The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_thread.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
    3  *  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice(s), this list of conditions and the following disclaimer as
   10  *    the first lines of this file unmodified other than the possible
   11  *    addition of one or more copyright notices.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice(s), this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
   17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
   20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
   23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
   26  * DAMAGE.
   27  */
   28 
   29 #include "opt_witness.h"
   30 #include "opt_hwpmc_hooks.h"
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/11.0/sys/kern/kern_thread.c 302328 2016-07-03 18:19:48Z kib $");
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/kernel.h>
   38 #include <sys/lock.h>
   39 #include <sys/mutex.h>
   40 #include <sys/proc.h>
   41 #include <sys/rangelock.h>
   42 #include <sys/resourcevar.h>
   43 #include <sys/sdt.h>
   44 #include <sys/smp.h>
   45 #include <sys/sched.h>
   46 #include <sys/sleepqueue.h>
   47 #include <sys/selinfo.h>
   48 #include <sys/syscallsubr.h>
   49 #include <sys/sysent.h>
   50 #include <sys/turnstile.h>
   51 #include <sys/ktr.h>
   52 #include <sys/rwlock.h>
   53 #include <sys/umtx.h>
   54 #include <sys/cpuset.h>
   55 #ifdef  HWPMC_HOOKS
   56 #include <sys/pmckern.h>
   57 #endif
   58 
   59 #include <security/audit/audit.h>
   60 
   61 #include <vm/vm.h>
   62 #include <vm/vm_extern.h>
   63 #include <vm/uma.h>
   64 #include <vm/vm_domain.h>
   65 #include <sys/eventhandler.h>
   66 
   67 SDT_PROVIDER_DECLARE(proc);
   68 SDT_PROBE_DEFINE(proc, , , lwp__exit);
   69 
   70 /*
   71  * thread related storage.
   72  */
   73 static uma_zone_t thread_zone;
   74 
   75 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
   76 static struct mtx zombie_lock;
   77 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
   78 
   79 static void thread_zombie(struct thread *);
   80 static int thread_unsuspend_one(struct thread *td, struct proc *p,
   81     bool boundary);
   82 
   83 #define TID_BUFFER_SIZE 1024
   84 
   85 struct mtx tid_lock;
   86 static struct unrhdr *tid_unrhdr;
   87 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
   88 static int tid_head, tid_tail;
   89 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
   90 
   91 struct  tidhashhead *tidhashtbl;
   92 u_long  tidhash;
   93 struct  rwlock tidhash_lock;
   94 
   95 static lwpid_t
   96 tid_alloc(void)
   97 {
   98         lwpid_t tid;
   99 
  100         tid = alloc_unr(tid_unrhdr);
  101         if (tid != -1)
  102                 return (tid);
  103         mtx_lock(&tid_lock);
  104         if (tid_head == tid_tail) {
  105                 mtx_unlock(&tid_lock);
  106                 return (-1);
  107         }
  108         tid = tid_buffer[tid_head];
  109         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
  110         mtx_unlock(&tid_lock);
  111         return (tid);
  112 }
  113 
  114 static void
  115 tid_free(lwpid_t tid)
  116 {
  117         lwpid_t tmp_tid = -1;
  118 
  119         mtx_lock(&tid_lock);
  120         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
  121                 tmp_tid = tid_buffer[tid_head];
  122                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
  123         }
  124         tid_buffer[tid_tail] = tid;
  125         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
  126         mtx_unlock(&tid_lock);
  127         if (tmp_tid != -1)
  128                 free_unr(tid_unrhdr, tmp_tid);
  129 }
  130 
  131 /*
  132  * Prepare a thread for use.
  133  */
  134 static int
  135 thread_ctor(void *mem, int size, void *arg, int flags)
  136 {
  137         struct thread   *td;
  138 
  139         td = (struct thread *)mem;
  140         td->td_state = TDS_INACTIVE;
  141         td->td_oncpu = NOCPU;
  142 
  143         td->td_tid = tid_alloc();
  144 
  145         /*
  146          * Note that td_critnest begins life as 1 because the thread is not
  147          * running and is thereby implicitly waiting to be on the receiving
  148          * end of a context switch.
  149          */
  150         td->td_critnest = 1;
  151         td->td_lend_user_pri = PRI_MAX;
  152         EVENTHANDLER_INVOKE(thread_ctor, td);
  153 #ifdef AUDIT
  154         audit_thread_alloc(td);
  155 #endif
  156         umtx_thread_alloc(td);
  157         return (0);
  158 }
  159 
  160 /*
  161  * Reclaim a thread after use.
  162  */
  163 static void
  164 thread_dtor(void *mem, int size, void *arg)
  165 {
  166         struct thread *td;
  167 
  168         td = (struct thread *)mem;
  169 
  170 #ifdef INVARIANTS
  171         /* Verify that this thread is in a safe state to free. */
  172         switch (td->td_state) {
  173         case TDS_INHIBITED:
  174         case TDS_RUNNING:
  175         case TDS_CAN_RUN:
  176         case TDS_RUNQ:
  177                 /*
  178                  * We must never unlink a thread that is in one of
  179                  * these states, because it is currently active.
  180                  */
  181                 panic("bad state for thread unlinking");
  182                 /* NOTREACHED */
  183         case TDS_INACTIVE:
  184                 break;
  185         default:
  186                 panic("bad thread state");
  187                 /* NOTREACHED */
  188         }
  189 #endif
  190 #ifdef AUDIT
  191         audit_thread_free(td);
  192 #endif
  193         /* Free all OSD associated to this thread. */
  194         osd_thread_exit(td);
  195 
  196         EVENTHANDLER_INVOKE(thread_dtor, td);
  197         tid_free(td->td_tid);
  198 }
  199 
  200 /*
  201  * Initialize type-stable parts of a thread (when newly created).
  202  */
  203 static int
  204 thread_init(void *mem, int size, int flags)
  205 {
  206         struct thread *td;
  207 
  208         td = (struct thread *)mem;
  209 
  210         td->td_sleepqueue = sleepq_alloc();
  211         td->td_turnstile = turnstile_alloc();
  212         td->td_rlqe = NULL;
  213         EVENTHANDLER_INVOKE(thread_init, td);
  214         umtx_thread_init(td);
  215         td->td_kstack = 0;
  216         td->td_sel = NULL;
  217         return (0);
  218 }
  219 
  220 /*
  221  * Tear down type-stable parts of a thread (just before being discarded).
  222  */
  223 static void
  224 thread_fini(void *mem, int size)
  225 {
  226         struct thread *td;
  227 
  228         td = (struct thread *)mem;
  229         EVENTHANDLER_INVOKE(thread_fini, td);
  230         rlqentry_free(td->td_rlqe);
  231         turnstile_free(td->td_turnstile);
  232         sleepq_free(td->td_sleepqueue);
  233         umtx_thread_fini(td);
  234         seltdfini(td);
  235 }
  236 
  237 /*
  238  * For a newly created process,
  239  * link up all the structures and its initial threads etc.
  240  * called from:
  241  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
  242  * proc_dtor() (should go away)
  243  * proc_init()
  244  */
  245 void
  246 proc_linkup0(struct proc *p, struct thread *td)
  247 {
  248         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  249         proc_linkup(p, td);
  250 }
  251 
  252 void
  253 proc_linkup(struct proc *p, struct thread *td)
  254 {
  255 
  256         sigqueue_init(&p->p_sigqueue, p);
  257         p->p_ksi = ksiginfo_alloc(1);
  258         if (p->p_ksi != NULL) {
  259                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
  260                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
  261         }
  262         LIST_INIT(&p->p_mqnotifier);
  263         p->p_numthreads = 0;
  264         thread_link(td, p);
  265 }
  266 
  267 /*
  268  * Initialize global thread allocation resources.
  269  */
  270 void
  271 threadinit(void)
  272 {
  273 
  274         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
  275 
  276         /*
  277          * pid_max cannot be greater than PID_MAX.
  278          * leave one number for thread0.
  279          */
  280         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
  281 
  282         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
  283             thread_ctor, thread_dtor, thread_init, thread_fini,
  284             16 - 1, UMA_ZONE_NOFREE);
  285         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
  286         rw_init(&tidhash_lock, "tidhash");
  287 }
  288 
  289 /*
  290  * Place an unused thread on the zombie list.
  291  * Use the slpq as that must be unused by now.
  292  */
  293 void
  294 thread_zombie(struct thread *td)
  295 {
  296         mtx_lock_spin(&zombie_lock);
  297         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
  298         mtx_unlock_spin(&zombie_lock);
  299 }
  300 
  301 /*
  302  * Release a thread that has exited after cpu_throw().
  303  */
  304 void
  305 thread_stash(struct thread *td)
  306 {
  307         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
  308         thread_zombie(td);
  309 }
  310 
  311 /*
  312  * Reap zombie resources.
  313  */
  314 void
  315 thread_reap(void)
  316 {
  317         struct thread *td_first, *td_next;
  318 
  319         /*
  320          * Don't even bother to lock if none at this instant,
  321          * we really don't care about the next instant..
  322          */
  323         if (!TAILQ_EMPTY(&zombie_threads)) {
  324                 mtx_lock_spin(&zombie_lock);
  325                 td_first = TAILQ_FIRST(&zombie_threads);
  326                 if (td_first)
  327                         TAILQ_INIT(&zombie_threads);
  328                 mtx_unlock_spin(&zombie_lock);
  329                 while (td_first) {
  330                         td_next = TAILQ_NEXT(td_first, td_slpq);
  331                         thread_cow_free(td_first);
  332                         thread_free(td_first);
  333                         td_first = td_next;
  334                 }
  335         }
  336 }
  337 
  338 /*
  339  * Allocate a thread.
  340  */
  341 struct thread *
  342 thread_alloc(int pages)
  343 {
  344         struct thread *td;
  345 
  346         thread_reap(); /* check if any zombies to get */
  347 
  348         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
  349         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
  350         if (!vm_thread_new(td, pages)) {
  351                 uma_zfree(thread_zone, td);
  352                 return (NULL);
  353         }
  354         cpu_thread_alloc(td);
  355         vm_domain_policy_init(&td->td_vm_dom_policy);
  356         return (td);
  357 }
  358 
  359 int
  360 thread_alloc_stack(struct thread *td, int pages)
  361 {
  362 
  363         KASSERT(td->td_kstack == 0,
  364             ("thread_alloc_stack called on a thread with kstack"));
  365         if (!vm_thread_new(td, pages))
  366                 return (0);
  367         cpu_thread_alloc(td);
  368         return (1);
  369 }
  370 
  371 /*
  372  * Deallocate a thread.
  373  */
  374 void
  375 thread_free(struct thread *td)
  376 {
  377 
  378         lock_profile_thread_exit(td);
  379         if (td->td_cpuset)
  380                 cpuset_rel(td->td_cpuset);
  381         td->td_cpuset = NULL;
  382         cpu_thread_free(td);
  383         if (td->td_kstack != 0)
  384                 vm_thread_dispose(td);
  385         vm_domain_policy_cleanup(&td->td_vm_dom_policy);
  386         uma_zfree(thread_zone, td);
  387 }
  388 
  389 void
  390 thread_cow_get_proc(struct thread *newtd, struct proc *p)
  391 {
  392 
  393         PROC_LOCK_ASSERT(p, MA_OWNED);
  394         newtd->td_ucred = crhold(p->p_ucred);
  395         newtd->td_limit = lim_hold(p->p_limit);
  396         newtd->td_cowgen = p->p_cowgen;
  397 }
  398 
  399 void
  400 thread_cow_get(struct thread *newtd, struct thread *td)
  401 {
  402 
  403         newtd->td_ucred = crhold(td->td_ucred);
  404         newtd->td_limit = lim_hold(td->td_limit);
  405         newtd->td_cowgen = td->td_cowgen;
  406 }
  407 
  408 void
  409 thread_cow_free(struct thread *td)
  410 {
  411 
  412         if (td->td_ucred != NULL)
  413                 crfree(td->td_ucred);
  414         if (td->td_limit != NULL)
  415                 lim_free(td->td_limit);
  416 }
  417 
  418 void
  419 thread_cow_update(struct thread *td)
  420 {
  421         struct proc *p;
  422         struct ucred *oldcred;
  423         struct plimit *oldlimit;
  424 
  425         p = td->td_proc;
  426         oldcred = NULL;
  427         oldlimit = NULL;
  428         PROC_LOCK(p);
  429         if (td->td_ucred != p->p_ucred) {
  430                 oldcred = td->td_ucred;
  431                 td->td_ucred = crhold(p->p_ucred);
  432         }
  433         if (td->td_limit != p->p_limit) {
  434                 oldlimit = td->td_limit;
  435                 td->td_limit = lim_hold(p->p_limit);
  436         }
  437         td->td_cowgen = p->p_cowgen;
  438         PROC_UNLOCK(p);
  439         if (oldcred != NULL)
  440                 crfree(oldcred);
  441         if (oldlimit != NULL)
  442                 lim_free(oldlimit);
  443 }
  444 
  445 /*
  446  * Discard the current thread and exit from its context.
  447  * Always called with scheduler locked.
  448  *
  449  * Because we can't free a thread while we're operating under its context,
  450  * push the current thread into our CPU's deadthread holder. This means
  451  * we needn't worry about someone else grabbing our context before we
  452  * do a cpu_throw().
  453  */
  454 void
  455 thread_exit(void)
  456 {
  457         uint64_t runtime, new_switchtime;
  458         struct thread *td;
  459         struct thread *td2;
  460         struct proc *p;
  461         int wakeup_swapper;
  462 
  463         td = curthread;
  464         p = td->td_proc;
  465 
  466         PROC_SLOCK_ASSERT(p, MA_OWNED);
  467         mtx_assert(&Giant, MA_NOTOWNED);
  468 
  469         PROC_LOCK_ASSERT(p, MA_OWNED);
  470         KASSERT(p != NULL, ("thread exiting without a process"));
  471         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
  472             (long)p->p_pid, td->td_name);
  473         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
  474 
  475 #ifdef AUDIT
  476         AUDIT_SYSCALL_EXIT(0, td);
  477 #endif
  478         /*
  479          * drop FPU & debug register state storage, or any other
  480          * architecture specific resources that
  481          * would not be on a new untouched process.
  482          */
  483         cpu_thread_exit(td);
  484 
  485         /*
  486          * The last thread is left attached to the process
  487          * So that the whole bundle gets recycled. Skip
  488          * all this stuff if we never had threads.
  489          * EXIT clears all sign of other threads when
  490          * it goes to single threading, so the last thread always
  491          * takes the short path.
  492          */
  493         if (p->p_flag & P_HADTHREADS) {
  494                 if (p->p_numthreads > 1) {
  495                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
  496                         thread_unlink(td);
  497                         td2 = FIRST_THREAD_IN_PROC(p);
  498                         sched_exit_thread(td2, td);
  499 
  500                         /*
  501                          * The test below is NOT true if we are the
  502                          * sole exiting thread. P_STOPPED_SINGLE is unset
  503                          * in exit1() after it is the only survivor.
  504                          */
  505                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  506                                 if (p->p_numthreads == p->p_suspcount) {
  507                                         thread_lock(p->p_singlethread);
  508                                         wakeup_swapper = thread_unsuspend_one(
  509                                                 p->p_singlethread, p, false);
  510                                         thread_unlock(p->p_singlethread);
  511                                         if (wakeup_swapper)
  512                                                 kick_proc0();
  513                                 }
  514                         }
  515 
  516                         PCPU_SET(deadthread, td);
  517                 } else {
  518                         /*
  519                          * The last thread is exiting.. but not through exit()
  520                          */
  521                         panic ("thread_exit: Last thread exiting on its own");
  522                 }
  523         } 
  524 #ifdef  HWPMC_HOOKS
  525         /*
  526          * If this thread is part of a process that is being tracked by hwpmc(4),
  527          * inform the module of the thread's impending exit.
  528          */
  529         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
  530                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
  531 #endif
  532         PROC_UNLOCK(p);
  533         PROC_STATLOCK(p);
  534         thread_lock(td);
  535         PROC_SUNLOCK(p);
  536 
  537         /* Do the same timestamp bookkeeping that mi_switch() would do. */
  538         new_switchtime = cpu_ticks();
  539         runtime = new_switchtime - PCPU_GET(switchtime);
  540         td->td_runtime += runtime;
  541         td->td_incruntime += runtime;
  542         PCPU_SET(switchtime, new_switchtime);
  543         PCPU_SET(switchticks, ticks);
  544         PCPU_INC(cnt.v_swtch);
  545 
  546         /* Save our resource usage in our process. */
  547         td->td_ru.ru_nvcsw++;
  548         ruxagg(p, td);
  549         rucollect(&p->p_ru, &td->td_ru);
  550         PROC_STATUNLOCK(p);
  551 
  552         td->td_state = TDS_INACTIVE;
  553 #ifdef WITNESS
  554         witness_thread_exit(td);
  555 #endif
  556         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
  557         sched_throw(td);
  558         panic("I'm a teapot!");
  559         /* NOTREACHED */
  560 }
  561 
  562 /*
  563  * Do any thread specific cleanups that may be needed in wait()
  564  * called with Giant, proc and schedlock not held.
  565  */
  566 void
  567 thread_wait(struct proc *p)
  568 {
  569         struct thread *td;
  570 
  571         mtx_assert(&Giant, MA_NOTOWNED);
  572         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
  573         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
  574         td = FIRST_THREAD_IN_PROC(p);
  575         /* Lock the last thread so we spin until it exits cpu_throw(). */
  576         thread_lock(td);
  577         thread_unlock(td);
  578         lock_profile_thread_exit(td);
  579         cpuset_rel(td->td_cpuset);
  580         td->td_cpuset = NULL;
  581         cpu_thread_clean(td);
  582         thread_cow_free(td);
  583         thread_reap();  /* check for zombie threads etc. */
  584 }
  585 
  586 /*
  587  * Link a thread to a process.
  588  * set up anything that needs to be initialized for it to
  589  * be used by the process.
  590  */
  591 void
  592 thread_link(struct thread *td, struct proc *p)
  593 {
  594 
  595         /*
  596          * XXX This can't be enabled because it's called for proc0 before
  597          * its lock has been created.
  598          * PROC_LOCK_ASSERT(p, MA_OWNED);
  599          */
  600         td->td_state    = TDS_INACTIVE;
  601         td->td_proc     = p;
  602         td->td_flags    = TDF_INMEM;
  603 
  604         LIST_INIT(&td->td_contested);
  605         LIST_INIT(&td->td_lprof[0]);
  606         LIST_INIT(&td->td_lprof[1]);
  607         sigqueue_init(&td->td_sigqueue, p);
  608         callout_init(&td->td_slpcallout, 1);
  609         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
  610         p->p_numthreads++;
  611 }
  612 
  613 /*
  614  * Called from:
  615  *  thread_exit()
  616  */
  617 void
  618 thread_unlink(struct thread *td)
  619 {
  620         struct proc *p = td->td_proc;
  621 
  622         PROC_LOCK_ASSERT(p, MA_OWNED);
  623         TAILQ_REMOVE(&p->p_threads, td, td_plist);
  624         p->p_numthreads--;
  625         /* could clear a few other things here */
  626         /* Must  NOT clear links to proc! */
  627 }
  628 
  629 static int
  630 calc_remaining(struct proc *p, int mode)
  631 {
  632         int remaining;
  633 
  634         PROC_LOCK_ASSERT(p, MA_OWNED);
  635         PROC_SLOCK_ASSERT(p, MA_OWNED);
  636         if (mode == SINGLE_EXIT)
  637                 remaining = p->p_numthreads;
  638         else if (mode == SINGLE_BOUNDARY)
  639                 remaining = p->p_numthreads - p->p_boundary_count;
  640         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
  641                 remaining = p->p_numthreads - p->p_suspcount;
  642         else
  643                 panic("calc_remaining: wrong mode %d", mode);
  644         return (remaining);
  645 }
  646 
  647 static int
  648 remain_for_mode(int mode)
  649 {
  650 
  651         return (mode == SINGLE_ALLPROC ? 0 : 1);
  652 }
  653 
  654 static int
  655 weed_inhib(int mode, struct thread *td2, struct proc *p)
  656 {
  657         int wakeup_swapper;
  658 
  659         PROC_LOCK_ASSERT(p, MA_OWNED);
  660         PROC_SLOCK_ASSERT(p, MA_OWNED);
  661         THREAD_LOCK_ASSERT(td2, MA_OWNED);
  662 
  663         wakeup_swapper = 0;
  664         switch (mode) {
  665         case SINGLE_EXIT:
  666                 if (TD_IS_SUSPENDED(td2))
  667                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
  668                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
  669                         wakeup_swapper |= sleepq_abort(td2, EINTR);
  670                 break;
  671         case SINGLE_BOUNDARY:
  672         case SINGLE_NO_EXIT:
  673                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
  674                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
  675                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
  676                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
  677                 break;
  678         case SINGLE_ALLPROC:
  679                 /*
  680                  * ALLPROC suspend tries to avoid spurious EINTR for
  681                  * threads sleeping interruptable, by suspending the
  682                  * thread directly, similarly to sig_suspend_threads().
  683                  * Since such sleep is not performed at the user
  684                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
  685                  * is used to avoid immediate un-suspend.
  686                  */
  687                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
  688                     TDF_ALLPROCSUSP)) == 0)
  689                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
  690                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
  691                         if ((td2->td_flags & TDF_SBDRY) == 0) {
  692                                 thread_suspend_one(td2);
  693                                 td2->td_flags |= TDF_ALLPROCSUSP;
  694                         } else {
  695                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
  696                         }
  697                 }
  698                 break;
  699         }
  700         return (wakeup_swapper);
  701 }
  702 
  703 /*
  704  * Enforce single-threading.
  705  *
  706  * Returns 1 if the caller must abort (another thread is waiting to
  707  * exit the process or similar). Process is locked!
  708  * Returns 0 when you are successfully the only thread running.
  709  * A process has successfully single threaded in the suspend mode when
  710  * There are no threads in user mode. Threads in the kernel must be
  711  * allowed to continue until they get to the user boundary. They may even
  712  * copy out their return values and data before suspending. They may however be
  713  * accelerated in reaching the user boundary as we will wake up
  714  * any sleeping threads that are interruptable. (PCATCH).
  715  */
  716 int
  717 thread_single(struct proc *p, int mode)
  718 {
  719         struct thread *td;
  720         struct thread *td2;
  721         int remaining, wakeup_swapper;
  722 
  723         td = curthread;
  724         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
  725             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
  726             ("invalid mode %d", mode));
  727         /*
  728          * If allowing non-ALLPROC singlethreading for non-curproc
  729          * callers, calc_remaining() and remain_for_mode() should be
  730          * adjusted to also account for td->td_proc != p.  For now
  731          * this is not implemented because it is not used.
  732          */
  733         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
  734             (mode != SINGLE_ALLPROC && td->td_proc == p),
  735             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
  736         mtx_assert(&Giant, MA_NOTOWNED);
  737         PROC_LOCK_ASSERT(p, MA_OWNED);
  738 
  739         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
  740                 return (0);
  741 
  742         /* Is someone already single threading? */
  743         if (p->p_singlethread != NULL && p->p_singlethread != td)
  744                 return (1);
  745 
  746         if (mode == SINGLE_EXIT) {
  747                 p->p_flag |= P_SINGLE_EXIT;
  748                 p->p_flag &= ~P_SINGLE_BOUNDARY;
  749         } else {
  750                 p->p_flag &= ~P_SINGLE_EXIT;
  751                 if (mode == SINGLE_BOUNDARY)
  752                         p->p_flag |= P_SINGLE_BOUNDARY;
  753                 else
  754                         p->p_flag &= ~P_SINGLE_BOUNDARY;
  755         }
  756         if (mode == SINGLE_ALLPROC)
  757                 p->p_flag |= P_TOTAL_STOP;
  758         p->p_flag |= P_STOPPED_SINGLE;
  759         PROC_SLOCK(p);
  760         p->p_singlethread = td;
  761         remaining = calc_remaining(p, mode);
  762         while (remaining != remain_for_mode(mode)) {
  763                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
  764                         goto stopme;
  765                 wakeup_swapper = 0;
  766                 FOREACH_THREAD_IN_PROC(p, td2) {
  767                         if (td2 == td)
  768                                 continue;
  769                         thread_lock(td2);
  770                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
  771                         if (TD_IS_INHIBITED(td2)) {
  772                                 wakeup_swapper |= weed_inhib(mode, td2, p);
  773 #ifdef SMP
  774                         } else if (TD_IS_RUNNING(td2) && td != td2) {
  775                                 forward_signal(td2);
  776 #endif
  777                         }
  778                         thread_unlock(td2);
  779                 }
  780                 if (wakeup_swapper)
  781                         kick_proc0();
  782                 remaining = calc_remaining(p, mode);
  783 
  784                 /*
  785                  * Maybe we suspended some threads.. was it enough?
  786                  */
  787                 if (remaining == remain_for_mode(mode))
  788                         break;
  789 
  790 stopme:
  791                 /*
  792                  * Wake us up when everyone else has suspended.
  793                  * In the mean time we suspend as well.
  794                  */
  795                 thread_suspend_switch(td, p);
  796                 remaining = calc_remaining(p, mode);
  797         }
  798         if (mode == SINGLE_EXIT) {
  799                 /*
  800                  * Convert the process to an unthreaded process.  The
  801                  * SINGLE_EXIT is called by exit1() or execve(), in
  802                  * both cases other threads must be retired.
  803                  */
  804                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
  805                 p->p_singlethread = NULL;
  806                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
  807 
  808                 /*
  809                  * Wait for any remaining threads to exit cpu_throw().
  810                  */
  811                 while (p->p_exitthreads != 0) {
  812                         PROC_SUNLOCK(p);
  813                         PROC_UNLOCK(p);
  814                         sched_relinquish(td);
  815                         PROC_LOCK(p);
  816                         PROC_SLOCK(p);
  817                 }
  818         } else if (mode == SINGLE_BOUNDARY) {
  819                 /*
  820                  * Wait until all suspended threads are removed from
  821                  * the processors.  The thread_suspend_check()
  822                  * increments p_boundary_count while it is still
  823                  * running, which makes it possible for the execve()
  824                  * to destroy vmspace while our other threads are
  825                  * still using the address space.
  826                  *
  827                  * We lock the thread, which is only allowed to
  828                  * succeed after context switch code finished using
  829                  * the address space.
  830                  */
  831                 FOREACH_THREAD_IN_PROC(p, td2) {
  832                         if (td2 == td)
  833                                 continue;
  834                         thread_lock(td2);
  835                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
  836                             ("td %p not on boundary", td2));
  837                         KASSERT(TD_IS_SUSPENDED(td2),
  838                             ("td %p is not suspended", td2));
  839                         thread_unlock(td2);
  840                 }
  841         }
  842         PROC_SUNLOCK(p);
  843         return (0);
  844 }
  845 
  846 bool
  847 thread_suspend_check_needed(void)
  848 {
  849         struct proc *p;
  850         struct thread *td;
  851 
  852         td = curthread;
  853         p = td->td_proc;
  854         PROC_LOCK_ASSERT(p, MA_OWNED);
  855         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
  856             (td->td_dbgflags & TDB_SUSPEND) != 0));
  857 }
  858 
  859 /*
  860  * Called in from locations that can safely check to see
  861  * whether we have to suspend or at least throttle for a
  862  * single-thread event (e.g. fork).
  863  *
  864  * Such locations include userret().
  865  * If the "return_instead" argument is non zero, the thread must be able to
  866  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
  867  *
  868  * The 'return_instead' argument tells the function if it may do a
  869  * thread_exit() or suspend, or whether the caller must abort and back
  870  * out instead.
  871  *
  872  * If the thread that set the single_threading request has set the
  873  * P_SINGLE_EXIT bit in the process flags then this call will never return
  874  * if 'return_instead' is false, but will exit.
  875  *
  876  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
  877  *---------------+--------------------+---------------------
  878  *       0       | returns 0          |   returns 0 or 1
  879  *               | when ST ends       |   immediately
  880  *---------------+--------------------+---------------------
  881  *       1       | thread exits       |   returns 1
  882  *               |                    |  immediately
  883  * 0 = thread_exit() or suspension ok,
  884  * other = return error instead of stopping the thread.
  885  *
  886  * While a full suspension is under effect, even a single threading
  887  * thread would be suspended if it made this call (but it shouldn't).
  888  * This call should only be made from places where
  889  * thread_exit() would be safe as that may be the outcome unless
  890  * return_instead is set.
  891  */
  892 int
  893 thread_suspend_check(int return_instead)
  894 {
  895         struct thread *td;
  896         struct proc *p;
  897         int wakeup_swapper;
  898 
  899         td = curthread;
  900         p = td->td_proc;
  901         mtx_assert(&Giant, MA_NOTOWNED);
  902         PROC_LOCK_ASSERT(p, MA_OWNED);
  903         while (thread_suspend_check_needed()) {
  904                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  905                         KASSERT(p->p_singlethread != NULL,
  906                             ("singlethread not set"));
  907                         /*
  908                          * The only suspension in action is a
  909                          * single-threading. Single threader need not stop.
  910                          * It is safe to access p->p_singlethread unlocked
  911                          * because it can only be set to our address by us.
  912                          */
  913                         if (p->p_singlethread == td)
  914                                 return (0);     /* Exempt from stopping. */
  915                 }
  916                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
  917                         return (EINTR);
  918 
  919                 /* Should we goto user boundary if we didn't come from there? */
  920                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
  921                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
  922                         return (ERESTART);
  923 
  924                 /*
  925                  * Ignore suspend requests if they are deferred.
  926                  */
  927                 if ((td->td_flags & TDF_SBDRY) != 0) {
  928                         KASSERT(return_instead,
  929                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
  930                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
  931                             (TDF_SEINTR | TDF_SERESTART),
  932                             ("both TDF_SEINTR and TDF_SERESTART"));
  933                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
  934                 }
  935 
  936                 /*
  937                  * If the process is waiting for us to exit,
  938                  * this thread should just suicide.
  939                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
  940                  */
  941                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
  942                         PROC_UNLOCK(p);
  943 
  944                         /*
  945                          * Allow Linux emulation layer to do some work
  946                          * before thread suicide.
  947                          */
  948                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
  949                                 (p->p_sysent->sv_thread_detach)(td);
  950                         umtx_thread_exit(td);
  951                         kern_thr_exit(td);
  952                         panic("stopped thread did not exit");
  953                 }
  954 
  955                 PROC_SLOCK(p);
  956                 thread_stopped(p);
  957                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  958                         if (p->p_numthreads == p->p_suspcount + 1) {
  959                                 thread_lock(p->p_singlethread);
  960                                 wakeup_swapper = thread_unsuspend_one(
  961                                     p->p_singlethread, p, false);
  962                                 thread_unlock(p->p_singlethread);
  963                                 if (wakeup_swapper)
  964                                         kick_proc0();
  965                         }
  966                 }
  967                 PROC_UNLOCK(p);
  968                 thread_lock(td);
  969                 /*
  970                  * When a thread suspends, it just
  971                  * gets taken off all queues.
  972                  */
  973                 thread_suspend_one(td);
  974                 if (return_instead == 0) {
  975                         p->p_boundary_count++;
  976                         td->td_flags |= TDF_BOUNDARY;
  977                 }
  978                 PROC_SUNLOCK(p);
  979                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
  980                 thread_unlock(td);
  981                 PROC_LOCK(p);
  982         }
  983         return (0);
  984 }
  985 
  986 void
  987 thread_suspend_switch(struct thread *td, struct proc *p)
  988 {
  989 
  990         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
  991         PROC_LOCK_ASSERT(p, MA_OWNED);
  992         PROC_SLOCK_ASSERT(p, MA_OWNED);
  993         /*
  994          * We implement thread_suspend_one in stages here to avoid
  995          * dropping the proc lock while the thread lock is owned.
  996          */
  997         if (p == td->td_proc) {
  998                 thread_stopped(p);
  999                 p->p_suspcount++;
 1000         }
 1001         PROC_UNLOCK(p);
 1002         thread_lock(td);
 1003         td->td_flags &= ~TDF_NEEDSUSPCHK;
 1004         TD_SET_SUSPENDED(td);
 1005         sched_sleep(td, 0);
 1006         PROC_SUNLOCK(p);
 1007         DROP_GIANT();
 1008         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
 1009         thread_unlock(td);
 1010         PICKUP_GIANT();
 1011         PROC_LOCK(p);
 1012         PROC_SLOCK(p);
 1013 }
 1014 
 1015 void
 1016 thread_suspend_one(struct thread *td)
 1017 {
 1018         struct proc *p;
 1019 
 1020         p = td->td_proc;
 1021         PROC_SLOCK_ASSERT(p, MA_OWNED);
 1022         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1023         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
 1024         p->p_suspcount++;
 1025         td->td_flags &= ~TDF_NEEDSUSPCHK;
 1026         TD_SET_SUSPENDED(td);
 1027         sched_sleep(td, 0);
 1028 }
 1029 
 1030 static int
 1031 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
 1032 {
 1033 
 1034         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1035         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
 1036         TD_CLR_SUSPENDED(td);
 1037         td->td_flags &= ~TDF_ALLPROCSUSP;
 1038         if (td->td_proc == p) {
 1039                 PROC_SLOCK_ASSERT(p, MA_OWNED);
 1040                 p->p_suspcount--;
 1041                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
 1042                         td->td_flags &= ~TDF_BOUNDARY;
 1043                         p->p_boundary_count--;
 1044                 }
 1045         }
 1046         return (setrunnable(td));
 1047 }
 1048 
 1049 /*
 1050  * Allow all threads blocked by single threading to continue running.
 1051  */
 1052 void
 1053 thread_unsuspend(struct proc *p)
 1054 {
 1055         struct thread *td;
 1056         int wakeup_swapper;
 1057 
 1058         PROC_LOCK_ASSERT(p, MA_OWNED);
 1059         PROC_SLOCK_ASSERT(p, MA_OWNED);
 1060         wakeup_swapper = 0;
 1061         if (!P_SHOULDSTOP(p)) {
 1062                 FOREACH_THREAD_IN_PROC(p, td) {
 1063                         thread_lock(td);
 1064                         if (TD_IS_SUSPENDED(td)) {
 1065                                 wakeup_swapper |= thread_unsuspend_one(td, p,
 1066                                     true);
 1067                         }
 1068                         thread_unlock(td);
 1069                 }
 1070         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
 1071             p->p_numthreads == p->p_suspcount) {
 1072                 /*
 1073                  * Stopping everything also did the job for the single
 1074                  * threading request. Now we've downgraded to single-threaded,
 1075                  * let it continue.
 1076                  */
 1077                 if (p->p_singlethread->td_proc == p) {
 1078                         thread_lock(p->p_singlethread);
 1079                         wakeup_swapper = thread_unsuspend_one(
 1080                             p->p_singlethread, p, false);
 1081                         thread_unlock(p->p_singlethread);
 1082                 }
 1083         }
 1084         if (wakeup_swapper)
 1085                 kick_proc0();
 1086 }
 1087 
 1088 /*
 1089  * End the single threading mode..
 1090  */
 1091 void
 1092 thread_single_end(struct proc *p, int mode)
 1093 {
 1094         struct thread *td;
 1095         int wakeup_swapper;
 1096 
 1097         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
 1098             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
 1099             ("invalid mode %d", mode));
 1100         PROC_LOCK_ASSERT(p, MA_OWNED);
 1101         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
 1102             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
 1103             ("mode %d does not match P_TOTAL_STOP", mode));
 1104         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
 1105             ("thread_single_end from other thread %p %p",
 1106             curthread, p->p_singlethread));
 1107         KASSERT(mode != SINGLE_BOUNDARY ||
 1108             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
 1109             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
 1110         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
 1111             P_TOTAL_STOP);
 1112         PROC_SLOCK(p);
 1113         p->p_singlethread = NULL;
 1114         wakeup_swapper = 0;
 1115         /*
 1116          * If there are other threads they may now run,
 1117          * unless of course there is a blanket 'stop order'
 1118          * on the process. The single threader must be allowed
 1119          * to continue however as this is a bad place to stop.
 1120          */
 1121         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
 1122                 FOREACH_THREAD_IN_PROC(p, td) {
 1123                         thread_lock(td);
 1124                         if (TD_IS_SUSPENDED(td)) {
 1125                                 wakeup_swapper |= thread_unsuspend_one(td, p,
 1126                                     mode == SINGLE_BOUNDARY);
 1127                         }
 1128                         thread_unlock(td);
 1129                 }
 1130         }
 1131         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
 1132             ("inconsistent boundary count %d", p->p_boundary_count));
 1133         PROC_SUNLOCK(p);
 1134         if (wakeup_swapper)
 1135                 kick_proc0();
 1136 }
 1137 
 1138 struct thread *
 1139 thread_find(struct proc *p, lwpid_t tid)
 1140 {
 1141         struct thread *td;
 1142 
 1143         PROC_LOCK_ASSERT(p, MA_OWNED);
 1144         FOREACH_THREAD_IN_PROC(p, td) {
 1145                 if (td->td_tid == tid)
 1146                         break;
 1147         }
 1148         return (td);
 1149 }
 1150 
 1151 /* Locate a thread by number; return with proc lock held. */
 1152 struct thread *
 1153 tdfind(lwpid_t tid, pid_t pid)
 1154 {
 1155 #define RUN_THRESH      16
 1156         struct thread *td;
 1157         int run = 0;
 1158 
 1159         rw_rlock(&tidhash_lock);
 1160         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
 1161                 if (td->td_tid == tid) {
 1162                         if (pid != -1 && td->td_proc->p_pid != pid) {
 1163                                 td = NULL;
 1164                                 break;
 1165                         }
 1166                         PROC_LOCK(td->td_proc);
 1167                         if (td->td_proc->p_state == PRS_NEW) {
 1168                                 PROC_UNLOCK(td->td_proc);
 1169                                 td = NULL;
 1170                                 break;
 1171                         }
 1172                         if (run > RUN_THRESH) {
 1173                                 if (rw_try_upgrade(&tidhash_lock)) {
 1174                                         LIST_REMOVE(td, td_hash);
 1175                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
 1176                                                 td, td_hash);
 1177                                         rw_wunlock(&tidhash_lock);
 1178                                         return (td);
 1179                                 }
 1180                         }
 1181                         break;
 1182                 }
 1183                 run++;
 1184         }
 1185         rw_runlock(&tidhash_lock);
 1186         return (td);
 1187 }
 1188 
 1189 void
 1190 tidhash_add(struct thread *td)
 1191 {
 1192         rw_wlock(&tidhash_lock);
 1193         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
 1194         rw_wunlock(&tidhash_lock);
 1195 }
 1196 
 1197 void
 1198 tidhash_remove(struct thread *td)
 1199 {
 1200         rw_wlock(&tidhash_lock);
 1201         LIST_REMOVE(td, td_hash);
 1202         rw_wunlock(&tidhash_lock);
 1203 }

Cache object: f999de9e216526fdd76bc3bb9453ced0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.