The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_thread.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
    3  *  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice(s), this list of conditions and the following disclaimer as
   10  *    the first lines of this file unmodified other than the possible
   11  *    addition of one or more copyright notices.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice(s), this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
   17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
   20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
   23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
   26  * DAMAGE.
   27  */
   28 
   29 #include "opt_witness.h"
   30 #include "opt_hwpmc_hooks.h"
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/kernel.h>
   38 #include <sys/lock.h>
   39 #include <sys/mutex.h>
   40 #include <sys/proc.h>
   41 #include <sys/rangelock.h>
   42 #include <sys/resourcevar.h>
   43 #include <sys/sdt.h>
   44 #include <sys/smp.h>
   45 #include <sys/sched.h>
   46 #include <sys/sleepqueue.h>
   47 #include <sys/selinfo.h>
   48 #include <sys/syscallsubr.h>
   49 #include <sys/sysent.h>
   50 #include <sys/turnstile.h>
   51 #include <sys/ktr.h>
   52 #include <sys/rwlock.h>
   53 #include <sys/umtx.h>
   54 #include <sys/vmmeter.h>
   55 #include <sys/cpuset.h>
   56 #ifdef  HWPMC_HOOKS
   57 #include <sys/pmckern.h>
   58 #endif
   59 
   60 #include <security/audit/audit.h>
   61 
   62 #include <vm/vm.h>
   63 #include <vm/vm_extern.h>
   64 #include <vm/uma.h>
   65 #include <vm/vm_domain.h>
   66 #include <sys/eventhandler.h>
   67 
   68 /*
   69  * Asserts below verify the stability of struct thread and struct proc
   70  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
   71  * to drift, change to the structures must be accompanied by the
   72  * assert update.
   73  *
   74  * On the stable branches after KBI freeze, conditions must not be
   75  * violated.  Typically new fields are moved to the end of the
   76  * structures.
   77  */
   78 #ifdef __amd64__
   79 _Static_assert(offsetof(struct thread, td_flags) == 0xe4,
   80     "struct thread KBI td_flags");
   81 _Static_assert(offsetof(struct thread, td_pflags) == 0xec,
   82     "struct thread KBI td_pflags");
   83 _Static_assert(offsetof(struct thread, td_frame) == 0x418,
   84     "struct thread KBI td_frame");
   85 _Static_assert(offsetof(struct thread, td_emuldata) == 0x4c0,
   86     "struct thread KBI td_emuldata");
   87 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
   88     "struct proc KBI p_flag");
   89 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
   90     "struct proc KBI p_pid");
   91 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c0,
   92     "struct proc KBI p_filemon");
   93 _Static_assert(offsetof(struct proc, p_comm) == 0x3d0,
   94     "struct proc KBI p_comm");
   95 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4a0,
   96     "struct proc KBI p_emuldata");
   97 #endif
   98 #ifdef __i386__
   99 _Static_assert(offsetof(struct thread, td_flags) == 0x8c,
  100     "struct thread KBI td_flags");
  101 _Static_assert(offsetof(struct thread, td_pflags) == 0x94,
  102     "struct thread KBI td_pflags");
  103 _Static_assert(offsetof(struct thread, td_frame) == 0x2c0,
  104     "struct thread KBI td_frame");
  105 _Static_assert(offsetof(struct thread, td_emuldata) == 0x30c,
  106     "struct thread KBI td_emuldata");
  107 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
  108     "struct proc KBI p_flag");
  109 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
  110     "struct proc KBI p_pid");
  111 _Static_assert(offsetof(struct proc, p_filemon) == 0x268,
  112     "struct proc KBI p_filemon");
  113 _Static_assert(offsetof(struct proc, p_comm) == 0x274,
  114     "struct proc KBI p_comm");
  115 _Static_assert(offsetof(struct proc, p_emuldata) == 0x2f4,
  116     "struct proc KBI p_emuldata");
  117 #endif
  118 
  119 SDT_PROVIDER_DECLARE(proc);
  120 SDT_PROBE_DEFINE(proc, , , lwp__exit);
  121 
  122 /*
  123  * thread related storage.
  124  */
  125 static uma_zone_t thread_zone;
  126 
  127 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
  128 static struct mtx zombie_lock;
  129 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
  130 
  131 static void thread_zombie(struct thread *);
  132 static int thread_unsuspend_one(struct thread *td, struct proc *p,
  133     bool boundary);
  134 
  135 #define TID_BUFFER_SIZE 1024
  136 
  137 struct mtx tid_lock;
  138 static struct unrhdr *tid_unrhdr;
  139 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
  140 static int tid_head, tid_tail;
  141 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
  142 
  143 struct  tidhashhead *tidhashtbl;
  144 u_long  tidhash;
  145 struct  rwlock tidhash_lock;
  146 
  147 EVENTHANDLER_LIST_DEFINE(thread_ctor);
  148 EVENTHANDLER_LIST_DEFINE(thread_dtor);
  149 EVENTHANDLER_LIST_DEFINE(thread_init);
  150 EVENTHANDLER_LIST_DEFINE(thread_fini);
  151 
  152 static lwpid_t
  153 tid_alloc(void)
  154 {
  155         lwpid_t tid;
  156 
  157         tid = alloc_unr(tid_unrhdr);
  158         if (tid != -1)
  159                 return (tid);
  160         mtx_lock(&tid_lock);
  161         if (tid_head == tid_tail) {
  162                 mtx_unlock(&tid_lock);
  163                 return (-1);
  164         }
  165         tid = tid_buffer[tid_head];
  166         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
  167         mtx_unlock(&tid_lock);
  168         return (tid);
  169 }
  170 
  171 static void
  172 tid_free(lwpid_t tid)
  173 {
  174         lwpid_t tmp_tid = -1;
  175 
  176         mtx_lock(&tid_lock);
  177         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
  178                 tmp_tid = tid_buffer[tid_head];
  179                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
  180         }
  181         tid_buffer[tid_tail] = tid;
  182         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
  183         mtx_unlock(&tid_lock);
  184         if (tmp_tid != -1)
  185                 free_unr(tid_unrhdr, tmp_tid);
  186 }
  187 
  188 /*
  189  * Prepare a thread for use.
  190  */
  191 static int
  192 thread_ctor(void *mem, int size, void *arg, int flags)
  193 {
  194         struct thread   *td;
  195 
  196         td = (struct thread *)mem;
  197         td->td_state = TDS_INACTIVE;
  198         td->td_oncpu = NOCPU;
  199 
  200         td->td_tid = tid_alloc();
  201 
  202         /*
  203          * Note that td_critnest begins life as 1 because the thread is not
  204          * running and is thereby implicitly waiting to be on the receiving
  205          * end of a context switch.
  206          */
  207         td->td_critnest = 1;
  208         td->td_lend_user_pri = PRI_MAX;
  209         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
  210 #ifdef AUDIT
  211         audit_thread_alloc(td);
  212 #endif
  213         umtx_thread_alloc(td);
  214         return (0);
  215 }
  216 
  217 /*
  218  * Reclaim a thread after use.
  219  */
  220 static void
  221 thread_dtor(void *mem, int size, void *arg)
  222 {
  223         struct thread *td;
  224 
  225         td = (struct thread *)mem;
  226 
  227 #ifdef INVARIANTS
  228         /* Verify that this thread is in a safe state to free. */
  229         switch (td->td_state) {
  230         case TDS_INHIBITED:
  231         case TDS_RUNNING:
  232         case TDS_CAN_RUN:
  233         case TDS_RUNQ:
  234                 /*
  235                  * We must never unlink a thread that is in one of
  236                  * these states, because it is currently active.
  237                  */
  238                 panic("bad state for thread unlinking");
  239                 /* NOTREACHED */
  240         case TDS_INACTIVE:
  241                 break;
  242         default:
  243                 panic("bad thread state");
  244                 /* NOTREACHED */
  245         }
  246 #endif
  247 #ifdef AUDIT
  248         audit_thread_free(td);
  249 #endif
  250         /* Free all OSD associated to this thread. */
  251         osd_thread_exit(td);
  252         td_softdep_cleanup(td);
  253         MPASS(td->td_su == NULL);
  254 
  255         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
  256         tid_free(td->td_tid);
  257 }
  258 
  259 /*
  260  * Initialize type-stable parts of a thread (when newly created).
  261  */
  262 static int
  263 thread_init(void *mem, int size, int flags)
  264 {
  265         struct thread *td;
  266 
  267         td = (struct thread *)mem;
  268 
  269         td->td_sleepqueue = sleepq_alloc();
  270         td->td_turnstile = turnstile_alloc();
  271         td->td_rlqe = NULL;
  272         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
  273         umtx_thread_init(td);
  274         td->td_kstack = 0;
  275         td->td_sel = NULL;
  276         return (0);
  277 }
  278 
  279 /*
  280  * Tear down type-stable parts of a thread (just before being discarded).
  281  */
  282 static void
  283 thread_fini(void *mem, int size)
  284 {
  285         struct thread *td;
  286 
  287         td = (struct thread *)mem;
  288         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
  289         rlqentry_free(td->td_rlqe);
  290         turnstile_free(td->td_turnstile);
  291         sleepq_free(td->td_sleepqueue);
  292         umtx_thread_fini(td);
  293         seltdfini(td);
  294 }
  295 
  296 /*
  297  * For a newly created process,
  298  * link up all the structures and its initial threads etc.
  299  * called from:
  300  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
  301  * proc_dtor() (should go away)
  302  * proc_init()
  303  */
  304 void
  305 proc_linkup0(struct proc *p, struct thread *td)
  306 {
  307         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  308         proc_linkup(p, td);
  309 }
  310 
  311 void
  312 proc_linkup(struct proc *p, struct thread *td)
  313 {
  314 
  315         sigqueue_init(&p->p_sigqueue, p);
  316         p->p_ksi = ksiginfo_alloc(1);
  317         if (p->p_ksi != NULL) {
  318                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
  319                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
  320         }
  321         LIST_INIT(&p->p_mqnotifier);
  322         p->p_numthreads = 0;
  323         thread_link(td, p);
  324 }
  325 
  326 /*
  327  * Initialize global thread allocation resources.
  328  */
  329 void
  330 threadinit(void)
  331 {
  332 
  333         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
  334 
  335         /*
  336          * pid_max cannot be greater than PID_MAX.
  337          * leave one number for thread0.
  338          */
  339         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
  340 
  341         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
  342             thread_ctor, thread_dtor, thread_init, thread_fini,
  343             32 - 1, UMA_ZONE_NOFREE);
  344         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
  345         rw_init(&tidhash_lock, "tidhash");
  346 }
  347 
  348 /*
  349  * Place an unused thread on the zombie list.
  350  * Use the slpq as that must be unused by now.
  351  */
  352 void
  353 thread_zombie(struct thread *td)
  354 {
  355         mtx_lock_spin(&zombie_lock);
  356         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
  357         mtx_unlock_spin(&zombie_lock);
  358 }
  359 
  360 /*
  361  * Release a thread that has exited after cpu_throw().
  362  */
  363 void
  364 thread_stash(struct thread *td)
  365 {
  366         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
  367         thread_zombie(td);
  368 }
  369 
  370 /*
  371  * Reap zombie resources.
  372  */
  373 void
  374 thread_reap(void)
  375 {
  376         struct thread *td_first, *td_next;
  377 
  378         /*
  379          * Don't even bother to lock if none at this instant,
  380          * we really don't care about the next instant.
  381          */
  382         if (!TAILQ_EMPTY(&zombie_threads)) {
  383                 mtx_lock_spin(&zombie_lock);
  384                 td_first = TAILQ_FIRST(&zombie_threads);
  385                 if (td_first)
  386                         TAILQ_INIT(&zombie_threads);
  387                 mtx_unlock_spin(&zombie_lock);
  388                 while (td_first) {
  389                         td_next = TAILQ_NEXT(td_first, td_slpq);
  390                         thread_cow_free(td_first);
  391                         thread_free(td_first);
  392                         td_first = td_next;
  393                 }
  394         }
  395 }
  396 
  397 /*
  398  * Allocate a thread.
  399  */
  400 struct thread *
  401 thread_alloc(int pages)
  402 {
  403         struct thread *td;
  404 
  405         thread_reap(); /* check if any zombies to get */
  406 
  407         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
  408         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
  409         if (!vm_thread_new(td, pages)) {
  410                 uma_zfree(thread_zone, td);
  411                 return (NULL);
  412         }
  413         cpu_thread_alloc(td);
  414         vm_domain_policy_init(&td->td_vm_dom_policy);
  415         return (td);
  416 }
  417 
  418 int
  419 thread_alloc_stack(struct thread *td, int pages)
  420 {
  421 
  422         KASSERT(td->td_kstack == 0,
  423             ("thread_alloc_stack called on a thread with kstack"));
  424         if (!vm_thread_new(td, pages))
  425                 return (0);
  426         cpu_thread_alloc(td);
  427         return (1);
  428 }
  429 
  430 /*
  431  * Deallocate a thread.
  432  */
  433 void
  434 thread_free(struct thread *td)
  435 {
  436 
  437         lock_profile_thread_exit(td);
  438         if (td->td_cpuset)
  439                 cpuset_rel(td->td_cpuset);
  440         td->td_cpuset = NULL;
  441         cpu_thread_free(td);
  442         if (td->td_kstack != 0)
  443                 vm_thread_dispose(td);
  444         vm_domain_policy_cleanup(&td->td_vm_dom_policy);
  445         callout_drain(&td->td_slpcallout);
  446         uma_zfree(thread_zone, td);
  447 }
  448 
  449 void
  450 thread_cow_get_proc(struct thread *newtd, struct proc *p)
  451 {
  452 
  453         PROC_LOCK_ASSERT(p, MA_OWNED);
  454         newtd->td_ucred = crhold(p->p_ucred);
  455         newtd->td_limit = lim_hold(p->p_limit);
  456         newtd->td_cowgen = p->p_cowgen;
  457 }
  458 
  459 void
  460 thread_cow_get(struct thread *newtd, struct thread *td)
  461 {
  462 
  463         newtd->td_ucred = crhold(td->td_ucred);
  464         newtd->td_limit = lim_hold(td->td_limit);
  465         newtd->td_cowgen = td->td_cowgen;
  466 }
  467 
  468 void
  469 thread_cow_free(struct thread *td)
  470 {
  471 
  472         if (td->td_ucred != NULL)
  473                 crfree(td->td_ucred);
  474         if (td->td_limit != NULL)
  475                 lim_free(td->td_limit);
  476 }
  477 
  478 void
  479 thread_cow_update(struct thread *td)
  480 {
  481         struct proc *p;
  482         struct ucred *oldcred;
  483         struct plimit *oldlimit;
  484 
  485         p = td->td_proc;
  486         oldcred = NULL;
  487         oldlimit = NULL;
  488         PROC_LOCK(p);
  489         if (td->td_ucred != p->p_ucred) {
  490                 oldcred = td->td_ucred;
  491                 td->td_ucred = crhold(p->p_ucred);
  492         }
  493         if (td->td_limit != p->p_limit) {
  494                 oldlimit = td->td_limit;
  495                 td->td_limit = lim_hold(p->p_limit);
  496         }
  497         td->td_cowgen = p->p_cowgen;
  498         PROC_UNLOCK(p);
  499         if (oldcred != NULL)
  500                 crfree(oldcred);
  501         if (oldlimit != NULL)
  502                 lim_free(oldlimit);
  503 }
  504 
  505 /*
  506  * Discard the current thread and exit from its context.
  507  * Always called with scheduler locked.
  508  *
  509  * Because we can't free a thread while we're operating under its context,
  510  * push the current thread into our CPU's deadthread holder. This means
  511  * we needn't worry about someone else grabbing our context before we
  512  * do a cpu_throw().
  513  */
  514 void
  515 thread_exit(void)
  516 {
  517         uint64_t runtime, new_switchtime;
  518         struct thread *td;
  519         struct thread *td2;
  520         struct proc *p;
  521         int wakeup_swapper;
  522 
  523         td = curthread;
  524         p = td->td_proc;
  525 
  526         PROC_SLOCK_ASSERT(p, MA_OWNED);
  527         mtx_assert(&Giant, MA_NOTOWNED);
  528 
  529         PROC_LOCK_ASSERT(p, MA_OWNED);
  530         KASSERT(p != NULL, ("thread exiting without a process"));
  531         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
  532             (long)p->p_pid, td->td_name);
  533         SDT_PROBE0(proc, , , lwp__exit);
  534         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
  535 
  536         /*
  537          * drop FPU & debug register state storage, or any other
  538          * architecture specific resources that
  539          * would not be on a new untouched process.
  540          */
  541         cpu_thread_exit(td);
  542 
  543         /*
  544          * The last thread is left attached to the process
  545          * So that the whole bundle gets recycled. Skip
  546          * all this stuff if we never had threads.
  547          * EXIT clears all sign of other threads when
  548          * it goes to single threading, so the last thread always
  549          * takes the short path.
  550          */
  551         if (p->p_flag & P_HADTHREADS) {
  552                 if (p->p_numthreads > 1) {
  553                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
  554                         thread_unlink(td);
  555                         td2 = FIRST_THREAD_IN_PROC(p);
  556                         sched_exit_thread(td2, td);
  557 
  558                         /*
  559                          * The test below is NOT true if we are the
  560                          * sole exiting thread. P_STOPPED_SINGLE is unset
  561                          * in exit1() after it is the only survivor.
  562                          */
  563                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  564                                 if (p->p_numthreads == p->p_suspcount) {
  565                                         thread_lock(p->p_singlethread);
  566                                         wakeup_swapper = thread_unsuspend_one(
  567                                                 p->p_singlethread, p, false);
  568                                         thread_unlock(p->p_singlethread);
  569                                         if (wakeup_swapper)
  570                                                 kick_proc0();
  571                                 }
  572                         }
  573 
  574                         PCPU_SET(deadthread, td);
  575                 } else {
  576                         /*
  577                          * The last thread is exiting.. but not through exit()
  578                          */
  579                         panic ("thread_exit: Last thread exiting on its own");
  580                 }
  581         } 
  582 #ifdef  HWPMC_HOOKS
  583         /*
  584          * If this thread is part of a process that is being tracked by hwpmc(4),
  585          * inform the module of the thread's impending exit.
  586          */
  587         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
  588                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
  589 #endif
  590         PROC_UNLOCK(p);
  591         PROC_STATLOCK(p);
  592         thread_lock(td);
  593         PROC_SUNLOCK(p);
  594 
  595         /* Do the same timestamp bookkeeping that mi_switch() would do. */
  596         new_switchtime = cpu_ticks();
  597         runtime = new_switchtime - PCPU_GET(switchtime);
  598         td->td_runtime += runtime;
  599         td->td_incruntime += runtime;
  600         PCPU_SET(switchtime, new_switchtime);
  601         PCPU_SET(switchticks, ticks);
  602         PCPU_INC(cnt.v_swtch);
  603 
  604         /* Save our resource usage in our process. */
  605         td->td_ru.ru_nvcsw++;
  606         ruxagg(p, td);
  607         rucollect(&p->p_ru, &td->td_ru);
  608         PROC_STATUNLOCK(p);
  609 
  610         td->td_state = TDS_INACTIVE;
  611 #ifdef WITNESS
  612         witness_thread_exit(td);
  613 #endif
  614         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
  615         sched_throw(td);
  616         panic("I'm a teapot!");
  617         /* NOTREACHED */
  618 }
  619 
  620 /*
  621  * Do any thread specific cleanups that may be needed in wait()
  622  * called with Giant, proc and schedlock not held.
  623  */
  624 void
  625 thread_wait(struct proc *p)
  626 {
  627         struct thread *td;
  628 
  629         mtx_assert(&Giant, MA_NOTOWNED);
  630         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
  631         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
  632         td = FIRST_THREAD_IN_PROC(p);
  633         /* Lock the last thread so we spin until it exits cpu_throw(). */
  634         thread_lock(td);
  635         thread_unlock(td);
  636         lock_profile_thread_exit(td);
  637         cpuset_rel(td->td_cpuset);
  638         td->td_cpuset = NULL;
  639         cpu_thread_clean(td);
  640         thread_cow_free(td);
  641         callout_drain(&td->td_slpcallout);
  642         thread_reap();  /* check for zombie threads etc. */
  643 }
  644 
  645 /*
  646  * Link a thread to a process.
  647  * set up anything that needs to be initialized for it to
  648  * be used by the process.
  649  */
  650 void
  651 thread_link(struct thread *td, struct proc *p)
  652 {
  653 
  654         /*
  655          * XXX This can't be enabled because it's called for proc0 before
  656          * its lock has been created.
  657          * PROC_LOCK_ASSERT(p, MA_OWNED);
  658          */
  659         td->td_state    = TDS_INACTIVE;
  660         td->td_proc     = p;
  661         td->td_flags    = TDF_INMEM;
  662 
  663         LIST_INIT(&td->td_contested);
  664         LIST_INIT(&td->td_lprof[0]);
  665         LIST_INIT(&td->td_lprof[1]);
  666         sigqueue_init(&td->td_sigqueue, p);
  667         callout_init(&td->td_slpcallout, 1);
  668         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
  669         p->p_numthreads++;
  670 }
  671 
  672 /*
  673  * Called from:
  674  *  thread_exit()
  675  */
  676 void
  677 thread_unlink(struct thread *td)
  678 {
  679         struct proc *p = td->td_proc;
  680 
  681         PROC_LOCK_ASSERT(p, MA_OWNED);
  682         TAILQ_REMOVE(&p->p_threads, td, td_plist);
  683         p->p_numthreads--;
  684         /* could clear a few other things here */
  685         /* Must  NOT clear links to proc! */
  686 }
  687 
  688 static int
  689 calc_remaining(struct proc *p, int mode)
  690 {
  691         int remaining;
  692 
  693         PROC_LOCK_ASSERT(p, MA_OWNED);
  694         PROC_SLOCK_ASSERT(p, MA_OWNED);
  695         if (mode == SINGLE_EXIT)
  696                 remaining = p->p_numthreads;
  697         else if (mode == SINGLE_BOUNDARY)
  698                 remaining = p->p_numthreads - p->p_boundary_count;
  699         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
  700                 remaining = p->p_numthreads - p->p_suspcount;
  701         else
  702                 panic("calc_remaining: wrong mode %d", mode);
  703         return (remaining);
  704 }
  705 
  706 static int
  707 remain_for_mode(int mode)
  708 {
  709 
  710         return (mode == SINGLE_ALLPROC ? 0 : 1);
  711 }
  712 
  713 static int
  714 weed_inhib(int mode, struct thread *td2, struct proc *p)
  715 {
  716         int wakeup_swapper;
  717 
  718         PROC_LOCK_ASSERT(p, MA_OWNED);
  719         PROC_SLOCK_ASSERT(p, MA_OWNED);
  720         THREAD_LOCK_ASSERT(td2, MA_OWNED);
  721 
  722         wakeup_swapper = 0;
  723         switch (mode) {
  724         case SINGLE_EXIT:
  725                 if (TD_IS_SUSPENDED(td2))
  726                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
  727                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
  728                         wakeup_swapper |= sleepq_abort(td2, EINTR);
  729                 break;
  730         case SINGLE_BOUNDARY:
  731         case SINGLE_NO_EXIT:
  732                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
  733                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
  734                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
  735                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
  736                 break;
  737         case SINGLE_ALLPROC:
  738                 /*
  739                  * ALLPROC suspend tries to avoid spurious EINTR for
  740                  * threads sleeping interruptable, by suspending the
  741                  * thread directly, similarly to sig_suspend_threads().
  742                  * Since such sleep is not performed at the user
  743                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
  744                  * is used to avoid immediate un-suspend.
  745                  */
  746                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
  747                     TDF_ALLPROCSUSP)) == 0)
  748                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
  749                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
  750                         if ((td2->td_flags & TDF_SBDRY) == 0) {
  751                                 thread_suspend_one(td2);
  752                                 td2->td_flags |= TDF_ALLPROCSUSP;
  753                         } else {
  754                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
  755                         }
  756                 }
  757                 break;
  758         }
  759         return (wakeup_swapper);
  760 }
  761 
  762 /*
  763  * Enforce single-threading.
  764  *
  765  * Returns 1 if the caller must abort (another thread is waiting to
  766  * exit the process or similar). Process is locked!
  767  * Returns 0 when you are successfully the only thread running.
  768  * A process has successfully single threaded in the suspend mode when
  769  * There are no threads in user mode. Threads in the kernel must be
  770  * allowed to continue until they get to the user boundary. They may even
  771  * copy out their return values and data before suspending. They may however be
  772  * accelerated in reaching the user boundary as we will wake up
  773  * any sleeping threads that are interruptable. (PCATCH).
  774  */
  775 int
  776 thread_single(struct proc *p, int mode)
  777 {
  778         struct thread *td;
  779         struct thread *td2;
  780         int remaining, wakeup_swapper;
  781 
  782         td = curthread;
  783         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
  784             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
  785             ("invalid mode %d", mode));
  786         /*
  787          * If allowing non-ALLPROC singlethreading for non-curproc
  788          * callers, calc_remaining() and remain_for_mode() should be
  789          * adjusted to also account for td->td_proc != p.  For now
  790          * this is not implemented because it is not used.
  791          */
  792         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
  793             (mode != SINGLE_ALLPROC && td->td_proc == p),
  794             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
  795         mtx_assert(&Giant, MA_NOTOWNED);
  796         PROC_LOCK_ASSERT(p, MA_OWNED);
  797 
  798         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
  799                 return (0);
  800 
  801         /* Is someone already single threading? */
  802         if (p->p_singlethread != NULL && p->p_singlethread != td)
  803                 return (1);
  804 
  805         if (mode == SINGLE_EXIT) {
  806                 p->p_flag |= P_SINGLE_EXIT;
  807                 p->p_flag &= ~P_SINGLE_BOUNDARY;
  808         } else {
  809                 p->p_flag &= ~P_SINGLE_EXIT;
  810                 if (mode == SINGLE_BOUNDARY)
  811                         p->p_flag |= P_SINGLE_BOUNDARY;
  812                 else
  813                         p->p_flag &= ~P_SINGLE_BOUNDARY;
  814         }
  815         if (mode == SINGLE_ALLPROC)
  816                 p->p_flag |= P_TOTAL_STOP;
  817         p->p_flag |= P_STOPPED_SINGLE;
  818         PROC_SLOCK(p);
  819         p->p_singlethread = td;
  820         remaining = calc_remaining(p, mode);
  821         while (remaining != remain_for_mode(mode)) {
  822                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
  823                         goto stopme;
  824                 wakeup_swapper = 0;
  825                 FOREACH_THREAD_IN_PROC(p, td2) {
  826                         if (td2 == td)
  827                                 continue;
  828                         thread_lock(td2);
  829                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
  830                         if (TD_IS_INHIBITED(td2)) {
  831                                 wakeup_swapper |= weed_inhib(mode, td2, p);
  832 #ifdef SMP
  833                         } else if (TD_IS_RUNNING(td2) && td != td2) {
  834                                 forward_signal(td2);
  835 #endif
  836                         }
  837                         thread_unlock(td2);
  838                 }
  839                 if (wakeup_swapper)
  840                         kick_proc0();
  841                 remaining = calc_remaining(p, mode);
  842 
  843                 /*
  844                  * Maybe we suspended some threads.. was it enough?
  845                  */
  846                 if (remaining == remain_for_mode(mode))
  847                         break;
  848 
  849 stopme:
  850                 /*
  851                  * Wake us up when everyone else has suspended.
  852                  * In the mean time we suspend as well.
  853                  */
  854                 thread_suspend_switch(td, p);
  855                 remaining = calc_remaining(p, mode);
  856         }
  857         if (mode == SINGLE_EXIT) {
  858                 /*
  859                  * Convert the process to an unthreaded process.  The
  860                  * SINGLE_EXIT is called by exit1() or execve(), in
  861                  * both cases other threads must be retired.
  862                  */
  863                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
  864                 p->p_singlethread = NULL;
  865                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
  866 
  867                 /*
  868                  * Wait for any remaining threads to exit cpu_throw().
  869                  */
  870                 while (p->p_exitthreads != 0) {
  871                         PROC_SUNLOCK(p);
  872                         PROC_UNLOCK(p);
  873                         sched_relinquish(td);
  874                         PROC_LOCK(p);
  875                         PROC_SLOCK(p);
  876                 }
  877         } else if (mode == SINGLE_BOUNDARY) {
  878                 /*
  879                  * Wait until all suspended threads are removed from
  880                  * the processors.  The thread_suspend_check()
  881                  * increments p_boundary_count while it is still
  882                  * running, which makes it possible for the execve()
  883                  * to destroy vmspace while our other threads are
  884                  * still using the address space.
  885                  *
  886                  * We lock the thread, which is only allowed to
  887                  * succeed after context switch code finished using
  888                  * the address space.
  889                  */
  890                 FOREACH_THREAD_IN_PROC(p, td2) {
  891                         if (td2 == td)
  892                                 continue;
  893                         thread_lock(td2);
  894                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
  895                             ("td %p not on boundary", td2));
  896                         KASSERT(TD_IS_SUSPENDED(td2),
  897                             ("td %p is not suspended", td2));
  898                         thread_unlock(td2);
  899                 }
  900         }
  901         PROC_SUNLOCK(p);
  902         return (0);
  903 }
  904 
  905 bool
  906 thread_suspend_check_needed(void)
  907 {
  908         struct proc *p;
  909         struct thread *td;
  910 
  911         td = curthread;
  912         p = td->td_proc;
  913         PROC_LOCK_ASSERT(p, MA_OWNED);
  914         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
  915             (td->td_dbgflags & TDB_SUSPEND) != 0));
  916 }
  917 
  918 /*
  919  * Called in from locations that can safely check to see
  920  * whether we have to suspend or at least throttle for a
  921  * single-thread event (e.g. fork).
  922  *
  923  * Such locations include userret().
  924  * If the "return_instead" argument is non zero, the thread must be able to
  925  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
  926  *
  927  * The 'return_instead' argument tells the function if it may do a
  928  * thread_exit() or suspend, or whether the caller must abort and back
  929  * out instead.
  930  *
  931  * If the thread that set the single_threading request has set the
  932  * P_SINGLE_EXIT bit in the process flags then this call will never return
  933  * if 'return_instead' is false, but will exit.
  934  *
  935  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
  936  *---------------+--------------------+---------------------
  937  *       0       | returns 0          |   returns 0 or 1
  938  *               | when ST ends       |   immediately
  939  *---------------+--------------------+---------------------
  940  *       1       | thread exits       |   returns 1
  941  *               |                    |  immediately
  942  * 0 = thread_exit() or suspension ok,
  943  * other = return error instead of stopping the thread.
  944  *
  945  * While a full suspension is under effect, even a single threading
  946  * thread would be suspended if it made this call (but it shouldn't).
  947  * This call should only be made from places where
  948  * thread_exit() would be safe as that may be the outcome unless
  949  * return_instead is set.
  950  */
  951 int
  952 thread_suspend_check(int return_instead)
  953 {
  954         struct thread *td;
  955         struct proc *p;
  956         int wakeup_swapper;
  957 
  958         td = curthread;
  959         p = td->td_proc;
  960         mtx_assert(&Giant, MA_NOTOWNED);
  961         PROC_LOCK_ASSERT(p, MA_OWNED);
  962         while (thread_suspend_check_needed()) {
  963                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  964                         KASSERT(p->p_singlethread != NULL,
  965                             ("singlethread not set"));
  966                         /*
  967                          * The only suspension in action is a
  968                          * single-threading. Single threader need not stop.
  969                          * It is safe to access p->p_singlethread unlocked
  970                          * because it can only be set to our address by us.
  971                          */
  972                         if (p->p_singlethread == td)
  973                                 return (0);     /* Exempt from stopping. */
  974                 }
  975                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
  976                         return (EINTR);
  977 
  978                 /* Should we goto user boundary if we didn't come from there? */
  979                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
  980                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
  981                         return (ERESTART);
  982 
  983                 /*
  984                  * Ignore suspend requests if they are deferred.
  985                  */
  986                 if ((td->td_flags & TDF_SBDRY) != 0) {
  987                         KASSERT(return_instead,
  988                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
  989                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
  990                             (TDF_SEINTR | TDF_SERESTART),
  991                             ("both TDF_SEINTR and TDF_SERESTART"));
  992                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
  993                 }
  994 
  995                 /*
  996                  * If the process is waiting for us to exit,
  997                  * this thread should just suicide.
  998                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
  999                  */
 1000                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
 1001                         PROC_UNLOCK(p);
 1002 
 1003                         /*
 1004                          * Allow Linux emulation layer to do some work
 1005                          * before thread suicide.
 1006                          */
 1007                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
 1008                                 (p->p_sysent->sv_thread_detach)(td);
 1009                         umtx_thread_exit(td);
 1010                         kern_thr_exit(td);
 1011                         panic("stopped thread did not exit");
 1012                 }
 1013 
 1014                 PROC_SLOCK(p);
 1015                 thread_stopped(p);
 1016                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
 1017                         if (p->p_numthreads == p->p_suspcount + 1) {
 1018                                 thread_lock(p->p_singlethread);
 1019                                 wakeup_swapper = thread_unsuspend_one(
 1020                                     p->p_singlethread, p, false);
 1021                                 thread_unlock(p->p_singlethread);
 1022                                 if (wakeup_swapper)
 1023                                         kick_proc0();
 1024                         }
 1025                 }
 1026                 PROC_UNLOCK(p);
 1027                 thread_lock(td);
 1028                 /*
 1029                  * When a thread suspends, it just
 1030                  * gets taken off all queues.
 1031                  */
 1032                 thread_suspend_one(td);
 1033                 if (return_instead == 0) {
 1034                         p->p_boundary_count++;
 1035                         td->td_flags |= TDF_BOUNDARY;
 1036                 }
 1037                 PROC_SUNLOCK(p);
 1038                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
 1039                 thread_unlock(td);
 1040                 PROC_LOCK(p);
 1041         }
 1042         return (0);
 1043 }
 1044 
 1045 void
 1046 thread_suspend_switch(struct thread *td, struct proc *p)
 1047 {
 1048 
 1049         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
 1050         PROC_LOCK_ASSERT(p, MA_OWNED);
 1051         PROC_SLOCK_ASSERT(p, MA_OWNED);
 1052         /*
 1053          * We implement thread_suspend_one in stages here to avoid
 1054          * dropping the proc lock while the thread lock is owned.
 1055          */
 1056         if (p == td->td_proc) {
 1057                 thread_stopped(p);
 1058                 p->p_suspcount++;
 1059         }
 1060         PROC_UNLOCK(p);
 1061         thread_lock(td);
 1062         td->td_flags &= ~TDF_NEEDSUSPCHK;
 1063         TD_SET_SUSPENDED(td);
 1064         sched_sleep(td, 0);
 1065         PROC_SUNLOCK(p);
 1066         DROP_GIANT();
 1067         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
 1068         thread_unlock(td);
 1069         PICKUP_GIANT();
 1070         PROC_LOCK(p);
 1071         PROC_SLOCK(p);
 1072 }
 1073 
 1074 void
 1075 thread_suspend_one(struct thread *td)
 1076 {
 1077         struct proc *p;
 1078 
 1079         p = td->td_proc;
 1080         PROC_SLOCK_ASSERT(p, MA_OWNED);
 1081         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1082         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
 1083         p->p_suspcount++;
 1084         td->td_flags &= ~TDF_NEEDSUSPCHK;
 1085         TD_SET_SUSPENDED(td);
 1086         sched_sleep(td, 0);
 1087 }
 1088 
 1089 static int
 1090 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
 1091 {
 1092 
 1093         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1094         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
 1095         TD_CLR_SUSPENDED(td);
 1096         td->td_flags &= ~TDF_ALLPROCSUSP;
 1097         if (td->td_proc == p) {
 1098                 PROC_SLOCK_ASSERT(p, MA_OWNED);
 1099                 p->p_suspcount--;
 1100                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
 1101                         td->td_flags &= ~TDF_BOUNDARY;
 1102                         p->p_boundary_count--;
 1103                 }
 1104         }
 1105         return (setrunnable(td));
 1106 }
 1107 
 1108 /*
 1109  * Allow all threads blocked by single threading to continue running.
 1110  */
 1111 void
 1112 thread_unsuspend(struct proc *p)
 1113 {
 1114         struct thread *td;
 1115         int wakeup_swapper;
 1116 
 1117         PROC_LOCK_ASSERT(p, MA_OWNED);
 1118         PROC_SLOCK_ASSERT(p, MA_OWNED);
 1119         wakeup_swapper = 0;
 1120         if (!P_SHOULDSTOP(p)) {
 1121                 FOREACH_THREAD_IN_PROC(p, td) {
 1122                         thread_lock(td);
 1123                         if (TD_IS_SUSPENDED(td)) {
 1124                                 wakeup_swapper |= thread_unsuspend_one(td, p,
 1125                                     true);
 1126                         }
 1127                         thread_unlock(td);
 1128                 }
 1129         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
 1130             p->p_numthreads == p->p_suspcount) {
 1131                 /*
 1132                  * Stopping everything also did the job for the single
 1133                  * threading request. Now we've downgraded to single-threaded,
 1134                  * let it continue.
 1135                  */
 1136                 if (p->p_singlethread->td_proc == p) {
 1137                         thread_lock(p->p_singlethread);
 1138                         wakeup_swapper = thread_unsuspend_one(
 1139                             p->p_singlethread, p, false);
 1140                         thread_unlock(p->p_singlethread);
 1141                 }
 1142         }
 1143         if (wakeup_swapper)
 1144                 kick_proc0();
 1145 }
 1146 
 1147 /*
 1148  * End the single threading mode..
 1149  */
 1150 void
 1151 thread_single_end(struct proc *p, int mode)
 1152 {
 1153         struct thread *td;
 1154         int wakeup_swapper;
 1155 
 1156         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
 1157             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
 1158             ("invalid mode %d", mode));
 1159         PROC_LOCK_ASSERT(p, MA_OWNED);
 1160         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
 1161             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
 1162             ("mode %d does not match P_TOTAL_STOP", mode));
 1163         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
 1164             ("thread_single_end from other thread %p %p",
 1165             curthread, p->p_singlethread));
 1166         KASSERT(mode != SINGLE_BOUNDARY ||
 1167             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
 1168             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
 1169         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
 1170             P_TOTAL_STOP);
 1171         PROC_SLOCK(p);
 1172         p->p_singlethread = NULL;
 1173         wakeup_swapper = 0;
 1174         /*
 1175          * If there are other threads they may now run,
 1176          * unless of course there is a blanket 'stop order'
 1177          * on the process. The single threader must be allowed
 1178          * to continue however as this is a bad place to stop.
 1179          */
 1180         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
 1181                 FOREACH_THREAD_IN_PROC(p, td) {
 1182                         thread_lock(td);
 1183                         if (TD_IS_SUSPENDED(td)) {
 1184                                 wakeup_swapper |= thread_unsuspend_one(td, p,
 1185                                     mode == SINGLE_BOUNDARY);
 1186                         }
 1187                         thread_unlock(td);
 1188                 }
 1189         }
 1190         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
 1191             ("inconsistent boundary count %d", p->p_boundary_count));
 1192         PROC_SUNLOCK(p);
 1193         if (wakeup_swapper)
 1194                 kick_proc0();
 1195 }
 1196 
 1197 struct thread *
 1198 thread_find(struct proc *p, lwpid_t tid)
 1199 {
 1200         struct thread *td;
 1201 
 1202         PROC_LOCK_ASSERT(p, MA_OWNED);
 1203         FOREACH_THREAD_IN_PROC(p, td) {
 1204                 if (td->td_tid == tid)
 1205                         break;
 1206         }
 1207         return (td);
 1208 }
 1209 
 1210 /* Locate a thread by number; return with proc lock held. */
 1211 struct thread *
 1212 tdfind(lwpid_t tid, pid_t pid)
 1213 {
 1214 #define RUN_THRESH      16
 1215         struct thread *td;
 1216         int run = 0;
 1217 
 1218         rw_rlock(&tidhash_lock);
 1219         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
 1220                 if (td->td_tid == tid) {
 1221                         if (pid != -1 && td->td_proc->p_pid != pid) {
 1222                                 td = NULL;
 1223                                 break;
 1224                         }
 1225                         PROC_LOCK(td->td_proc);
 1226                         if (td->td_proc->p_state == PRS_NEW) {
 1227                                 PROC_UNLOCK(td->td_proc);
 1228                                 td = NULL;
 1229                                 break;
 1230                         }
 1231                         if (run > RUN_THRESH) {
 1232                                 if (rw_try_upgrade(&tidhash_lock)) {
 1233                                         LIST_REMOVE(td, td_hash);
 1234                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
 1235                                                 td, td_hash);
 1236                                         rw_wunlock(&tidhash_lock);
 1237                                         return (td);
 1238                                 }
 1239                         }
 1240                         break;
 1241                 }
 1242                 run++;
 1243         }
 1244         rw_runlock(&tidhash_lock);
 1245         return (td);
 1246 }
 1247 
 1248 void
 1249 tidhash_add(struct thread *td)
 1250 {
 1251         rw_wlock(&tidhash_lock);
 1252         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
 1253         rw_wunlock(&tidhash_lock);
 1254 }
 1255 
 1256 void
 1257 tidhash_remove(struct thread *td)
 1258 {
 1259         rw_wlock(&tidhash_lock);
 1260         LIST_REMOVE(td, td_hash);
 1261         rw_wunlock(&tidhash_lock);
 1262 }

Cache object: 2470795ebbb8682afe134e0fd11b924d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.