The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_thread.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
    3  *  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice(s), this list of conditions and the following disclaimer as
   10  *    the first lines of this file unmodified other than the possible
   11  *    addition of one or more copyright notices.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice(s), this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
   17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
   20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
   23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
   26  * DAMAGE.
   27  */
   28 
   29 #include "opt_witness.h"
   30 #include "opt_kdtrace.h"
   31 #include "opt_hwpmc_hooks.h"
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/10.2/sys/kern/kern_thread.c 283765 2015-05-30 08:54:42Z kib $");
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/kernel.h>
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/proc.h>
   42 #include <sys/rangelock.h>
   43 #include <sys/resourcevar.h>
   44 #include <sys/sdt.h>
   45 #include <sys/smp.h>
   46 #include <sys/sched.h>
   47 #include <sys/sleepqueue.h>
   48 #include <sys/selinfo.h>
   49 #include <sys/turnstile.h>
   50 #include <sys/ktr.h>
   51 #include <sys/rwlock.h>
   52 #include <sys/umtx.h>
   53 #include <sys/cpuset.h>
   54 #ifdef  HWPMC_HOOKS
   55 #include <sys/pmckern.h>
   56 #endif
   57 
   58 #include <security/audit/audit.h>
   59 
   60 #include <vm/vm.h>
   61 #include <vm/vm_extern.h>
   62 #include <vm/uma.h>
   63 #include <sys/eventhandler.h>
   64 
   65 SDT_PROVIDER_DECLARE(proc);
   66 SDT_PROBE_DEFINE(proc, , , lwp__exit);
   67 
   68 /*
   69  * thread related storage.
   70  */
   71 static uma_zone_t thread_zone;
   72 
   73 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
   74 static struct mtx zombie_lock;
   75 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
   76 
   77 static void thread_zombie(struct thread *);
   78 static int thread_unsuspend_one(struct thread *td, struct proc *p,
   79     bool boundary);
   80 
   81 #define TID_BUFFER_SIZE 1024
   82 
   83 struct mtx tid_lock;
   84 static struct unrhdr *tid_unrhdr;
   85 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
   86 static int tid_head, tid_tail;
   87 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
   88 
   89 struct  tidhashhead *tidhashtbl;
   90 u_long  tidhash;
   91 struct  rwlock tidhash_lock;
   92 
   93 static lwpid_t
   94 tid_alloc(void)
   95 {
   96         lwpid_t tid;
   97 
   98         tid = alloc_unr(tid_unrhdr);
   99         if (tid != -1)
  100                 return (tid);
  101         mtx_lock(&tid_lock);
  102         if (tid_head == tid_tail) {
  103                 mtx_unlock(&tid_lock);
  104                 return (-1);
  105         }
  106         tid = tid_buffer[tid_head];
  107         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
  108         mtx_unlock(&tid_lock);
  109         return (tid);
  110 }
  111 
  112 static void
  113 tid_free(lwpid_t tid)
  114 {
  115         lwpid_t tmp_tid = -1;
  116 
  117         mtx_lock(&tid_lock);
  118         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
  119                 tmp_tid = tid_buffer[tid_head];
  120                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
  121         }
  122         tid_buffer[tid_tail] = tid;
  123         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
  124         mtx_unlock(&tid_lock);
  125         if (tmp_tid != -1)
  126                 free_unr(tid_unrhdr, tmp_tid);
  127 }
  128 
  129 /*
  130  * Prepare a thread for use.
  131  */
  132 static int
  133 thread_ctor(void *mem, int size, void *arg, int flags)
  134 {
  135         struct thread   *td;
  136 
  137         td = (struct thread *)mem;
  138         td->td_state = TDS_INACTIVE;
  139         td->td_oncpu = NOCPU;
  140 
  141         td->td_tid = tid_alloc();
  142 
  143         /*
  144          * Note that td_critnest begins life as 1 because the thread is not
  145          * running and is thereby implicitly waiting to be on the receiving
  146          * end of a context switch.
  147          */
  148         td->td_critnest = 1;
  149         td->td_lend_user_pri = PRI_MAX;
  150         EVENTHANDLER_INVOKE(thread_ctor, td);
  151 #ifdef AUDIT
  152         audit_thread_alloc(td);
  153 #endif
  154         umtx_thread_alloc(td);
  155         return (0);
  156 }
  157 
  158 /*
  159  * Reclaim a thread after use.
  160  */
  161 static void
  162 thread_dtor(void *mem, int size, void *arg)
  163 {
  164         struct thread *td;
  165 
  166         td = (struct thread *)mem;
  167 
  168 #ifdef INVARIANTS
  169         /* Verify that this thread is in a safe state to free. */
  170         switch (td->td_state) {
  171         case TDS_INHIBITED:
  172         case TDS_RUNNING:
  173         case TDS_CAN_RUN:
  174         case TDS_RUNQ:
  175                 /*
  176                  * We must never unlink a thread that is in one of
  177                  * these states, because it is currently active.
  178                  */
  179                 panic("bad state for thread unlinking");
  180                 /* NOTREACHED */
  181         case TDS_INACTIVE:
  182                 break;
  183         default:
  184                 panic("bad thread state");
  185                 /* NOTREACHED */
  186         }
  187 #endif
  188 #ifdef AUDIT
  189         audit_thread_free(td);
  190 #endif
  191         /* Free all OSD associated to this thread. */
  192         osd_thread_exit(td);
  193 
  194         EVENTHANDLER_INVOKE(thread_dtor, td);
  195         tid_free(td->td_tid);
  196 }
  197 
  198 /*
  199  * Initialize type-stable parts of a thread (when newly created).
  200  */
  201 static int
  202 thread_init(void *mem, int size, int flags)
  203 {
  204         struct thread *td;
  205 
  206         td = (struct thread *)mem;
  207 
  208         td->td_sleepqueue = sleepq_alloc();
  209         td->td_turnstile = turnstile_alloc();
  210         td->td_rlqe = NULL;
  211         EVENTHANDLER_INVOKE(thread_init, td);
  212         td->td_sched = (struct td_sched *)&td[1];
  213         umtx_thread_init(td);
  214         td->td_kstack = 0;
  215         td->td_sel = NULL;
  216         return (0);
  217 }
  218 
  219 /*
  220  * Tear down type-stable parts of a thread (just before being discarded).
  221  */
  222 static void
  223 thread_fini(void *mem, int size)
  224 {
  225         struct thread *td;
  226 
  227         td = (struct thread *)mem;
  228         EVENTHANDLER_INVOKE(thread_fini, td);
  229         rlqentry_free(td->td_rlqe);
  230         turnstile_free(td->td_turnstile);
  231         sleepq_free(td->td_sleepqueue);
  232         umtx_thread_fini(td);
  233         seltdfini(td);
  234 }
  235 
  236 /*
  237  * For a newly created process,
  238  * link up all the structures and its initial threads etc.
  239  * called from:
  240  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
  241  * proc_dtor() (should go away)
  242  * proc_init()
  243  */
  244 void
  245 proc_linkup0(struct proc *p, struct thread *td)
  246 {
  247         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  248         proc_linkup(p, td);
  249 }
  250 
  251 void
  252 proc_linkup(struct proc *p, struct thread *td)
  253 {
  254 
  255         sigqueue_init(&p->p_sigqueue, p);
  256         p->p_ksi = ksiginfo_alloc(1);
  257         if (p->p_ksi != NULL) {
  258                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
  259                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
  260         }
  261         LIST_INIT(&p->p_mqnotifier);
  262         p->p_numthreads = 0;
  263         thread_link(td, p);
  264 }
  265 
  266 /*
  267  * Initialize global thread allocation resources.
  268  */
  269 void
  270 threadinit(void)
  271 {
  272 
  273         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
  274 
  275         /*
  276          * pid_max cannot be greater than PID_MAX.
  277          * leave one number for thread0.
  278          */
  279         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
  280 
  281         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
  282             thread_ctor, thread_dtor, thread_init, thread_fini,
  283             16 - 1, 0);
  284         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
  285         rw_init(&tidhash_lock, "tidhash");
  286 }
  287 
  288 /*
  289  * Place an unused thread on the zombie list.
  290  * Use the slpq as that must be unused by now.
  291  */
  292 void
  293 thread_zombie(struct thread *td)
  294 {
  295         mtx_lock_spin(&zombie_lock);
  296         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
  297         mtx_unlock_spin(&zombie_lock);
  298 }
  299 
  300 /*
  301  * Release a thread that has exited after cpu_throw().
  302  */
  303 void
  304 thread_stash(struct thread *td)
  305 {
  306         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
  307         thread_zombie(td);
  308 }
  309 
  310 /*
  311  * Reap zombie resources.
  312  */
  313 void
  314 thread_reap(void)
  315 {
  316         struct thread *td_first, *td_next;
  317 
  318         /*
  319          * Don't even bother to lock if none at this instant,
  320          * we really don't care about the next instant..
  321          */
  322         if (!TAILQ_EMPTY(&zombie_threads)) {
  323                 mtx_lock_spin(&zombie_lock);
  324                 td_first = TAILQ_FIRST(&zombie_threads);
  325                 if (td_first)
  326                         TAILQ_INIT(&zombie_threads);
  327                 mtx_unlock_spin(&zombie_lock);
  328                 while (td_first) {
  329                         td_next = TAILQ_NEXT(td_first, td_slpq);
  330                         if (td_first->td_ucred)
  331                                 crfree(td_first->td_ucred);
  332                         thread_free(td_first);
  333                         td_first = td_next;
  334                 }
  335         }
  336 }
  337 
  338 /*
  339  * Allocate a thread.
  340  */
  341 struct thread *
  342 thread_alloc(int pages)
  343 {
  344         struct thread *td;
  345 
  346         thread_reap(); /* check if any zombies to get */
  347 
  348         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
  349         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
  350         if (!vm_thread_new(td, pages)) {
  351                 uma_zfree(thread_zone, td);
  352                 return (NULL);
  353         }
  354         cpu_thread_alloc(td);
  355         return (td);
  356 }
  357 
  358 int
  359 thread_alloc_stack(struct thread *td, int pages)
  360 {
  361 
  362         KASSERT(td->td_kstack == 0,
  363             ("thread_alloc_stack called on a thread with kstack"));
  364         if (!vm_thread_new(td, pages))
  365                 return (0);
  366         cpu_thread_alloc(td);
  367         return (1);
  368 }
  369 
  370 /*
  371  * Deallocate a thread.
  372  */
  373 void
  374 thread_free(struct thread *td)
  375 {
  376 
  377         lock_profile_thread_exit(td);
  378         if (td->td_cpuset)
  379                 cpuset_rel(td->td_cpuset);
  380         td->td_cpuset = NULL;
  381         cpu_thread_free(td);
  382         if (td->td_kstack != 0)
  383                 vm_thread_dispose(td);
  384         uma_zfree(thread_zone, td);
  385 }
  386 
  387 /*
  388  * Discard the current thread and exit from its context.
  389  * Always called with scheduler locked.
  390  *
  391  * Because we can't free a thread while we're operating under its context,
  392  * push the current thread into our CPU's deadthread holder. This means
  393  * we needn't worry about someone else grabbing our context before we
  394  * do a cpu_throw().
  395  */
  396 void
  397 thread_exit(void)
  398 {
  399         uint64_t runtime, new_switchtime;
  400         struct thread *td;
  401         struct thread *td2;
  402         struct proc *p;
  403         int wakeup_swapper;
  404 
  405         td = curthread;
  406         p = td->td_proc;
  407 
  408         PROC_SLOCK_ASSERT(p, MA_OWNED);
  409         mtx_assert(&Giant, MA_NOTOWNED);
  410 
  411         PROC_LOCK_ASSERT(p, MA_OWNED);
  412         KASSERT(p != NULL, ("thread exiting without a process"));
  413         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
  414             (long)p->p_pid, td->td_name);
  415         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
  416 
  417 #ifdef AUDIT
  418         AUDIT_SYSCALL_EXIT(0, td);
  419 #endif
  420         /*
  421          * drop FPU & debug register state storage, or any other
  422          * architecture specific resources that
  423          * would not be on a new untouched process.
  424          */
  425         cpu_thread_exit(td);    /* XXXSMP */
  426 
  427         /*
  428          * The last thread is left attached to the process
  429          * So that the whole bundle gets recycled. Skip
  430          * all this stuff if we never had threads.
  431          * EXIT clears all sign of other threads when
  432          * it goes to single threading, so the last thread always
  433          * takes the short path.
  434          */
  435         if (p->p_flag & P_HADTHREADS) {
  436                 if (p->p_numthreads > 1) {
  437                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
  438                         thread_unlink(td);
  439                         td2 = FIRST_THREAD_IN_PROC(p);
  440                         sched_exit_thread(td2, td);
  441 
  442                         /*
  443                          * The test below is NOT true if we are the
  444                          * sole exiting thread. P_STOPPED_SINGLE is unset
  445                          * in exit1() after it is the only survivor.
  446                          */
  447                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  448                                 if (p->p_numthreads == p->p_suspcount) {
  449                                         thread_lock(p->p_singlethread);
  450                                         wakeup_swapper = thread_unsuspend_one(
  451                                                 p->p_singlethread, p, false);
  452                                         thread_unlock(p->p_singlethread);
  453                                         if (wakeup_swapper)
  454                                                 kick_proc0();
  455                                 }
  456                         }
  457 
  458                         PCPU_SET(deadthread, td);
  459                 } else {
  460                         /*
  461                          * The last thread is exiting.. but not through exit()
  462                          */
  463                         panic ("thread_exit: Last thread exiting on its own");
  464                 }
  465         } 
  466 #ifdef  HWPMC_HOOKS
  467         /*
  468          * If this thread is part of a process that is being tracked by hwpmc(4),
  469          * inform the module of the thread's impending exit.
  470          */
  471         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
  472                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
  473 #endif
  474         PROC_UNLOCK(p);
  475 
  476         /* Do the same timestamp bookkeeping that mi_switch() would do. */
  477         new_switchtime = cpu_ticks();
  478         runtime = new_switchtime - PCPU_GET(switchtime);
  479         td->td_runtime += runtime;
  480         td->td_incruntime += runtime;
  481         PCPU_SET(switchtime, new_switchtime);
  482         PCPU_SET(switchticks, ticks);
  483         PCPU_INC(cnt.v_swtch);
  484 
  485         /* Save our resource usage in our process. */
  486         td->td_ru.ru_nvcsw++;
  487         ruxagg(p, td);
  488         rucollect(&p->p_ru, &td->td_ru);
  489 
  490         thread_lock(td);
  491         PROC_SUNLOCK(p);
  492         td->td_state = TDS_INACTIVE;
  493 #ifdef WITNESS
  494         witness_thread_exit(td);
  495 #endif
  496         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
  497         sched_throw(td);
  498         panic("I'm a teapot!");
  499         /* NOTREACHED */
  500 }
  501 
  502 /*
  503  * Do any thread specific cleanups that may be needed in wait()
  504  * called with Giant, proc and schedlock not held.
  505  */
  506 void
  507 thread_wait(struct proc *p)
  508 {
  509         struct thread *td;
  510 
  511         mtx_assert(&Giant, MA_NOTOWNED);
  512         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
  513         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
  514         td = FIRST_THREAD_IN_PROC(p);
  515         /* Lock the last thread so we spin until it exits cpu_throw(). */
  516         thread_lock(td);
  517         thread_unlock(td);
  518         lock_profile_thread_exit(td);
  519         cpuset_rel(td->td_cpuset);
  520         td->td_cpuset = NULL;
  521         cpu_thread_clean(td);
  522         crfree(td->td_ucred);
  523         thread_reap();  /* check for zombie threads etc. */
  524 }
  525 
  526 /*
  527  * Link a thread to a process.
  528  * set up anything that needs to be initialized for it to
  529  * be used by the process.
  530  */
  531 void
  532 thread_link(struct thread *td, struct proc *p)
  533 {
  534 
  535         /*
  536          * XXX This can't be enabled because it's called for proc0 before
  537          * its lock has been created.
  538          * PROC_LOCK_ASSERT(p, MA_OWNED);
  539          */
  540         td->td_state    = TDS_INACTIVE;
  541         td->td_proc     = p;
  542         td->td_flags    = TDF_INMEM;
  543 
  544         LIST_INIT(&td->td_contested);
  545         LIST_INIT(&td->td_lprof[0]);
  546         LIST_INIT(&td->td_lprof[1]);
  547         sigqueue_init(&td->td_sigqueue, p);
  548         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
  549         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
  550         p->p_numthreads++;
  551 }
  552 
  553 /*
  554  * Called from:
  555  *  thread_exit()
  556  */
  557 void
  558 thread_unlink(struct thread *td)
  559 {
  560         struct proc *p = td->td_proc;
  561 
  562         PROC_LOCK_ASSERT(p, MA_OWNED);
  563         TAILQ_REMOVE(&p->p_threads, td, td_plist);
  564         p->p_numthreads--;
  565         /* could clear a few other things here */
  566         /* Must  NOT clear links to proc! */
  567 }
  568 
  569 static int
  570 calc_remaining(struct proc *p, int mode)
  571 {
  572         int remaining;
  573 
  574         PROC_LOCK_ASSERT(p, MA_OWNED);
  575         PROC_SLOCK_ASSERT(p, MA_OWNED);
  576         if (mode == SINGLE_EXIT)
  577                 remaining = p->p_numthreads;
  578         else if (mode == SINGLE_BOUNDARY)
  579                 remaining = p->p_numthreads - p->p_boundary_count;
  580         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
  581                 remaining = p->p_numthreads - p->p_suspcount;
  582         else
  583                 panic("calc_remaining: wrong mode %d", mode);
  584         return (remaining);
  585 }
  586 
  587 static int
  588 remain_for_mode(int mode)
  589 {
  590 
  591         return (mode == SINGLE_ALLPROC ? 0 : 1);
  592 }
  593 
  594 static int
  595 weed_inhib(int mode, struct thread *td2, struct proc *p)
  596 {
  597         int wakeup_swapper;
  598 
  599         PROC_LOCK_ASSERT(p, MA_OWNED);
  600         PROC_SLOCK_ASSERT(p, MA_OWNED);
  601         THREAD_LOCK_ASSERT(td2, MA_OWNED);
  602 
  603         wakeup_swapper = 0;
  604         switch (mode) {
  605         case SINGLE_EXIT:
  606                 if (TD_IS_SUSPENDED(td2))
  607                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
  608                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
  609                         wakeup_swapper |= sleepq_abort(td2, EINTR);
  610                 break;
  611         case SINGLE_BOUNDARY:
  612                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
  613                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
  614                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
  615                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
  616                 break;
  617         case SINGLE_NO_EXIT:
  618                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
  619                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
  620                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
  621                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
  622                 break;
  623         case SINGLE_ALLPROC:
  624                 /*
  625                  * ALLPROC suspend tries to avoid spurious EINTR for
  626                  * threads sleeping interruptable, by suspending the
  627                  * thread directly, similarly to sig_suspend_threads().
  628                  * Since such sleep is not performed at the user
  629                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
  630                  * is used to avoid immediate un-suspend.
  631                  */
  632                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
  633                     TDF_ALLPROCSUSP)) == 0)
  634                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
  635                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
  636                         if ((td2->td_flags & TDF_SBDRY) == 0) {
  637                                 thread_suspend_one(td2);
  638                                 td2->td_flags |= TDF_ALLPROCSUSP;
  639                         } else {
  640                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
  641                         }
  642                 }
  643                 break;
  644         }
  645         return (wakeup_swapper);
  646 }
  647 
  648 /*
  649  * Enforce single-threading.
  650  *
  651  * Returns 1 if the caller must abort (another thread is waiting to
  652  * exit the process or similar). Process is locked!
  653  * Returns 0 when you are successfully the only thread running.
  654  * A process has successfully single threaded in the suspend mode when
  655  * There are no threads in user mode. Threads in the kernel must be
  656  * allowed to continue until they get to the user boundary. They may even
  657  * copy out their return values and data before suspending. They may however be
  658  * accelerated in reaching the user boundary as we will wake up
  659  * any sleeping threads that are interruptable. (PCATCH).
  660  */
  661 int
  662 thread_single(struct proc *p, int mode)
  663 {
  664         struct thread *td;
  665         struct thread *td2;
  666         int remaining, wakeup_swapper;
  667 
  668         td = curthread;
  669         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
  670             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
  671             ("invalid mode %d", mode));
  672         /*
  673          * If allowing non-ALLPROC singlethreading for non-curproc
  674          * callers, calc_remaining() and remain_for_mode() should be
  675          * adjusted to also account for td->td_proc != p.  For now
  676          * this is not implemented because it is not used.
  677          */
  678         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
  679             (mode != SINGLE_ALLPROC && td->td_proc == p),
  680             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
  681         mtx_assert(&Giant, MA_NOTOWNED);
  682         PROC_LOCK_ASSERT(p, MA_OWNED);
  683 
  684         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
  685                 return (0);
  686 
  687         /* Is someone already single threading? */
  688         if (p->p_singlethread != NULL && p->p_singlethread != td)
  689                 return (1);
  690 
  691         if (mode == SINGLE_EXIT) {
  692                 p->p_flag |= P_SINGLE_EXIT;
  693                 p->p_flag &= ~P_SINGLE_BOUNDARY;
  694         } else {
  695                 p->p_flag &= ~P_SINGLE_EXIT;
  696                 if (mode == SINGLE_BOUNDARY)
  697                         p->p_flag |= P_SINGLE_BOUNDARY;
  698                 else
  699                         p->p_flag &= ~P_SINGLE_BOUNDARY;
  700         }
  701         if (mode == SINGLE_ALLPROC)
  702                 p->p_flag |= P_TOTAL_STOP;
  703         p->p_flag |= P_STOPPED_SINGLE;
  704         PROC_SLOCK(p);
  705         p->p_singlethread = td;
  706         remaining = calc_remaining(p, mode);
  707         while (remaining != remain_for_mode(mode)) {
  708                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
  709                         goto stopme;
  710                 wakeup_swapper = 0;
  711                 FOREACH_THREAD_IN_PROC(p, td2) {
  712                         if (td2 == td)
  713                                 continue;
  714                         thread_lock(td2);
  715                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
  716                         if (TD_IS_INHIBITED(td2)) {
  717                                 wakeup_swapper |= weed_inhib(mode, td2, p);
  718 #ifdef SMP
  719                         } else if (TD_IS_RUNNING(td2) && td != td2) {
  720                                 forward_signal(td2);
  721 #endif
  722                         }
  723                         thread_unlock(td2);
  724                 }
  725                 if (wakeup_swapper)
  726                         kick_proc0();
  727                 remaining = calc_remaining(p, mode);
  728 
  729                 /*
  730                  * Maybe we suspended some threads.. was it enough?
  731                  */
  732                 if (remaining == remain_for_mode(mode))
  733                         break;
  734 
  735 stopme:
  736                 /*
  737                  * Wake us up when everyone else has suspended.
  738                  * In the mean time we suspend as well.
  739                  */
  740                 thread_suspend_switch(td, p);
  741                 remaining = calc_remaining(p, mode);
  742         }
  743         if (mode == SINGLE_EXIT) {
  744                 /*
  745                  * Convert the process to an unthreaded process.  The
  746                  * SINGLE_EXIT is called by exit1() or execve(), in
  747                  * both cases other threads must be retired.
  748                  */
  749                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
  750                 p->p_singlethread = NULL;
  751                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
  752 
  753                 /*
  754                  * Wait for any remaining threads to exit cpu_throw().
  755                  */
  756                 while (p->p_exitthreads != 0) {
  757                         PROC_SUNLOCK(p);
  758                         PROC_UNLOCK(p);
  759                         sched_relinquish(td);
  760                         PROC_LOCK(p);
  761                         PROC_SLOCK(p);
  762                 }
  763         } else if (mode == SINGLE_BOUNDARY) {
  764                 /*
  765                  * Wait until all suspended threads are removed from
  766                  * the processors.  The thread_suspend_check()
  767                  * increments p_boundary_count while it is still
  768                  * running, which makes it possible for the execve()
  769                  * to destroy vmspace while our other threads are
  770                  * still using the address space.
  771                  *
  772                  * We lock the thread, which is only allowed to
  773                  * succeed after context switch code finished using
  774                  * the address space.
  775                  */
  776                 FOREACH_THREAD_IN_PROC(p, td2) {
  777                         if (td2 == td)
  778                                 continue;
  779                         thread_lock(td2);
  780                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
  781                             ("td %p not on boundary", td2));
  782                         KASSERT(TD_IS_SUSPENDED(td2),
  783                             ("td %p is not suspended", td2));
  784                         thread_unlock(td2);
  785                 }
  786         }
  787         PROC_SUNLOCK(p);
  788         return (0);
  789 }
  790 
  791 bool
  792 thread_suspend_check_needed(void)
  793 {
  794         struct proc *p;
  795         struct thread *td;
  796 
  797         td = curthread;
  798         p = td->td_proc;
  799         PROC_LOCK_ASSERT(p, MA_OWNED);
  800         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
  801             (td->td_dbgflags & TDB_SUSPEND) != 0));
  802 }
  803 
  804 /*
  805  * Called in from locations that can safely check to see
  806  * whether we have to suspend or at least throttle for a
  807  * single-thread event (e.g. fork).
  808  *
  809  * Such locations include userret().
  810  * If the "return_instead" argument is non zero, the thread must be able to
  811  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
  812  *
  813  * The 'return_instead' argument tells the function if it may do a
  814  * thread_exit() or suspend, or whether the caller must abort and back
  815  * out instead.
  816  *
  817  * If the thread that set the single_threading request has set the
  818  * P_SINGLE_EXIT bit in the process flags then this call will never return
  819  * if 'return_instead' is false, but will exit.
  820  *
  821  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
  822  *---------------+--------------------+---------------------
  823  *       0       | returns 0          |   returns 0 or 1
  824  *               | when ST ends       |   immediately
  825  *---------------+--------------------+---------------------
  826  *       1       | thread exits       |   returns 1
  827  *               |                    |  immediately
  828  * 0 = thread_exit() or suspension ok,
  829  * other = return error instead of stopping the thread.
  830  *
  831  * While a full suspension is under effect, even a single threading
  832  * thread would be suspended if it made this call (but it shouldn't).
  833  * This call should only be made from places where
  834  * thread_exit() would be safe as that may be the outcome unless
  835  * return_instead is set.
  836  */
  837 int
  838 thread_suspend_check(int return_instead)
  839 {
  840         struct thread *td;
  841         struct proc *p;
  842         int wakeup_swapper;
  843 
  844         td = curthread;
  845         p = td->td_proc;
  846         mtx_assert(&Giant, MA_NOTOWNED);
  847         PROC_LOCK_ASSERT(p, MA_OWNED);
  848         while (thread_suspend_check_needed()) {
  849                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  850                         KASSERT(p->p_singlethread != NULL,
  851                             ("singlethread not set"));
  852                         /*
  853                          * The only suspension in action is a
  854                          * single-threading. Single threader need not stop.
  855                          * XXX Should be safe to access unlocked
  856                          * as it can only be set to be true by us.
  857                          */
  858                         if (p->p_singlethread == td)
  859                                 return (0);     /* Exempt from stopping. */
  860                 }
  861                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
  862                         return (EINTR);
  863 
  864                 /* Should we goto user boundary if we didn't come from there? */
  865                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
  866                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
  867                         return (ERESTART);
  868 
  869                 /*
  870                  * Ignore suspend requests if they are deferred.
  871                  */
  872                 if ((td->td_flags & TDF_SBDRY) != 0) {
  873                         KASSERT(return_instead,
  874                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
  875                         return (0);
  876                 }
  877 
  878                 /*
  879                  * If the process is waiting for us to exit,
  880                  * this thread should just suicide.
  881                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
  882                  */
  883                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
  884                         PROC_UNLOCK(p);
  885                         tidhash_remove(td);
  886                         PROC_LOCK(p);
  887                         tdsigcleanup(td);
  888                         umtx_thread_exit(td);
  889                         PROC_SLOCK(p);
  890                         thread_stopped(p);
  891                         thread_exit();
  892                 }
  893 
  894                 PROC_SLOCK(p);
  895                 thread_stopped(p);
  896                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  897                         if (p->p_numthreads == p->p_suspcount + 1) {
  898                                 thread_lock(p->p_singlethread);
  899                                 wakeup_swapper = thread_unsuspend_one(
  900                                     p->p_singlethread, p, false);
  901                                 thread_unlock(p->p_singlethread);
  902                                 if (wakeup_swapper)
  903                                         kick_proc0();
  904                         }
  905                 }
  906                 PROC_UNLOCK(p);
  907                 thread_lock(td);
  908                 /*
  909                  * When a thread suspends, it just
  910                  * gets taken off all queues.
  911                  */
  912                 thread_suspend_one(td);
  913                 if (return_instead == 0) {
  914                         p->p_boundary_count++;
  915                         td->td_flags |= TDF_BOUNDARY;
  916                 }
  917                 PROC_SUNLOCK(p);
  918                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
  919                 thread_unlock(td);
  920                 PROC_LOCK(p);
  921         }
  922         return (0);
  923 }
  924 
  925 void
  926 thread_suspend_switch(struct thread *td, struct proc *p)
  927 {
  928 
  929         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
  930         PROC_LOCK_ASSERT(p, MA_OWNED);
  931         PROC_SLOCK_ASSERT(p, MA_OWNED);
  932         /*
  933          * We implement thread_suspend_one in stages here to avoid
  934          * dropping the proc lock while the thread lock is owned.
  935          */
  936         if (p == td->td_proc) {
  937                 thread_stopped(p);
  938                 p->p_suspcount++;
  939         }
  940         PROC_UNLOCK(p);
  941         thread_lock(td);
  942         td->td_flags &= ~TDF_NEEDSUSPCHK;
  943         TD_SET_SUSPENDED(td);
  944         sched_sleep(td, 0);
  945         PROC_SUNLOCK(p);
  946         DROP_GIANT();
  947         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
  948         thread_unlock(td);
  949         PICKUP_GIANT();
  950         PROC_LOCK(p);
  951         PROC_SLOCK(p);
  952 }
  953 
  954 void
  955 thread_suspend_one(struct thread *td)
  956 {
  957         struct proc *p;
  958 
  959         p = td->td_proc;
  960         PROC_SLOCK_ASSERT(p, MA_OWNED);
  961         THREAD_LOCK_ASSERT(td, MA_OWNED);
  962         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
  963         p->p_suspcount++;
  964         td->td_flags &= ~TDF_NEEDSUSPCHK;
  965         TD_SET_SUSPENDED(td);
  966         sched_sleep(td, 0);
  967 }
  968 
  969 static int
  970 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
  971 {
  972 
  973         THREAD_LOCK_ASSERT(td, MA_OWNED);
  974         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
  975         TD_CLR_SUSPENDED(td);
  976         td->td_flags &= ~TDF_ALLPROCSUSP;
  977         if (td->td_proc == p) {
  978                 PROC_SLOCK_ASSERT(p, MA_OWNED);
  979                 p->p_suspcount--;
  980                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
  981                         td->td_flags &= ~TDF_BOUNDARY;
  982                         p->p_boundary_count--;
  983                 }
  984         }
  985         return (setrunnable(td));
  986 }
  987 
  988 /*
  989  * Allow all threads blocked by single threading to continue running.
  990  */
  991 void
  992 thread_unsuspend(struct proc *p)
  993 {
  994         struct thread *td;
  995         int wakeup_swapper;
  996 
  997         PROC_LOCK_ASSERT(p, MA_OWNED);
  998         PROC_SLOCK_ASSERT(p, MA_OWNED);
  999         wakeup_swapper = 0;
 1000         if (!P_SHOULDSTOP(p)) {
 1001                 FOREACH_THREAD_IN_PROC(p, td) {
 1002                         thread_lock(td);
 1003                         if (TD_IS_SUSPENDED(td)) {
 1004                                 wakeup_swapper |= thread_unsuspend_one(td, p,
 1005                                     true);
 1006                         }
 1007                         thread_unlock(td);
 1008                 }
 1009         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
 1010             p->p_numthreads == p->p_suspcount) {
 1011                 /*
 1012                  * Stopping everything also did the job for the single
 1013                  * threading request. Now we've downgraded to single-threaded,
 1014                  * let it continue.
 1015                  */
 1016                 if (p->p_singlethread->td_proc == p) {
 1017                         thread_lock(p->p_singlethread);
 1018                         wakeup_swapper = thread_unsuspend_one(
 1019                             p->p_singlethread, p, false);
 1020                         thread_unlock(p->p_singlethread);
 1021                 }
 1022         }
 1023         if (wakeup_swapper)
 1024                 kick_proc0();
 1025 }
 1026 
 1027 /*
 1028  * End the single threading mode..
 1029  */
 1030 void
 1031 thread_single_end(struct proc *p, int mode)
 1032 {
 1033         struct thread *td;
 1034         int wakeup_swapper;
 1035 
 1036         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
 1037             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
 1038             ("invalid mode %d", mode));
 1039         PROC_LOCK_ASSERT(p, MA_OWNED);
 1040         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
 1041             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
 1042             ("mode %d does not match P_TOTAL_STOP", mode));
 1043         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
 1044             ("thread_single_end from other thread %p %p",
 1045             curthread, p->p_singlethread));
 1046         KASSERT(mode != SINGLE_BOUNDARY ||
 1047             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
 1048             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
 1049         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
 1050             P_TOTAL_STOP);
 1051         PROC_SLOCK(p);
 1052         p->p_singlethread = NULL;
 1053         wakeup_swapper = 0;
 1054         /*
 1055          * If there are other threads they may now run,
 1056          * unless of course there is a blanket 'stop order'
 1057          * on the process. The single threader must be allowed
 1058          * to continue however as this is a bad place to stop.
 1059          */
 1060         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
 1061                 FOREACH_THREAD_IN_PROC(p, td) {
 1062                         thread_lock(td);
 1063                         if (TD_IS_SUSPENDED(td)) {
 1064                                 wakeup_swapper |= thread_unsuspend_one(td, p,
 1065                                     mode == SINGLE_BOUNDARY);
 1066                         }
 1067                         thread_unlock(td);
 1068                 }
 1069         }
 1070         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
 1071             ("inconsistent boundary count %d", p->p_boundary_count));
 1072         PROC_SUNLOCK(p);
 1073         if (wakeup_swapper)
 1074                 kick_proc0();
 1075 }
 1076 
 1077 struct thread *
 1078 thread_find(struct proc *p, lwpid_t tid)
 1079 {
 1080         struct thread *td;
 1081 
 1082         PROC_LOCK_ASSERT(p, MA_OWNED);
 1083         FOREACH_THREAD_IN_PROC(p, td) {
 1084                 if (td->td_tid == tid)
 1085                         break;
 1086         }
 1087         return (td);
 1088 }
 1089 
 1090 /* Locate a thread by number; return with proc lock held. */
 1091 struct thread *
 1092 tdfind(lwpid_t tid, pid_t pid)
 1093 {
 1094 #define RUN_THRESH      16
 1095         struct thread *td;
 1096         int run = 0;
 1097 
 1098         rw_rlock(&tidhash_lock);
 1099         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
 1100                 if (td->td_tid == tid) {
 1101                         if (pid != -1 && td->td_proc->p_pid != pid) {
 1102                                 td = NULL;
 1103                                 break;
 1104                         }
 1105                         PROC_LOCK(td->td_proc);
 1106                         if (td->td_proc->p_state == PRS_NEW) {
 1107                                 PROC_UNLOCK(td->td_proc);
 1108                                 td = NULL;
 1109                                 break;
 1110                         }
 1111                         if (run > RUN_THRESH) {
 1112                                 if (rw_try_upgrade(&tidhash_lock)) {
 1113                                         LIST_REMOVE(td, td_hash);
 1114                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
 1115                                                 td, td_hash);
 1116                                         rw_wunlock(&tidhash_lock);
 1117                                         return (td);
 1118                                 }
 1119                         }
 1120                         break;
 1121                 }
 1122                 run++;
 1123         }
 1124         rw_runlock(&tidhash_lock);
 1125         return (td);
 1126 }
 1127 
 1128 void
 1129 tidhash_add(struct thread *td)
 1130 {
 1131         rw_wlock(&tidhash_lock);
 1132         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
 1133         rw_wunlock(&tidhash_lock);
 1134 }
 1135 
 1136 void
 1137 tidhash_remove(struct thread *td)
 1138 {
 1139         rw_wlock(&tidhash_lock);
 1140         LIST_REMOVE(td, td_hash);
 1141         rw_wunlock(&tidhash_lock);
 1142 }

Cache object: 8a6d7d212ecbac12781e02a99dee6282


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.