   72 }
   73 
   74 #else
   75 #define suword_lwpid    suword
   76 #endif
   77 
   78 extern int max_threads_per_proc;
   79 
   80 static int create_thread(struct thread *td, mcontext_t *ctx,
   81                          void (*start_func)(void *), void *arg,
   82                          char *stack_base, size_t stack_size,
   83                          char *tls_base,
   84                          long *child_tid, long *parent_tid,
   85                          int flags, struct rtprio *rtp);
   86 
   87 /*
   88  * System call interface.
   89  */
   90 int
   91 thr_create(struct thread *td, struct thr_create_args *uap)
   92     /* ucontext_t *ctx, long *id, int flags */
   93 {
   94         ucontext_t ctx;
   95         int error;
   96 
   97         if ((error = copyin(uap->ctx, &ctx, sizeof(ctx))))
   98                 return (error);
   99 
  100         error = create_thread(td, &ctx.uc_mcontext, NULL, NULL,
  101                 NULL, 0, NULL, uap->id, NULL, uap->flags, NULL);
  102         return (error);
  103 }
  104 
  105 int
  106 thr_new(struct thread *td, struct thr_new_args *uap)
  107     /* struct thr_param * */
  108 {
  109         struct thr_param param;
  110         int error;
  111 
  112         if (uap->param_size < 0 || uap->param_size > sizeof(param))
  113                 return (EINVAL);
  114         bzero(&param, sizeof(param));
  115         if ((error = copyin(uap->param, &param, uap->param_size)))
  116                 return (error);
  117         return (kern_thr_new(td, &param));
  118 }
  119 
  120 int
  121 kern_thr_new(struct thread *td, struct thr_param *param)
  122 {
  123         struct rtprio rtp, *rtpp;
  124         int error;
  125 
  126         rtpp = NULL;
  127         if (param->rtp != 0) {
  128                 error = copyin(param->rtp, &rtp, sizeof(struct rtprio));
  129                 rtpp = &rtp;
  130         }
  131         error = create_thread(td, NULL, param->start_func, param->arg,
  132                 param->stack_base, param->stack_size, param->tls_base,
  133                 param->child_tid, param->parent_tid, param->flags,
  134                 rtpp);
  135         return (error);
  136 }
  137 
  138 static int
  139 create_thread(struct thread *td, mcontext_t *ctx,
  140             void (*start_func)(void *), void *arg,
  141             char *stack_base, size_t stack_size,
  142             char *tls_base,
  143             long *child_tid, long *parent_tid,
  144             int flags, struct rtprio *rtp)
  145 {
  146         stack_t stack;
  147         struct thread *newtd;
  148         struct proc *p;
  149         int error;
  150 
  151         error = 0;
  152         p = td->td_proc;
  153 
  154         /* Have race condition but it is cheap. */
  155         if (p->p_numthreads >= max_threads_per_proc)
  156                 return (EPROCLIM);
  157 
  158         if (rtp != NULL) {
  159                 switch(rtp->type) {
  160                 case RTP_PRIO_REALTIME:
  161                 case RTP_PRIO_FIFO:
  162                         /* Only root can set scheduler policy */
  163                         if (priv_check(td, PRIV_SCHED_SETPOLICY) != 0)
  164                                 return (EPERM);
  165                         if (rtp->prio > RTP_PRIO_MAX)
  166                                 return (EINVAL);
  167                         break;
  168                 case RTP_PRIO_NORMAL:
  169                         rtp->prio = 0;
  170                         break;
  171                 default:
  172                         return (EINVAL);
  173                 }
  174         }
  175 
  176         /* Initialize our td */
  177         newtd = thread_alloc();
  178         if (newtd == NULL)
  179                 return (ENOMEM);
  180 
  181         /*
  182          * Try the copyout as soon as we allocate the td so we don't
  183          * have to tear things down in a failure case below.
  184          * Here we copy out tid to two places, one for child and one
  185          * for parent, because pthread can create a detached thread,
  186          * if parent wants to safely access child tid, it has to provide 
  187          * its storage, because child thread may exit quickly and
  188          * memory is freed before parent thread can access it.
  189          */
  190         if ((child_tid != NULL &&
  191             suword_lwpid(child_tid, newtd->td_tid)) ||
  192             (parent_tid != NULL &&
  193             suword_lwpid(parent_tid, newtd->td_tid))) {
  194                 thread_free(newtd);
  195                 return (EFAULT);
  196         }
  197 
  198         bzero(&newtd->td_startzero,
  199             __rangeof(struct thread, td_startzero, td_endzero));
  200         bcopy(&td->td_startcopy, &newtd->td_startcopy,
  201             __rangeof(struct thread, td_startcopy, td_endcopy));
  202         newtd->td_proc = td->td_proc;
  203         newtd->td_ucred = crhold(td->td_ucred);
  204 
  205         cpu_set_upcall(newtd, td);
  206 
  207         if (ctx != NULL) { /* old way to set user context */
  208                 error = set_mcontext(newtd, ctx);
  209                 if (error != 0) {
  210                         thread_free(newtd);
  211                         crfree(td->td_ucred);
  212                         return (error);
  213                 }
  214         } else {
  215                 /* Set up our machine context. */
  216                 stack.ss_sp = stack_base;
  217                 stack.ss_size = stack_size;
  218                 /* Set upcall address to user thread entry function. */
  219                 cpu_set_upcall_kse(newtd, start_func, arg, &stack);
  220                 /* Setup user TLS address and TLS pointer register. */
  221                 error = cpu_set_user_tls(newtd, tls_base);
  222                 if (error != 0) {
  223                         thread_free(newtd);
  224                         crfree(td->td_ucred);
  225                         return (error);
  226                 }
  227         }
  228 
  229         PROC_LOCK(td->td_proc);
  230         td->td_proc->p_flag |= P_HADTHREADS;
  231         newtd->td_sigmask = td->td_sigmask;
  232         PROC_SLOCK(p);
  233         thread_link(newtd, p); 
  234         thread_lock(td);
  235         /* let the scheduler know about these things. */
  236         sched_fork_thread(td, newtd);
  237         thread_unlock(td);
  238         PROC_SUNLOCK(p);
  239         PROC_UNLOCK(p);
  240         thread_lock(newtd);
  241         if (rtp != NULL) {
  242                 if (!(td->td_pri_class == PRI_TIMESHARE &&
  243                       rtp->type == RTP_PRIO_NORMAL)) {
  244                         rtp_to_pri(rtp, newtd);
  245                         sched_prio(newtd, newtd->td_user_pri);
  246                 } /* ignore timesharing class */
  247         }
  248         TD_SET_CAN_RUN(newtd);
  249         /* if ((flags & THR_SUSPENDED) == 0) */
  250                 sched_add(newtd, SRQ_BORING);
  251         thread_unlock(newtd);
  252 
  253         return (error);
  254 }
  255 
  256 int
  257 thr_self(struct thread *td, struct thr_self_args *uap)
  258     /* long *id */
  259 {
  260         int error;
  261 
  262         error = suword_lwpid(uap->id, (unsigned)td->td_tid);
  263         if (error == -1)
  264                 return (EFAULT);
  265         return (0);
  266 }
  267 
  268 int
  269 thr_exit(struct thread *td, struct thr_exit_args *uap)
  270     /* long *state */
  271 {
  272         struct proc *p;
  273 
  274         p = td->td_proc;
  275 
  276         /* Signal userland that it can free the stack. */
  277         if ((void *)uap->state != NULL) {
  278                 suword_lwpid(uap->state, 1);
  279                 kern_umtx_wake(td, uap->state, INT_MAX, 0);
  280         }
  281 
  282         PROC_LOCK(p);
  283         sigqueue_flush(&td->td_sigqueue);
  284         PROC_SLOCK(p);
  285 
  286         /*
  287          * Shutting down last thread in the proc.  This will actually
  288          * call exit() in the trampoline when it returns.
  289          */
  290         if (p->p_numthreads != 1) {
  291                 thread_stopped(p);
  292                 thread_exit();
  293                 /* NOTREACHED */
  294         }
  295         PROC_SUNLOCK(p);
  296         PROC_UNLOCK(p);
  297         return (0);
  298 }
  299 
  300 int
  301 thr_kill(struct thread *td, struct thr_kill_args *uap)
  302     /* long id, int sig */
  303 {
  304         struct thread *ttd;
  305         struct proc *p;
  306         int error;
  307 
  308         p = td->td_proc;
  309         error = 0;
  310         PROC_LOCK(p);
  311         if (uap->id == -1) {
  312                 if (uap->sig != 0 && !_SIG_VALID(uap->sig)) {
  313                         error = EINVAL;
  314                 } else {
  315                         error = ESRCH;
  316                         FOREACH_THREAD_IN_PROC(p, ttd) {
  317                                 if (ttd != td) {
  318                                         error = 0;
  319                                         if (uap->sig == 0)
  320                                                 break;
  321                                         tdsignal(p, ttd, uap->sig, NULL);
  322                                 }
  323                         }
  324                 }
  325         } else {
  326                 if (uap->id != td->td_tid)
  327                         ttd = thread_find(p, uap->id);
  328                 else
  329                         ttd = td;
  330                 if (ttd == NULL)
  331                         error = ESRCH;
  332                 else if (uap->sig == 0)
  333                         ;
  334                 else if (!_SIG_VALID(uap->sig))
  335                         error = EINVAL;
  336                 else
  337                         tdsignal(p, ttd, uap->sig, NULL);
  338         }
  339         PROC_UNLOCK(p);
  340         return (error);
  341 }
  342 
  343 int
  344 thr_kill2(struct thread *td, struct thr_kill2_args *uap)
  345     /* pid_t pid, long id, int sig */
  346 {
  347         struct thread *ttd;
  348         struct proc *p;
  349         int error;
  350 
  351         AUDIT_ARG(signum, uap->sig);
  352 
  353         if (uap->pid == td->td_proc->p_pid) {
  354                 p = td->td_proc;
  355                 PROC_LOCK(p);
  356         } else if ((p = pfind(uap->pid)) == NULL) {
  357                 return (ESRCH);
  358         }
  359         AUDIT_ARG(process, p);
  360 
  361         error = p_cansignal(td, p, uap->sig);
  362         if (error == 0) {
  363                 if (uap->id == -1) {
  364                         if (uap->sig != 0 && !_SIG_VALID(uap->sig)) {
  365                                 error = EINVAL;
  366                         } else {
  367                                 error = ESRCH;
  368                                 FOREACH_THREAD_IN_PROC(p, ttd) {
  369                                         if (ttd != td) {
  370                                                 error = 0;
  371                                                 if (uap->sig == 0)
  372                                                         break;
  373                                                 tdsignal(p, ttd, uap->sig, NULL);
  374                                         }
  375                                 }
  376                         }
  377                 } else {
  378                         if (uap->id != td->td_tid)
  379                                 ttd = thread_find(p, uap->id);
  380                         else
  381                                 ttd = td;
  382                         if (ttd == NULL)
  383                                 error = ESRCH;
  384                         else if (uap->sig == 0)
  385                                 ;
  386                         else if (!_SIG_VALID(uap->sig))
  387                                 error = EINVAL;
  388                         else
  389                                 tdsignal(p, ttd, uap->sig, NULL);
  390                 }
  391         }
  392         PROC_UNLOCK(p);
  393         return (error);
  394 }
  395 
  396 int
  397 thr_suspend(struct thread *td, struct thr_suspend_args *uap)
  398         /* const struct timespec *timeout */
  399 {
  400         struct timespec ts, *tsp;
  401         int error;
  402 
  403         error = 0;
  404         tsp = NULL;
  405         if (uap->timeout != NULL) {
  406                 error = copyin((const void *)uap->timeout, (void *)&ts,
  407                     sizeof(struct timespec));
  408                 if (error != 0)
  409                         return (error);
  410                 tsp = &ts;
  411         }
  412 
  413         return (kern_thr_suspend(td, tsp));
  414 }
  415 
  416 int
  417 kern_thr_suspend(struct thread *td, struct timespec *tsp)
  418 {
  419         struct timeval tv;
  420         int error = 0, hz = 0;
  421 
  422         if (tsp != NULL) {
  423                 if (tsp->tv_nsec < 0 || tsp->tv_nsec > 1000000000)
  424                         return (EINVAL);
  425                 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
  426                         return (ETIMEDOUT);
  427                 TIMESPEC_TO_TIMEVAL(&tv, tsp);
  428                 hz = tvtohz(&tv);
  429         }
  430 
  431         if (td->td_pflags & TDP_WAKEUP) {
  432                 td->td_pflags &= ~TDP_WAKEUP;
  433                 return (0);
  434         }
  435 
  436         PROC_LOCK(td->td_proc);
  437         if ((td->td_flags & TDF_THRWAKEUP) == 0)
  438                 error = msleep((void *)td, &td->td_proc->p_mtx, PCATCH, "lthr",
  439                     hz);
  440         if (td->td_flags & TDF_THRWAKEUP) {
  441                 thread_lock(td);
  442                 td->td_flags &= ~TDF_THRWAKEUP;
  443                 thread_unlock(td);
  444                 PROC_UNLOCK(td->td_proc);
  445                 return (0);
  446         }
  447         PROC_UNLOCK(td->td_proc);
  448         if (error == EWOULDBLOCK)
  449                 error = ETIMEDOUT;
  450         else if (error == ERESTART) {
  451                 if (hz != 0)
  452                         error = EINTR;
  453         }
  454         return (error);
  455 }
  456 
  457 int
  458 thr_wake(struct thread *td, struct thr_wake_args *uap)
  459         /* long id */
  460 {
  461         struct proc *p;
  462         struct thread *ttd;
  463 
  464         if (uap->id == td->td_tid) {
  465                 td->td_pflags |= TDP_WAKEUP;
  466                 return (0);
  467         } 
  468 
  469         p = td->td_proc;
  470         PROC_LOCK(p);
  471         ttd = thread_find(p, uap->id);
  472         if (ttd == NULL) {
  473                 PROC_UNLOCK(p);
  474                 return (ESRCH);
  475         }
  476         thread_lock(ttd);
  477         ttd->td_flags |= TDF_THRWAKEUP;
  478         thread_unlock(ttd);
  479         wakeup((void *)ttd);
  480         PROC_UNLOCK(p);
  481         return (0);
  482 }
  483 
  484 int
  485 thr_set_name(struct thread *td, struct thr_set_name_args *uap)
  486 {
  487         struct proc *p = td->td_proc;
  488         char name[MAXCOMLEN + 1];
  489         struct thread *ttd;
  490         int error;
  491 
  492         error = 0;
  493         name[0] = '\0';
  494         if (uap->name != NULL) {
  495                 error = copyinstr(uap->name, name, sizeof(name),
  496                         NULL);
  497                 if (error)
  498                         return (error);
  499         }
  500         PROC_LOCK(p);
  501         if (uap->id == td->td_tid)
  502                 ttd = td;
  503         else
  504                 ttd = thread_find(p, uap->id);
  505         if (ttd != NULL)
  506                 strcpy(ttd->td_name, name);
  507         else 
  508                 error = ESRCH;
  509         PROC_UNLOCK(p);
  510         return (error);
  511 }

Cache object: 783d8c33cedba3ca6bfbf7e041fed988


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.