The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_thread.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
    3  *  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice(s), this list of conditions and the following disclaimer as
   10  *    the first lines of this file unmodified other than the possible
   11  *    addition of one or more copyright notices.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice(s), this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
   17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
   20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
   23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
   26  * DAMAGE.
   27  */
   28 
   29 #include "opt_witness.h"
   30 #include "opt_kdtrace.h"
   31 #include "opt_hwpmc_hooks.h"
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/10.3/sys/kern/kern_thread.c 294614 2016-01-23 01:21:11Z jhb $");
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/kernel.h>
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/proc.h>
   42 #include <sys/rangelock.h>
   43 #include <sys/resourcevar.h>
   44 #include <sys/sdt.h>
   45 #include <sys/smp.h>
   46 #include <sys/sched.h>
   47 #include <sys/sleepqueue.h>
   48 #include <sys/selinfo.h>
   49 #include <sys/syscallsubr.h>
   50 #include <sys/sysent.h>
   51 #include <sys/turnstile.h>
   52 #include <sys/ktr.h>
   53 #include <sys/rwlock.h>
   54 #include <sys/umtx.h>
   55 #include <sys/cpuset.h>
   56 #ifdef  HWPMC_HOOKS
   57 #include <sys/pmckern.h>
   58 #endif
   59 
   60 #include <security/audit/audit.h>
   61 
   62 #include <vm/vm.h>
   63 #include <vm/vm_extern.h>
   64 #include <vm/uma.h>
   65 #include <sys/eventhandler.h>
   66 
   67 SDT_PROVIDER_DECLARE(proc);
   68 SDT_PROBE_DEFINE(proc, , , lwp__exit);
   69 
   70 /*
   71  * thread related storage.
   72  */
   73 static uma_zone_t thread_zone;
   74 
   75 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
   76 static struct mtx zombie_lock;
   77 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
   78 
   79 static void thread_zombie(struct thread *);
   80 static int thread_unsuspend_one(struct thread *td, struct proc *p,
   81     bool boundary);
   82 
   83 #define TID_BUFFER_SIZE 1024
   84 
   85 struct mtx tid_lock;
   86 static struct unrhdr *tid_unrhdr;
   87 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
   88 static int tid_head, tid_tail;
   89 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
   90 
   91 struct  tidhashhead *tidhashtbl;
   92 u_long  tidhash;
   93 struct  rwlock tidhash_lock;
   94 
   95 static lwpid_t
   96 tid_alloc(void)
   97 {
   98         lwpid_t tid;
   99 
  100         tid = alloc_unr(tid_unrhdr);
  101         if (tid != -1)
  102                 return (tid);
  103         mtx_lock(&tid_lock);
  104         if (tid_head == tid_tail) {
  105                 mtx_unlock(&tid_lock);
  106                 return (-1);
  107         }
  108         tid = tid_buffer[tid_head];
  109         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
  110         mtx_unlock(&tid_lock);
  111         return (tid);
  112 }
  113 
  114 static void
  115 tid_free(lwpid_t tid)
  116 {
  117         lwpid_t tmp_tid = -1;
  118 
  119         mtx_lock(&tid_lock);
  120         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
  121                 tmp_tid = tid_buffer[tid_head];
  122                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
  123         }
  124         tid_buffer[tid_tail] = tid;
  125         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
  126         mtx_unlock(&tid_lock);
  127         if (tmp_tid != -1)
  128                 free_unr(tid_unrhdr, tmp_tid);
  129 }
  130 
  131 /*
  132  * Prepare a thread for use.
  133  */
  134 static int
  135 thread_ctor(void *mem, int size, void *arg, int flags)
  136 {
  137         struct thread   *td;
  138 
  139         td = (struct thread *)mem;
  140         td->td_state = TDS_INACTIVE;
  141         td->td_oncpu = NOCPU;
  142 
  143         td->td_tid = tid_alloc();
  144 
  145         /*
  146          * Note that td_critnest begins life as 1 because the thread is not
  147          * running and is thereby implicitly waiting to be on the receiving
  148          * end of a context switch.
  149          */
  150         td->td_critnest = 1;
  151         td->td_lend_user_pri = PRI_MAX;
  152         EVENTHANDLER_INVOKE(thread_ctor, td);
  153 #ifdef AUDIT
  154         audit_thread_alloc(td);
  155 #endif
  156         umtx_thread_alloc(td);
  157         return (0);
  158 }
  159 
  160 /*
  161  * Reclaim a thread after use.
  162  */
  163 static void
  164 thread_dtor(void *mem, int size, void *arg)
  165 {
  166         struct thread *td;
  167 
  168         td = (struct thread *)mem;
  169 
  170 #ifdef INVARIANTS
  171         /* Verify that this thread is in a safe state to free. */
  172         switch (td->td_state) {
  173         case TDS_INHIBITED:
  174         case TDS_RUNNING:
  175         case TDS_CAN_RUN:
  176         case TDS_RUNQ:
  177                 /*
  178                  * We must never unlink a thread that is in one of
  179                  * these states, because it is currently active.
  180                  */
  181                 panic("bad state for thread unlinking");
  182                 /* NOTREACHED */
  183         case TDS_INACTIVE:
  184                 break;
  185         default:
  186                 panic("bad thread state");
  187                 /* NOTREACHED */
  188         }
  189 #endif
  190 #ifdef AUDIT
  191         audit_thread_free(td);
  192 #endif
  193         /* Free all OSD associated to this thread. */
  194         osd_thread_exit(td);
  195 
  196         EVENTHANDLER_INVOKE(thread_dtor, td);
  197         tid_free(td->td_tid);
  198 }
  199 
  200 /*
  201  * Initialize type-stable parts of a thread (when newly created).
  202  */
  203 static int
  204 thread_init(void *mem, int size, int flags)
  205 {
  206         struct thread *td;
  207 
  208         td = (struct thread *)mem;
  209 
  210         td->td_sleepqueue = sleepq_alloc();
  211         td->td_turnstile = turnstile_alloc();
  212         td->td_rlqe = NULL;
  213         EVENTHANDLER_INVOKE(thread_init, td);
  214         td->td_sched = (struct td_sched *)&td[1];
  215         umtx_thread_init(td);
  216         td->td_kstack = 0;
  217         td->td_sel = NULL;
  218         return (0);
  219 }
  220 
  221 /*
  222  * Tear down type-stable parts of a thread (just before being discarded).
  223  */
  224 static void
  225 thread_fini(void *mem, int size)
  226 {
  227         struct thread *td;
  228 
  229         td = (struct thread *)mem;
  230         EVENTHANDLER_INVOKE(thread_fini, td);
  231         rlqentry_free(td->td_rlqe);
  232         turnstile_free(td->td_turnstile);
  233         sleepq_free(td->td_sleepqueue);
  234         umtx_thread_fini(td);
  235         seltdfini(td);
  236 }
  237 
  238 /*
  239  * For a newly created process,
  240  * link up all the structures and its initial threads etc.
  241  * called from:
  242  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
  243  * proc_dtor() (should go away)
  244  * proc_init()
  245  */
  246 void
  247 proc_linkup0(struct proc *p, struct thread *td)
  248 {
  249         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  250         proc_linkup(p, td);
  251 }
  252 
  253 void
  254 proc_linkup(struct proc *p, struct thread *td)
  255 {
  256 
  257         sigqueue_init(&p->p_sigqueue, p);
  258         p->p_ksi = ksiginfo_alloc(1);
  259         if (p->p_ksi != NULL) {
  260                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
  261                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
  262         }
  263         LIST_INIT(&p->p_mqnotifier);
  264         p->p_numthreads = 0;
  265         thread_link(td, p);
  266 }
  267 
  268 /*
  269  * Initialize global thread allocation resources.
  270  */
  271 void
  272 threadinit(void)
  273 {
  274 
  275         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
  276 
  277         /*
  278          * pid_max cannot be greater than PID_MAX.
  279          * leave one number for thread0.
  280          */
  281         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
  282 
  283         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
  284             thread_ctor, thread_dtor, thread_init, thread_fini,
  285             16 - 1, UMA_ZONE_NOFREE);
  286         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
  287         rw_init(&tidhash_lock, "tidhash");
  288 }
  289 
  290 /*
  291  * Place an unused thread on the zombie list.
  292  * Use the slpq as that must be unused by now.
  293  */
  294 void
  295 thread_zombie(struct thread *td)
  296 {
  297         mtx_lock_spin(&zombie_lock);
  298         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
  299         mtx_unlock_spin(&zombie_lock);
  300 }
  301 
  302 /*
  303  * Release a thread that has exited after cpu_throw().
  304  */
  305 void
  306 thread_stash(struct thread *td)
  307 {
  308         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
  309         thread_zombie(td);
  310 }
  311 
  312 /*
  313  * Reap zombie resources.
  314  */
  315 void
  316 thread_reap(void)
  317 {
  318         struct thread *td_first, *td_next;
  319 
  320         /*
  321          * Don't even bother to lock if none at this instant,
  322          * we really don't care about the next instant..
  323          */
  324         if (!TAILQ_EMPTY(&zombie_threads)) {
  325                 mtx_lock_spin(&zombie_lock);
  326                 td_first = TAILQ_FIRST(&zombie_threads);
  327                 if (td_first)
  328                         TAILQ_INIT(&zombie_threads);
  329                 mtx_unlock_spin(&zombie_lock);
  330                 while (td_first) {
  331                         td_next = TAILQ_NEXT(td_first, td_slpq);
  332                         if (td_first->td_ucred)
  333                                 crfree(td_first->td_ucred);
  334                         thread_free(td_first);
  335                         td_first = td_next;
  336                 }
  337         }
  338 }
  339 
  340 /*
  341  * Allocate a thread.
  342  */
  343 struct thread *
  344 thread_alloc(int pages)
  345 {
  346         struct thread *td;
  347 
  348         thread_reap(); /* check if any zombies to get */
  349 
  350         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
  351         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
  352         if (!vm_thread_new(td, pages)) {
  353                 uma_zfree(thread_zone, td);
  354                 return (NULL);
  355         }
  356         cpu_thread_alloc(td);
  357         return (td);
  358 }
  359 
  360 int
  361 thread_alloc_stack(struct thread *td, int pages)
  362 {
  363 
  364         KASSERT(td->td_kstack == 0,
  365             ("thread_alloc_stack called on a thread with kstack"));
  366         if (!vm_thread_new(td, pages))
  367                 return (0);
  368         cpu_thread_alloc(td);
  369         return (1);
  370 }
  371 
  372 /*
  373  * Deallocate a thread.
  374  */
  375 void
  376 thread_free(struct thread *td)
  377 {
  378 
  379         lock_profile_thread_exit(td);
  380         if (td->td_cpuset)
  381                 cpuset_rel(td->td_cpuset);
  382         td->td_cpuset = NULL;
  383         cpu_thread_free(td);
  384         if (td->td_kstack != 0)
  385                 vm_thread_dispose(td);
  386         uma_zfree(thread_zone, td);
  387 }
  388 
  389 /*
  390  * Discard the current thread and exit from its context.
  391  * Always called with scheduler locked.
  392  *
  393  * Because we can't free a thread while we're operating under its context,
  394  * push the current thread into our CPU's deadthread holder. This means
  395  * we needn't worry about someone else grabbing our context before we
  396  * do a cpu_throw().
  397  */
  398 void
  399 thread_exit(void)
  400 {
  401         uint64_t runtime, new_switchtime;
  402         struct thread *td;
  403         struct thread *td2;
  404         struct proc *p;
  405         int wakeup_swapper;
  406 
  407         td = curthread;
  408         p = td->td_proc;
  409 
  410         PROC_SLOCK_ASSERT(p, MA_OWNED);
  411         mtx_assert(&Giant, MA_NOTOWNED);
  412 
  413         PROC_LOCK_ASSERT(p, MA_OWNED);
  414         KASSERT(p != NULL, ("thread exiting without a process"));
  415         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
  416             (long)p->p_pid, td->td_name);
  417         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
  418 
  419 #ifdef AUDIT
  420         AUDIT_SYSCALL_EXIT(0, td);
  421 #endif
  422         /*
  423          * drop FPU & debug register state storage, or any other
  424          * architecture specific resources that
  425          * would not be on a new untouched process.
  426          */
  427         cpu_thread_exit(td);    /* XXXSMP */
  428 
  429         /*
  430          * The last thread is left attached to the process
  431          * So that the whole bundle gets recycled. Skip
  432          * all this stuff if we never had threads.
  433          * EXIT clears all sign of other threads when
  434          * it goes to single threading, so the last thread always
  435          * takes the short path.
  436          */
  437         if (p->p_flag & P_HADTHREADS) {
  438                 if (p->p_numthreads > 1) {
  439                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
  440                         thread_unlink(td);
  441                         td2 = FIRST_THREAD_IN_PROC(p);
  442                         sched_exit_thread(td2, td);
  443 
  444                         /*
  445                          * The test below is NOT true if we are the
  446                          * sole exiting thread. P_STOPPED_SINGLE is unset
  447                          * in exit1() after it is the only survivor.
  448                          */
  449                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  450                                 if (p->p_numthreads == p->p_suspcount) {
  451                                         thread_lock(p->p_singlethread);
  452                                         wakeup_swapper = thread_unsuspend_one(
  453                                                 p->p_singlethread, p, false);
  454                                         thread_unlock(p->p_singlethread);
  455                                         if (wakeup_swapper)
  456                                                 kick_proc0();
  457                                 }
  458                         }
  459 
  460                         PCPU_SET(deadthread, td);
  461                 } else {
  462                         /*
  463                          * The last thread is exiting.. but not through exit()
  464                          */
  465                         panic ("thread_exit: Last thread exiting on its own");
  466                 }
  467         } 
  468 #ifdef  HWPMC_HOOKS
  469         /*
  470          * If this thread is part of a process that is being tracked by hwpmc(4),
  471          * inform the module of the thread's impending exit.
  472          */
  473         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
  474                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
  475 #endif
  476         PROC_UNLOCK(p);
  477         PROC_STATLOCK(p);
  478         thread_lock(td);
  479         PROC_SUNLOCK(p);
  480 
  481         /* Do the same timestamp bookkeeping that mi_switch() would do. */
  482         new_switchtime = cpu_ticks();
  483         runtime = new_switchtime - PCPU_GET(switchtime);
  484         td->td_runtime += runtime;
  485         td->td_incruntime += runtime;
  486         PCPU_SET(switchtime, new_switchtime);
  487         PCPU_SET(switchticks, ticks);
  488         PCPU_INC(cnt.v_swtch);
  489 
  490         /* Save our resource usage in our process. */
  491         td->td_ru.ru_nvcsw++;
  492         ruxagg(p, td);
  493         rucollect(&p->p_ru, &td->td_ru);
  494         PROC_STATUNLOCK(p);
  495 
  496         td->td_state = TDS_INACTIVE;
  497 #ifdef WITNESS
  498         witness_thread_exit(td);
  499 #endif
  500         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
  501         sched_throw(td);
  502         panic("I'm a teapot!");
  503         /* NOTREACHED */
  504 }
  505 
  506 /*
  507  * Do any thread specific cleanups that may be needed in wait()
  508  * called with Giant, proc and schedlock not held.
  509  */
  510 void
  511 thread_wait(struct proc *p)
  512 {
  513         struct thread *td;
  514 
  515         mtx_assert(&Giant, MA_NOTOWNED);
  516         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
  517         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
  518         td = FIRST_THREAD_IN_PROC(p);
  519         /* Lock the last thread so we spin until it exits cpu_throw(). */
  520         thread_lock(td);
  521         thread_unlock(td);
  522         lock_profile_thread_exit(td);
  523         cpuset_rel(td->td_cpuset);
  524         td->td_cpuset = NULL;
  525         cpu_thread_clean(td);
  526         crfree(td->td_ucred);
  527         thread_reap();  /* check for zombie threads etc. */
  528 }
  529 
  530 /*
  531  * Link a thread to a process.
  532  * set up anything that needs to be initialized for it to
  533  * be used by the process.
  534  */
  535 void
  536 thread_link(struct thread *td, struct proc *p)
  537 {
  538 
  539         /*
  540          * XXX This can't be enabled because it's called for proc0 before
  541          * its lock has been created.
  542          * PROC_LOCK_ASSERT(p, MA_OWNED);
  543          */
  544         td->td_state    = TDS_INACTIVE;
  545         td->td_proc     = p;
  546         td->td_flags    = TDF_INMEM;
  547 
  548         LIST_INIT(&td->td_contested);
  549         LIST_INIT(&td->td_lprof[0]);
  550         LIST_INIT(&td->td_lprof[1]);
  551         sigqueue_init(&td->td_sigqueue, p);
  552         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
  553         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
  554         p->p_numthreads++;
  555 }
  556 
  557 /*
  558  * Called from:
  559  *  thread_exit()
  560  */
  561 void
  562 thread_unlink(struct thread *td)
  563 {
  564         struct proc *p = td->td_proc;
  565 
  566         PROC_LOCK_ASSERT(p, MA_OWNED);
  567         TAILQ_REMOVE(&p->p_threads, td, td_plist);
  568         p->p_numthreads--;
  569         /* could clear a few other things here */
  570         /* Must  NOT clear links to proc! */
  571 }
  572 
  573 static int
  574 calc_remaining(struct proc *p, int mode)
  575 {
  576         int remaining;
  577 
  578         PROC_LOCK_ASSERT(p, MA_OWNED);
  579         PROC_SLOCK_ASSERT(p, MA_OWNED);
  580         if (mode == SINGLE_EXIT)
  581                 remaining = p->p_numthreads;
  582         else if (mode == SINGLE_BOUNDARY)
  583                 remaining = p->p_numthreads - p->p_boundary_count;
  584         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
  585                 remaining = p->p_numthreads - p->p_suspcount;
  586         else
  587                 panic("calc_remaining: wrong mode %d", mode);
  588         return (remaining);
  589 }
  590 
  591 static int
  592 remain_for_mode(int mode)
  593 {
  594 
  595         return (mode == SINGLE_ALLPROC ? 0 : 1);
  596 }
  597 
  598 static int
  599 weed_inhib(int mode, struct thread *td2, struct proc *p)
  600 {
  601         int wakeup_swapper;
  602 
  603         PROC_LOCK_ASSERT(p, MA_OWNED);
  604         PROC_SLOCK_ASSERT(p, MA_OWNED);
  605         THREAD_LOCK_ASSERT(td2, MA_OWNED);
  606 
  607         wakeup_swapper = 0;
  608         switch (mode) {
  609         case SINGLE_EXIT:
  610                 if (TD_IS_SUSPENDED(td2))
  611                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
  612                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
  613                         wakeup_swapper |= sleepq_abort(td2, EINTR);
  614                 break;
  615         case SINGLE_BOUNDARY:
  616                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
  617                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
  618                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
  619                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
  620                 break;
  621         case SINGLE_NO_EXIT:
  622                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
  623                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
  624                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
  625                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
  626                 break;
  627         case SINGLE_ALLPROC:
  628                 /*
  629                  * ALLPROC suspend tries to avoid spurious EINTR for
  630                  * threads sleeping interruptable, by suspending the
  631                  * thread directly, similarly to sig_suspend_threads().
  632                  * Since such sleep is not performed at the user
  633                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
  634                  * is used to avoid immediate un-suspend.
  635                  */
  636                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
  637                     TDF_ALLPROCSUSP)) == 0)
  638                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
  639                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
  640                         if ((td2->td_flags & TDF_SBDRY) == 0) {
  641                                 thread_suspend_one(td2);
  642                                 td2->td_flags |= TDF_ALLPROCSUSP;
  643                         } else {
  644                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
  645                         }
  646                 }
  647                 break;
  648         }
  649         return (wakeup_swapper);
  650 }
  651 
  652 /*
  653  * Enforce single-threading.
  654  *
  655  * Returns 1 if the caller must abort (another thread is waiting to
  656  * exit the process or similar). Process is locked!
  657  * Returns 0 when you are successfully the only thread running.
  658  * A process has successfully single threaded in the suspend mode when
  659  * There are no threads in user mode. Threads in the kernel must be
  660  * allowed to continue until they get to the user boundary. They may even
  661  * copy out their return values and data before suspending. They may however be
  662  * accelerated in reaching the user boundary as we will wake up
  663  * any sleeping threads that are interruptable. (PCATCH).
  664  */
  665 int
  666 thread_single(struct proc *p, int mode)
  667 {
  668         struct thread *td;
  669         struct thread *td2;
  670         int remaining, wakeup_swapper;
  671 
  672         td = curthread;
  673         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
  674             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
  675             ("invalid mode %d", mode));
  676         /*
  677          * If allowing non-ALLPROC singlethreading for non-curproc
  678          * callers, calc_remaining() and remain_for_mode() should be
  679          * adjusted to also account for td->td_proc != p.  For now
  680          * this is not implemented because it is not used.
  681          */
  682         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
  683             (mode != SINGLE_ALLPROC && td->td_proc == p),
  684             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
  685         mtx_assert(&Giant, MA_NOTOWNED);
  686         PROC_LOCK_ASSERT(p, MA_OWNED);
  687 
  688         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
  689                 return (0);
  690 
  691         /* Is someone already single threading? */
  692         if (p->p_singlethread != NULL && p->p_singlethread != td)
  693                 return (1);
  694 
  695         if (mode == SINGLE_EXIT) {
  696                 p->p_flag |= P_SINGLE_EXIT;
  697                 p->p_flag &= ~P_SINGLE_BOUNDARY;
  698         } else {
  699                 p->p_flag &= ~P_SINGLE_EXIT;
  700                 if (mode == SINGLE_BOUNDARY)
  701                         p->p_flag |= P_SINGLE_BOUNDARY;
  702                 else
  703                         p->p_flag &= ~P_SINGLE_BOUNDARY;
  704         }
  705         if (mode == SINGLE_ALLPROC)
  706                 p->p_flag |= P_TOTAL_STOP;
  707         p->p_flag |= P_STOPPED_SINGLE;
  708         PROC_SLOCK(p);
  709         p->p_singlethread = td;
  710         remaining = calc_remaining(p, mode);
  711         while (remaining != remain_for_mode(mode)) {
  712                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
  713                         goto stopme;
  714                 wakeup_swapper = 0;
  715                 FOREACH_THREAD_IN_PROC(p, td2) {
  716                         if (td2 == td)
  717                                 continue;
  718                         thread_lock(td2);
  719                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
  720                         if (TD_IS_INHIBITED(td2)) {
  721                                 wakeup_swapper |= weed_inhib(mode, td2, p);
  722 #ifdef SMP
  723                         } else if (TD_IS_RUNNING(td2) && td != td2) {
  724                                 forward_signal(td2);
  725 #endif
  726                         }
  727                         thread_unlock(td2);
  728                 }
  729                 if (wakeup_swapper)
  730                         kick_proc0();
  731                 remaining = calc_remaining(p, mode);
  732 
  733                 /*
  734                  * Maybe we suspended some threads.. was it enough?
  735                  */
  736                 if (remaining == remain_for_mode(mode))
  737                         break;
  738 
  739 stopme:
  740                 /*
  741                  * Wake us up when everyone else has suspended.
  742                  * In the mean time we suspend as well.
  743                  */
  744                 thread_suspend_switch(td, p);
  745                 remaining = calc_remaining(p, mode);
  746         }
  747         if (mode == SINGLE_EXIT) {
  748                 /*
  749                  * Convert the process to an unthreaded process.  The
  750                  * SINGLE_EXIT is called by exit1() or execve(), in
  751                  * both cases other threads must be retired.
  752                  */
  753                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
  754                 p->p_singlethread = NULL;
  755                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
  756 
  757                 /*
  758                  * Wait for any remaining threads to exit cpu_throw().
  759                  */
  760                 while (p->p_exitthreads != 0) {
  761                         PROC_SUNLOCK(p);
  762                         PROC_UNLOCK(p);
  763                         sched_relinquish(td);
  764                         PROC_LOCK(p);
  765                         PROC_SLOCK(p);
  766                 }
  767         } else if (mode == SINGLE_BOUNDARY) {
  768                 /*
  769                  * Wait until all suspended threads are removed from
  770                  * the processors.  The thread_suspend_check()
  771                  * increments p_boundary_count while it is still
  772                  * running, which makes it possible for the execve()
  773                  * to destroy vmspace while our other threads are
  774                  * still using the address space.
  775                  *
  776                  * We lock the thread, which is only allowed to
  777                  * succeed after context switch code finished using
  778                  * the address space.
  779                  */
  780                 FOREACH_THREAD_IN_PROC(p, td2) {
  781                         if (td2 == td)
  782                                 continue;
  783                         thread_lock(td2);
  784                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
  785                             ("td %p not on boundary", td2));
  786                         KASSERT(TD_IS_SUSPENDED(td2),
  787                             ("td %p is not suspended", td2));
  788                         thread_unlock(td2);
  789                 }
  790         }
  791         PROC_SUNLOCK(p);
  792         return (0);
  793 }
  794 
  795 bool
  796 thread_suspend_check_needed(void)
  797 {
  798         struct proc *p;
  799         struct thread *td;
  800 
  801         td = curthread;
  802         p = td->td_proc;
  803         PROC_LOCK_ASSERT(p, MA_OWNED);
  804         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
  805             (td->td_dbgflags & TDB_SUSPEND) != 0));
  806 }
  807 
  808 /*
  809  * Called in from locations that can safely check to see
  810  * whether we have to suspend or at least throttle for a
  811  * single-thread event (e.g. fork).
  812  *
  813  * Such locations include userret().
  814  * If the "return_instead" argument is non zero, the thread must be able to
  815  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
  816  *
  817  * The 'return_instead' argument tells the function if it may do a
  818  * thread_exit() or suspend, or whether the caller must abort and back
  819  * out instead.
  820  *
  821  * If the thread that set the single_threading request has set the
  822  * P_SINGLE_EXIT bit in the process flags then this call will never return
  823  * if 'return_instead' is false, but will exit.
  824  *
  825  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
  826  *---------------+--------------------+---------------------
  827  *       0       | returns 0          |   returns 0 or 1
  828  *               | when ST ends       |   immediately
  829  *---------------+--------------------+---------------------
  830  *       1       | thread exits       |   returns 1
  831  *               |                    |  immediately
  832  * 0 = thread_exit() or suspension ok,
  833  * other = return error instead of stopping the thread.
  834  *
  835  * While a full suspension is under effect, even a single threading
  836  * thread would be suspended if it made this call (but it shouldn't).
  837  * This call should only be made from places where
  838  * thread_exit() would be safe as that may be the outcome unless
  839  * return_instead is set.
  840  */
  841 int
  842 thread_suspend_check(int return_instead)
  843 {
  844         struct thread *td;
  845         struct proc *p;
  846         int wakeup_swapper;
  847 
  848         td = curthread;
  849         p = td->td_proc;
  850         mtx_assert(&Giant, MA_NOTOWNED);
  851         PROC_LOCK_ASSERT(p, MA_OWNED);
  852         while (thread_suspend_check_needed()) {
  853                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  854                         KASSERT(p->p_singlethread != NULL,
  855                             ("singlethread not set"));
  856                         /*
  857                          * The only suspension in action is a
  858                          * single-threading. Single threader need not stop.
  859                          * XXX Should be safe to access unlocked
  860                          * as it can only be set to be true by us.
  861                          */
  862                         if (p->p_singlethread == td)
  863                                 return (0);     /* Exempt from stopping. */
  864                 }
  865                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
  866                         return (EINTR);
  867 
  868                 /* Should we goto user boundary if we didn't come from there? */
  869                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
  870                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
  871                         return (ERESTART);
  872 
  873                 /*
  874                  * Ignore suspend requests if they are deferred.
  875                  */
  876                 if ((td->td_flags & TDF_SBDRY) != 0) {
  877                         KASSERT(return_instead,
  878                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
  879                         return (0);
  880                 }
  881 
  882                 /*
  883                  * If the process is waiting for us to exit,
  884                  * this thread should just suicide.
  885                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
  886                  */
  887                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
  888                         PROC_UNLOCK(p);
  889 
  890                         /*
  891                          * Allow Linux emulation layer to do some work
  892                          * before thread suicide.
  893                          */
  894                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
  895                                 (p->p_sysent->sv_thread_detach)(td);
  896                         kern_thr_exit(td);
  897                         panic("stopped thread did not exit");
  898                 }
  899 
  900                 PROC_SLOCK(p);
  901                 thread_stopped(p);
  902                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  903                         if (p->p_numthreads == p->p_suspcount + 1) {
  904                                 thread_lock(p->p_singlethread);
  905                                 wakeup_swapper = thread_unsuspend_one(
  906                                     p->p_singlethread, p, false);
  907                                 thread_unlock(p->p_singlethread);
  908                                 if (wakeup_swapper)
  909                                         kick_proc0();
  910                         }
  911                 }
  912                 PROC_UNLOCK(p);
  913                 thread_lock(td);
  914                 /*
  915                  * When a thread suspends, it just
  916                  * gets taken off all queues.
  917                  */
  918                 thread_suspend_one(td);
  919                 if (return_instead == 0) {
  920                         p->p_boundary_count++;
  921                         td->td_flags |= TDF_BOUNDARY;
  922                 }
  923                 PROC_SUNLOCK(p);
  924                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
  925                 thread_unlock(td);
  926                 PROC_LOCK(p);
  927         }
  928         return (0);
  929 }
  930 
  931 void
  932 thread_suspend_switch(struct thread *td, struct proc *p)
  933 {
  934 
  935         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
  936         PROC_LOCK_ASSERT(p, MA_OWNED);
  937         PROC_SLOCK_ASSERT(p, MA_OWNED);
  938         /*
  939          * We implement thread_suspend_one in stages here to avoid
  940          * dropping the proc lock while the thread lock is owned.
  941          */
  942         if (p == td->td_proc) {
  943                 thread_stopped(p);
  944                 p->p_suspcount++;
  945         }
  946         PROC_UNLOCK(p);
  947         thread_lock(td);
  948         td->td_flags &= ~TDF_NEEDSUSPCHK;
  949         TD_SET_SUSPENDED(td);
  950         sched_sleep(td, 0);
  951         PROC_SUNLOCK(p);
  952         DROP_GIANT();
  953         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
  954         thread_unlock(td);
  955         PICKUP_GIANT();
  956         PROC_LOCK(p);
  957         PROC_SLOCK(p);
  958 }
  959 
  960 void
  961 thread_suspend_one(struct thread *td)
  962 {
  963         struct proc *p;
  964 
  965         p = td->td_proc;
  966         PROC_SLOCK_ASSERT(p, MA_OWNED);
  967         THREAD_LOCK_ASSERT(td, MA_OWNED);
  968         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
  969         p->p_suspcount++;
  970         td->td_flags &= ~TDF_NEEDSUSPCHK;
  971         TD_SET_SUSPENDED(td);
  972         sched_sleep(td, 0);
  973 }
  974 
  975 static int
  976 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
  977 {
  978 
  979         THREAD_LOCK_ASSERT(td, MA_OWNED);
  980         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
  981         TD_CLR_SUSPENDED(td);
  982         td->td_flags &= ~TDF_ALLPROCSUSP;
  983         if (td->td_proc == p) {
  984                 PROC_SLOCK_ASSERT(p, MA_OWNED);
  985                 p->p_suspcount--;
  986                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
  987                         td->td_flags &= ~TDF_BOUNDARY;
  988                         p->p_boundary_count--;
  989                 }
  990         }
  991         return (setrunnable(td));
  992 }
  993 
  994 /*
  995  * Allow all threads blocked by single threading to continue running.
  996  */
  997 void
  998 thread_unsuspend(struct proc *p)
  999 {
 1000         struct thread *td;
 1001         int wakeup_swapper;
 1002 
 1003         PROC_LOCK_ASSERT(p, MA_OWNED);
 1004         PROC_SLOCK_ASSERT(p, MA_OWNED);
 1005         wakeup_swapper = 0;
 1006         if (!P_SHOULDSTOP(p)) {
 1007                 FOREACH_THREAD_IN_PROC(p, td) {
 1008                         thread_lock(td);
 1009                         if (TD_IS_SUSPENDED(td)) {
 1010                                 wakeup_swapper |= thread_unsuspend_one(td, p,
 1011                                     true);
 1012                         }
 1013                         thread_unlock(td);
 1014                 }
 1015         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
 1016             p->p_numthreads == p->p_suspcount) {
 1017                 /*
 1018                  * Stopping everything also did the job for the single
 1019                  * threading request. Now we've downgraded to single-threaded,
 1020                  * let it continue.
 1021                  */
 1022                 if (p->p_singlethread->td_proc == p) {
 1023                         thread_lock(p->p_singlethread);
 1024                         wakeup_swapper = thread_unsuspend_one(
 1025                             p->p_singlethread, p, false);
 1026                         thread_unlock(p->p_singlethread);
 1027                 }
 1028         }
 1029         if (wakeup_swapper)
 1030                 kick_proc0();
 1031 }
 1032 
 1033 /*
 1034  * End the single threading mode..
 1035  */
 1036 void
 1037 thread_single_end(struct proc *p, int mode)
 1038 {
 1039         struct thread *td;
 1040         int wakeup_swapper;
 1041 
 1042         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
 1043             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
 1044             ("invalid mode %d", mode));
 1045         PROC_LOCK_ASSERT(p, MA_OWNED);
 1046         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
 1047             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
 1048             ("mode %d does not match P_TOTAL_STOP", mode));
 1049         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
 1050             ("thread_single_end from other thread %p %p",
 1051             curthread, p->p_singlethread));
 1052         KASSERT(mode != SINGLE_BOUNDARY ||
 1053             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
 1054             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
 1055         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
 1056             P_TOTAL_STOP);
 1057         PROC_SLOCK(p);
 1058         p->p_singlethread = NULL;
 1059         wakeup_swapper = 0;
 1060         /*
 1061          * If there are other threads they may now run,
 1062          * unless of course there is a blanket 'stop order'
 1063          * on the process. The single threader must be allowed
 1064          * to continue however as this is a bad place to stop.
 1065          */
 1066         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
 1067                 FOREACH_THREAD_IN_PROC(p, td) {
 1068                         thread_lock(td);
 1069                         if (TD_IS_SUSPENDED(td)) {
 1070                                 wakeup_swapper |= thread_unsuspend_one(td, p,
 1071                                     mode == SINGLE_BOUNDARY);
 1072                         }
 1073                         thread_unlock(td);
 1074                 }
 1075         }
 1076         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
 1077             ("inconsistent boundary count %d", p->p_boundary_count));
 1078         PROC_SUNLOCK(p);
 1079         if (wakeup_swapper)
 1080                 kick_proc0();
 1081 }
 1082 
 1083 struct thread *
 1084 thread_find(struct proc *p, lwpid_t tid)
 1085 {
 1086         struct thread *td;
 1087 
 1088         PROC_LOCK_ASSERT(p, MA_OWNED);
 1089         FOREACH_THREAD_IN_PROC(p, td) {
 1090                 if (td->td_tid == tid)
 1091                         break;
 1092         }
 1093         return (td);
 1094 }
 1095 
 1096 /* Locate a thread by number; return with proc lock held. */
 1097 struct thread *
 1098 tdfind(lwpid_t tid, pid_t pid)
 1099 {
 1100 #define RUN_THRESH      16
 1101         struct thread *td;
 1102         int run = 0;
 1103 
 1104         rw_rlock(&tidhash_lock);
 1105         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
 1106                 if (td->td_tid == tid) {
 1107                         if (pid != -1 && td->td_proc->p_pid != pid) {
 1108                                 td = NULL;
 1109                                 break;
 1110                         }
 1111                         PROC_LOCK(td->td_proc);
 1112                         if (td->td_proc->p_state == PRS_NEW) {
 1113                                 PROC_UNLOCK(td->td_proc);
 1114                                 td = NULL;
 1115                                 break;
 1116                         }
 1117                         if (run > RUN_THRESH) {
 1118                                 if (rw_try_upgrade(&tidhash_lock)) {
 1119                                         LIST_REMOVE(td, td_hash);
 1120                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
 1121                                                 td, td_hash);
 1122                                         rw_wunlock(&tidhash_lock);
 1123                                         return (td);
 1124                                 }
 1125                         }
 1126                         break;
 1127                 }
 1128                 run++;
 1129         }
 1130         rw_runlock(&tidhash_lock);
 1131         return (td);
 1132 }
 1133 
 1134 void
 1135 tidhash_add(struct thread *td)
 1136 {
 1137         rw_wlock(&tidhash_lock);
 1138         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
 1139         rw_wunlock(&tidhash_lock);
 1140 }
 1141 
 1142 void
 1143 tidhash_remove(struct thread *td)
 1144 {
 1145         rw_wlock(&tidhash_lock);
 1146         LIST_REMOVE(td, td_hash);
 1147         rw_wunlock(&tidhash_lock);
 1148 }

Cache object: 88cb5581401266a5951de0cb8f4671aa


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.