The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_thread.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
    5  *  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice(s), this list of conditions and the following disclaimer as
   12  *    the first lines of this file unmodified other than the possible
   13  *    addition of one or more copyright notices.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice(s), this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
   19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
   22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
   25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
   28  * DAMAGE.
   29  */
   30 
   31 #include "opt_witness.h"
   32 #include "opt_hwpmc_hooks.h"
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/12.0/sys/kern/kern_thread.c 338436 2018-09-02 21:16:43Z kib $");
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/kernel.h>
   40 #include <sys/lock.h>
   41 #include <sys/mutex.h>
   42 #include <sys/proc.h>
   43 #include <sys/rangelock.h>
   44 #include <sys/resourcevar.h>
   45 #include <sys/sdt.h>
   46 #include <sys/smp.h>
   47 #include <sys/sched.h>
   48 #include <sys/sleepqueue.h>
   49 #include <sys/selinfo.h>
   50 #include <sys/syscallsubr.h>
   51 #include <sys/sysent.h>
   52 #include <sys/turnstile.h>
   53 #include <sys/ktr.h>
   54 #include <sys/rwlock.h>
   55 #include <sys/umtx.h>
   56 #include <sys/vmmeter.h>
   57 #include <sys/cpuset.h>
   58 #ifdef  HWPMC_HOOKS
   59 #include <sys/pmckern.h>
   60 #endif
   61 
   62 #include <security/audit/audit.h>
   63 
   64 #include <vm/vm.h>
   65 #include <vm/vm_extern.h>
   66 #include <vm/uma.h>
   67 #include <sys/eventhandler.h>
   68 
   69 /*
   70  * Asserts below verify the stability of struct thread and struct proc
   71  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
   72  * to drift, change to the structures must be accompanied by the
   73  * assert update.
   74  *
   75  * On the stable branches after KBI freeze, conditions must not be
   76  * violated.  Typically new fields are moved to the end of the
   77  * structures.
   78  */
   79 #ifdef __amd64__
   80 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
   81     "struct thread KBI td_flags");
   82 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
   83     "struct thread KBI td_pflags");
   84 _Static_assert(offsetof(struct thread, td_frame) == 0x470,
   85     "struct thread KBI td_frame");
   86 _Static_assert(offsetof(struct thread, td_emuldata) == 0x528,
   87     "struct thread KBI td_emuldata");
   88 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
   89     "struct proc KBI p_flag");
   90 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
   91     "struct proc KBI p_pid");
   92 _Static_assert(offsetof(struct proc, p_filemon) == 0x3d0,
   93     "struct proc KBI p_filemon");
   94 _Static_assert(offsetof(struct proc, p_comm) == 0x3e4,
   95     "struct proc KBI p_comm");
   96 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4b8,
   97     "struct proc KBI p_emuldata");
   98 #endif
   99 #ifdef __i386__
  100 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
  101     "struct thread KBI td_flags");
  102 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
  103     "struct thread KBI td_pflags");
  104 _Static_assert(offsetof(struct thread, td_frame) == 0x2e8,
  105     "struct thread KBI td_frame");
  106 _Static_assert(offsetof(struct thread, td_emuldata) == 0x334,
  107     "struct thread KBI td_emuldata");
  108 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
  109     "struct proc KBI p_flag");
  110 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
  111     "struct proc KBI p_pid");
  112 _Static_assert(offsetof(struct proc, p_filemon) == 0x27c,
  113     "struct proc KBI p_filemon");
  114 _Static_assert(offsetof(struct proc, p_comm) == 0x28c,
  115     "struct proc KBI p_comm");
  116 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
  117     "struct proc KBI p_emuldata");
  118 #endif
  119 
  120 SDT_PROVIDER_DECLARE(proc);
  121 SDT_PROBE_DEFINE(proc, , , lwp__exit);
  122 
  123 /*
  124  * thread related storage.
  125  */
  126 static uma_zone_t thread_zone;
  127 
  128 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
  129 static struct mtx zombie_lock;
  130 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
  131 
  132 static void thread_zombie(struct thread *);
  133 static int thread_unsuspend_one(struct thread *td, struct proc *p,
  134     bool boundary);
  135 
  136 #define TID_BUFFER_SIZE 1024
  137 
  138 struct mtx tid_lock;
  139 static struct unrhdr *tid_unrhdr;
  140 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
  141 static int tid_head, tid_tail;
  142 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
  143 
  144 struct  tidhashhead *tidhashtbl;
  145 u_long  tidhash;
  146 struct  rwlock tidhash_lock;
  147 
  148 EVENTHANDLER_LIST_DEFINE(thread_ctor);
  149 EVENTHANDLER_LIST_DEFINE(thread_dtor);
  150 EVENTHANDLER_LIST_DEFINE(thread_init);
  151 EVENTHANDLER_LIST_DEFINE(thread_fini);
  152 
  153 static lwpid_t
  154 tid_alloc(void)
  155 {
  156         lwpid_t tid;
  157 
  158         tid = alloc_unr(tid_unrhdr);
  159         if (tid != -1)
  160                 return (tid);
  161         mtx_lock(&tid_lock);
  162         if (tid_head == tid_tail) {
  163                 mtx_unlock(&tid_lock);
  164                 return (-1);
  165         }
  166         tid = tid_buffer[tid_head];
  167         tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
  168         mtx_unlock(&tid_lock);
  169         return (tid);
  170 }
  171 
  172 static void
  173 tid_free(lwpid_t tid)
  174 {
  175         lwpid_t tmp_tid = -1;
  176 
  177         mtx_lock(&tid_lock);
  178         if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
  179                 tmp_tid = tid_buffer[tid_head];
  180                 tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
  181         }
  182         tid_buffer[tid_tail] = tid;
  183         tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
  184         mtx_unlock(&tid_lock);
  185         if (tmp_tid != -1)
  186                 free_unr(tid_unrhdr, tmp_tid);
  187 }
  188 
  189 /*
  190  * Prepare a thread for use.
  191  */
  192 static int
  193 thread_ctor(void *mem, int size, void *arg, int flags)
  194 {
  195         struct thread   *td;
  196 
  197         td = (struct thread *)mem;
  198         td->td_state = TDS_INACTIVE;
  199         td->td_oncpu = NOCPU;
  200 
  201         td->td_tid = tid_alloc();
  202 
  203         /*
  204          * Note that td_critnest begins life as 1 because the thread is not
  205          * running and is thereby implicitly waiting to be on the receiving
  206          * end of a context switch.
  207          */
  208         td->td_critnest = 1;
  209         td->td_lend_user_pri = PRI_MAX;
  210         EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
  211 #ifdef AUDIT
  212         audit_thread_alloc(td);
  213 #endif
  214         umtx_thread_alloc(td);
  215         return (0);
  216 }
  217 
  218 /*
  219  * Reclaim a thread after use.
  220  */
  221 static void
  222 thread_dtor(void *mem, int size, void *arg)
  223 {
  224         struct thread *td;
  225 
  226         td = (struct thread *)mem;
  227 
  228 #ifdef INVARIANTS
  229         /* Verify that this thread is in a safe state to free. */
  230         switch (td->td_state) {
  231         case TDS_INHIBITED:
  232         case TDS_RUNNING:
  233         case TDS_CAN_RUN:
  234         case TDS_RUNQ:
  235                 /*
  236                  * We must never unlink a thread that is in one of
  237                  * these states, because it is currently active.
  238                  */
  239                 panic("bad state for thread unlinking");
  240                 /* NOTREACHED */
  241         case TDS_INACTIVE:
  242                 break;
  243         default:
  244                 panic("bad thread state");
  245                 /* NOTREACHED */
  246         }
  247 #endif
  248 #ifdef AUDIT
  249         audit_thread_free(td);
  250 #endif
  251         /* Free all OSD associated to this thread. */
  252         osd_thread_exit(td);
  253         td_softdep_cleanup(td);
  254         MPASS(td->td_su == NULL);
  255 
  256         EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
  257         tid_free(td->td_tid);
  258 }
  259 
  260 /*
  261  * Initialize type-stable parts of a thread (when newly created).
  262  */
  263 static int
  264 thread_init(void *mem, int size, int flags)
  265 {
  266         struct thread *td;
  267 
  268         td = (struct thread *)mem;
  269 
  270         td->td_sleepqueue = sleepq_alloc();
  271         td->td_turnstile = turnstile_alloc();
  272         td->td_rlqe = NULL;
  273         EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
  274         umtx_thread_init(td);
  275         td->td_kstack = 0;
  276         td->td_sel = NULL;
  277         return (0);
  278 }
  279 
  280 /*
  281  * Tear down type-stable parts of a thread (just before being discarded).
  282  */
  283 static void
  284 thread_fini(void *mem, int size)
  285 {
  286         struct thread *td;
  287 
  288         td = (struct thread *)mem;
  289         EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
  290         rlqentry_free(td->td_rlqe);
  291         turnstile_free(td->td_turnstile);
  292         sleepq_free(td->td_sleepqueue);
  293         umtx_thread_fini(td);
  294         seltdfini(td);
  295 }
  296 
  297 /*
  298  * For a newly created process,
  299  * link up all the structures and its initial threads etc.
  300  * called from:
  301  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
  302  * proc_dtor() (should go away)
  303  * proc_init()
  304  */
  305 void
  306 proc_linkup0(struct proc *p, struct thread *td)
  307 {
  308         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  309         proc_linkup(p, td);
  310 }
  311 
  312 void
  313 proc_linkup(struct proc *p, struct thread *td)
  314 {
  315 
  316         sigqueue_init(&p->p_sigqueue, p);
  317         p->p_ksi = ksiginfo_alloc(1);
  318         if (p->p_ksi != NULL) {
  319                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
  320                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
  321         }
  322         LIST_INIT(&p->p_mqnotifier);
  323         p->p_numthreads = 0;
  324         thread_link(td, p);
  325 }
  326 
  327 /*
  328  * Initialize global thread allocation resources.
  329  */
  330 void
  331 threadinit(void)
  332 {
  333 
  334         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
  335 
  336         /*
  337          * pid_max cannot be greater than PID_MAX.
  338          * leave one number for thread0.
  339          */
  340         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
  341 
  342         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
  343             thread_ctor, thread_dtor, thread_init, thread_fini,
  344             32 - 1, UMA_ZONE_NOFREE);
  345         tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
  346         rw_init(&tidhash_lock, "tidhash");
  347 }
  348 
  349 /*
  350  * Place an unused thread on the zombie list.
  351  * Use the slpq as that must be unused by now.
  352  */
  353 void
  354 thread_zombie(struct thread *td)
  355 {
  356         mtx_lock_spin(&zombie_lock);
  357         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
  358         mtx_unlock_spin(&zombie_lock);
  359 }
  360 
  361 /*
  362  * Release a thread that has exited after cpu_throw().
  363  */
  364 void
  365 thread_stash(struct thread *td)
  366 {
  367         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
  368         thread_zombie(td);
  369 }
  370 
  371 /*
  372  * Reap zombie resources.
  373  */
  374 void
  375 thread_reap(void)
  376 {
  377         struct thread *td_first, *td_next;
  378 
  379         /*
  380          * Don't even bother to lock if none at this instant,
  381          * we really don't care about the next instant.
  382          */
  383         if (!TAILQ_EMPTY(&zombie_threads)) {
  384                 mtx_lock_spin(&zombie_lock);
  385                 td_first = TAILQ_FIRST(&zombie_threads);
  386                 if (td_first)
  387                         TAILQ_INIT(&zombie_threads);
  388                 mtx_unlock_spin(&zombie_lock);
  389                 while (td_first) {
  390                         td_next = TAILQ_NEXT(td_first, td_slpq);
  391                         thread_cow_free(td_first);
  392                         thread_free(td_first);
  393                         td_first = td_next;
  394                 }
  395         }
  396 }
  397 
  398 /*
  399  * Allocate a thread.
  400  */
  401 struct thread *
  402 thread_alloc(int pages)
  403 {
  404         struct thread *td;
  405 
  406         thread_reap(); /* check if any zombies to get */
  407 
  408         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
  409         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
  410         if (!vm_thread_new(td, pages)) {
  411                 uma_zfree(thread_zone, td);
  412                 return (NULL);
  413         }
  414         cpu_thread_alloc(td);
  415         return (td);
  416 }
  417 
  418 int
  419 thread_alloc_stack(struct thread *td, int pages)
  420 {
  421 
  422         KASSERT(td->td_kstack == 0,
  423             ("thread_alloc_stack called on a thread with kstack"));
  424         if (!vm_thread_new(td, pages))
  425                 return (0);
  426         cpu_thread_alloc(td);
  427         return (1);
  428 }
  429 
  430 /*
  431  * Deallocate a thread.
  432  */
  433 void
  434 thread_free(struct thread *td)
  435 {
  436 
  437         lock_profile_thread_exit(td);
  438         if (td->td_cpuset)
  439                 cpuset_rel(td->td_cpuset);
  440         td->td_cpuset = NULL;
  441         cpu_thread_free(td);
  442         if (td->td_kstack != 0)
  443                 vm_thread_dispose(td);
  444         callout_drain(&td->td_slpcallout);
  445         uma_zfree(thread_zone, td);
  446 }
  447 
  448 void
  449 thread_cow_get_proc(struct thread *newtd, struct proc *p)
  450 {
  451 
  452         PROC_LOCK_ASSERT(p, MA_OWNED);
  453         newtd->td_ucred = crhold(p->p_ucred);
  454         newtd->td_limit = lim_hold(p->p_limit);
  455         newtd->td_cowgen = p->p_cowgen;
  456 }
  457 
  458 void
  459 thread_cow_get(struct thread *newtd, struct thread *td)
  460 {
  461 
  462         newtd->td_ucred = crhold(td->td_ucred);
  463         newtd->td_limit = lim_hold(td->td_limit);
  464         newtd->td_cowgen = td->td_cowgen;
  465 }
  466 
  467 void
  468 thread_cow_free(struct thread *td)
  469 {
  470 
  471         if (td->td_ucred != NULL)
  472                 crfree(td->td_ucred);
  473         if (td->td_limit != NULL)
  474                 lim_free(td->td_limit);
  475 }
  476 
  477 void
  478 thread_cow_update(struct thread *td)
  479 {
  480         struct proc *p;
  481         struct ucred *oldcred;
  482         struct plimit *oldlimit;
  483 
  484         p = td->td_proc;
  485         oldcred = NULL;
  486         oldlimit = NULL;
  487         PROC_LOCK(p);
  488         if (td->td_ucred != p->p_ucred) {
  489                 oldcred = td->td_ucred;
  490                 td->td_ucred = crhold(p->p_ucred);
  491         }
  492         if (td->td_limit != p->p_limit) {
  493                 oldlimit = td->td_limit;
  494                 td->td_limit = lim_hold(p->p_limit);
  495         }
  496         td->td_cowgen = p->p_cowgen;
  497         PROC_UNLOCK(p);
  498         if (oldcred != NULL)
  499                 crfree(oldcred);
  500         if (oldlimit != NULL)
  501                 lim_free(oldlimit);
  502 }
  503 
  504 /*
  505  * Discard the current thread and exit from its context.
  506  * Always called with scheduler locked.
  507  *
  508  * Because we can't free a thread while we're operating under its context,
  509  * push the current thread into our CPU's deadthread holder. This means
  510  * we needn't worry about someone else grabbing our context before we
  511  * do a cpu_throw().
  512  */
  513 void
  514 thread_exit(void)
  515 {
  516         uint64_t runtime, new_switchtime;
  517         struct thread *td;
  518         struct thread *td2;
  519         struct proc *p;
  520         int wakeup_swapper;
  521 
  522         td = curthread;
  523         p = td->td_proc;
  524 
  525         PROC_SLOCK_ASSERT(p, MA_OWNED);
  526         mtx_assert(&Giant, MA_NOTOWNED);
  527 
  528         PROC_LOCK_ASSERT(p, MA_OWNED);
  529         KASSERT(p != NULL, ("thread exiting without a process"));
  530         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
  531             (long)p->p_pid, td->td_name);
  532         SDT_PROBE0(proc, , , lwp__exit);
  533         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
  534 
  535         /*
  536          * drop FPU & debug register state storage, or any other
  537          * architecture specific resources that
  538          * would not be on a new untouched process.
  539          */
  540         cpu_thread_exit(td);
  541 
  542         /*
  543          * The last thread is left attached to the process
  544          * So that the whole bundle gets recycled. Skip
  545          * all this stuff if we never had threads.
  546          * EXIT clears all sign of other threads when
  547          * it goes to single threading, so the last thread always
  548          * takes the short path.
  549          */
  550         if (p->p_flag & P_HADTHREADS) {
  551                 if (p->p_numthreads > 1) {
  552                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
  553                         thread_unlink(td);
  554                         td2 = FIRST_THREAD_IN_PROC(p);
  555                         sched_exit_thread(td2, td);
  556 
  557                         /*
  558                          * The test below is NOT true if we are the
  559                          * sole exiting thread. P_STOPPED_SINGLE is unset
  560                          * in exit1() after it is the only survivor.
  561                          */
  562                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  563                                 if (p->p_numthreads == p->p_suspcount) {
  564                                         thread_lock(p->p_singlethread);
  565                                         wakeup_swapper = thread_unsuspend_one(
  566                                                 p->p_singlethread, p, false);
  567                                         thread_unlock(p->p_singlethread);
  568                                         if (wakeup_swapper)
  569                                                 kick_proc0();
  570                                 }
  571                         }
  572 
  573                         PCPU_SET(deadthread, td);
  574                 } else {
  575                         /*
  576                          * The last thread is exiting.. but not through exit()
  577                          */
  578                         panic ("thread_exit: Last thread exiting on its own");
  579                 }
  580         } 
  581 #ifdef  HWPMC_HOOKS
  582         /*
  583          * If this thread is part of a process that is being tracked by hwpmc(4),
  584          * inform the module of the thread's impending exit.
  585          */
  586         if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
  587                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
  588                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
  589         } else if (PMC_SYSTEM_SAMPLING_ACTIVE())
  590                 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
  591 #endif
  592         PROC_UNLOCK(p);
  593         PROC_STATLOCK(p);
  594         thread_lock(td);
  595         PROC_SUNLOCK(p);
  596 
  597         /* Do the same timestamp bookkeeping that mi_switch() would do. */
  598         new_switchtime = cpu_ticks();
  599         runtime = new_switchtime - PCPU_GET(switchtime);
  600         td->td_runtime += runtime;
  601         td->td_incruntime += runtime;
  602         PCPU_SET(switchtime, new_switchtime);
  603         PCPU_SET(switchticks, ticks);
  604         VM_CNT_INC(v_swtch);
  605 
  606         /* Save our resource usage in our process. */
  607         td->td_ru.ru_nvcsw++;
  608         ruxagg(p, td);
  609         rucollect(&p->p_ru, &td->td_ru);
  610         PROC_STATUNLOCK(p);
  611 
  612         td->td_state = TDS_INACTIVE;
  613 #ifdef WITNESS
  614         witness_thread_exit(td);
  615 #endif
  616         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
  617         sched_throw(td);
  618         panic("I'm a teapot!");
  619         /* NOTREACHED */
  620 }
  621 
  622 /*
  623  * Do any thread specific cleanups that may be needed in wait()
  624  * called with Giant, proc and schedlock not held.
  625  */
  626 void
  627 thread_wait(struct proc *p)
  628 {
  629         struct thread *td;
  630 
  631         mtx_assert(&Giant, MA_NOTOWNED);
  632         KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
  633         KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
  634         td = FIRST_THREAD_IN_PROC(p);
  635         /* Lock the last thread so we spin until it exits cpu_throw(). */
  636         thread_lock(td);
  637         thread_unlock(td);
  638         lock_profile_thread_exit(td);
  639         cpuset_rel(td->td_cpuset);
  640         td->td_cpuset = NULL;
  641         cpu_thread_clean(td);
  642         thread_cow_free(td);
  643         callout_drain(&td->td_slpcallout);
  644         thread_reap();  /* check for zombie threads etc. */
  645 }
  646 
  647 /*
  648  * Link a thread to a process.
  649  * set up anything that needs to be initialized for it to
  650  * be used by the process.
  651  */
  652 void
  653 thread_link(struct thread *td, struct proc *p)
  654 {
  655 
  656         /*
  657          * XXX This can't be enabled because it's called for proc0 before
  658          * its lock has been created.
  659          * PROC_LOCK_ASSERT(p, MA_OWNED);
  660          */
  661         td->td_state    = TDS_INACTIVE;
  662         td->td_proc     = p;
  663         td->td_flags    = TDF_INMEM;
  664 
  665         LIST_INIT(&td->td_contested);
  666         LIST_INIT(&td->td_lprof[0]);
  667         LIST_INIT(&td->td_lprof[1]);
  668         sigqueue_init(&td->td_sigqueue, p);
  669         callout_init(&td->td_slpcallout, 1);
  670         TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
  671         p->p_numthreads++;
  672 }
  673 
  674 /*
  675  * Called from:
  676  *  thread_exit()
  677  */
  678 void
  679 thread_unlink(struct thread *td)
  680 {
  681         struct proc *p = td->td_proc;
  682 
  683         PROC_LOCK_ASSERT(p, MA_OWNED);
  684         TAILQ_REMOVE(&p->p_threads, td, td_plist);
  685         p->p_numthreads--;
  686         /* could clear a few other things here */
  687         /* Must  NOT clear links to proc! */
  688 }
  689 
  690 static int
  691 calc_remaining(struct proc *p, int mode)
  692 {
  693         int remaining;
  694 
  695         PROC_LOCK_ASSERT(p, MA_OWNED);
  696         PROC_SLOCK_ASSERT(p, MA_OWNED);
  697         if (mode == SINGLE_EXIT)
  698                 remaining = p->p_numthreads;
  699         else if (mode == SINGLE_BOUNDARY)
  700                 remaining = p->p_numthreads - p->p_boundary_count;
  701         else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
  702                 remaining = p->p_numthreads - p->p_suspcount;
  703         else
  704                 panic("calc_remaining: wrong mode %d", mode);
  705         return (remaining);
  706 }
  707 
  708 static int
  709 remain_for_mode(int mode)
  710 {
  711 
  712         return (mode == SINGLE_ALLPROC ? 0 : 1);
  713 }
  714 
  715 static int
  716 weed_inhib(int mode, struct thread *td2, struct proc *p)
  717 {
  718         int wakeup_swapper;
  719 
  720         PROC_LOCK_ASSERT(p, MA_OWNED);
  721         PROC_SLOCK_ASSERT(p, MA_OWNED);
  722         THREAD_LOCK_ASSERT(td2, MA_OWNED);
  723 
  724         wakeup_swapper = 0;
  725         switch (mode) {
  726         case SINGLE_EXIT:
  727                 if (TD_IS_SUSPENDED(td2))
  728                         wakeup_swapper |= thread_unsuspend_one(td2, p, true);
  729                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
  730                         wakeup_swapper |= sleepq_abort(td2, EINTR);
  731                 break;
  732         case SINGLE_BOUNDARY:
  733         case SINGLE_NO_EXIT:
  734                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
  735                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
  736                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
  737                         wakeup_swapper |= sleepq_abort(td2, ERESTART);
  738                 break;
  739         case SINGLE_ALLPROC:
  740                 /*
  741                  * ALLPROC suspend tries to avoid spurious EINTR for
  742                  * threads sleeping interruptable, by suspending the
  743                  * thread directly, similarly to sig_suspend_threads().
  744                  * Since such sleep is not performed at the user
  745                  * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
  746                  * is used to avoid immediate un-suspend.
  747                  */
  748                 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
  749                     TDF_ALLPROCSUSP)) == 0)
  750                         wakeup_swapper |= thread_unsuspend_one(td2, p, false);
  751                 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
  752                         if ((td2->td_flags & TDF_SBDRY) == 0) {
  753                                 thread_suspend_one(td2);
  754                                 td2->td_flags |= TDF_ALLPROCSUSP;
  755                         } else {
  756                                 wakeup_swapper |= sleepq_abort(td2, ERESTART);
  757                         }
  758                 }
  759                 break;
  760         }
  761         return (wakeup_swapper);
  762 }
  763 
  764 /*
  765  * Enforce single-threading.
  766  *
  767  * Returns 1 if the caller must abort (another thread is waiting to
  768  * exit the process or similar). Process is locked!
  769  * Returns 0 when you are successfully the only thread running.
  770  * A process has successfully single threaded in the suspend mode when
  771  * There are no threads in user mode. Threads in the kernel must be
  772  * allowed to continue until they get to the user boundary. They may even
  773  * copy out their return values and data before suspending. They may however be
  774  * accelerated in reaching the user boundary as we will wake up
  775  * any sleeping threads that are interruptable. (PCATCH).
  776  */
  777 int
  778 thread_single(struct proc *p, int mode)
  779 {
  780         struct thread *td;
  781         struct thread *td2;
  782         int remaining, wakeup_swapper;
  783 
  784         td = curthread;
  785         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
  786             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
  787             ("invalid mode %d", mode));
  788         /*
  789          * If allowing non-ALLPROC singlethreading for non-curproc
  790          * callers, calc_remaining() and remain_for_mode() should be
  791          * adjusted to also account for td->td_proc != p.  For now
  792          * this is not implemented because it is not used.
  793          */
  794         KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
  795             (mode != SINGLE_ALLPROC && td->td_proc == p),
  796             ("mode %d proc %p curproc %p", mode, p, td->td_proc));
  797         mtx_assert(&Giant, MA_NOTOWNED);
  798         PROC_LOCK_ASSERT(p, MA_OWNED);
  799 
  800         if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
  801                 return (0);
  802 
  803         /* Is someone already single threading? */
  804         if (p->p_singlethread != NULL && p->p_singlethread != td)
  805                 return (1);
  806 
  807         if (mode == SINGLE_EXIT) {
  808                 p->p_flag |= P_SINGLE_EXIT;
  809                 p->p_flag &= ~P_SINGLE_BOUNDARY;
  810         } else {
  811                 p->p_flag &= ~P_SINGLE_EXIT;
  812                 if (mode == SINGLE_BOUNDARY)
  813                         p->p_flag |= P_SINGLE_BOUNDARY;
  814                 else
  815                         p->p_flag &= ~P_SINGLE_BOUNDARY;
  816         }
  817         if (mode == SINGLE_ALLPROC)
  818                 p->p_flag |= P_TOTAL_STOP;
  819         p->p_flag |= P_STOPPED_SINGLE;
  820         PROC_SLOCK(p);
  821         p->p_singlethread = td;
  822         remaining = calc_remaining(p, mode);
  823         while (remaining != remain_for_mode(mode)) {
  824                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
  825                         goto stopme;
  826                 wakeup_swapper = 0;
  827                 FOREACH_THREAD_IN_PROC(p, td2) {
  828                         if (td2 == td)
  829                                 continue;
  830                         thread_lock(td2);
  831                         td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
  832                         if (TD_IS_INHIBITED(td2)) {
  833                                 wakeup_swapper |= weed_inhib(mode, td2, p);
  834 #ifdef SMP
  835                         } else if (TD_IS_RUNNING(td2) && td != td2) {
  836                                 forward_signal(td2);
  837 #endif
  838                         }
  839                         thread_unlock(td2);
  840                 }
  841                 if (wakeup_swapper)
  842                         kick_proc0();
  843                 remaining = calc_remaining(p, mode);
  844 
  845                 /*
  846                  * Maybe we suspended some threads.. was it enough?
  847                  */
  848                 if (remaining == remain_for_mode(mode))
  849                         break;
  850 
  851 stopme:
  852                 /*
  853                  * Wake us up when everyone else has suspended.
  854                  * In the mean time we suspend as well.
  855                  */
  856                 thread_suspend_switch(td, p);
  857                 remaining = calc_remaining(p, mode);
  858         }
  859         if (mode == SINGLE_EXIT) {
  860                 /*
  861                  * Convert the process to an unthreaded process.  The
  862                  * SINGLE_EXIT is called by exit1() or execve(), in
  863                  * both cases other threads must be retired.
  864                  */
  865                 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
  866                 p->p_singlethread = NULL;
  867                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
  868 
  869                 /*
  870                  * Wait for any remaining threads to exit cpu_throw().
  871                  */
  872                 while (p->p_exitthreads != 0) {
  873                         PROC_SUNLOCK(p);
  874                         PROC_UNLOCK(p);
  875                         sched_relinquish(td);
  876                         PROC_LOCK(p);
  877                         PROC_SLOCK(p);
  878                 }
  879         } else if (mode == SINGLE_BOUNDARY) {
  880                 /*
  881                  * Wait until all suspended threads are removed from
  882                  * the processors.  The thread_suspend_check()
  883                  * increments p_boundary_count while it is still
  884                  * running, which makes it possible for the execve()
  885                  * to destroy vmspace while our other threads are
  886                  * still using the address space.
  887                  *
  888                  * We lock the thread, which is only allowed to
  889                  * succeed after context switch code finished using
  890                  * the address space.
  891                  */
  892                 FOREACH_THREAD_IN_PROC(p, td2) {
  893                         if (td2 == td)
  894                                 continue;
  895                         thread_lock(td2);
  896                         KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
  897                             ("td %p not on boundary", td2));
  898                         KASSERT(TD_IS_SUSPENDED(td2),
  899                             ("td %p is not suspended", td2));
  900                         thread_unlock(td2);
  901                 }
  902         }
  903         PROC_SUNLOCK(p);
  904         return (0);
  905 }
  906 
  907 bool
  908 thread_suspend_check_needed(void)
  909 {
  910         struct proc *p;
  911         struct thread *td;
  912 
  913         td = curthread;
  914         p = td->td_proc;
  915         PROC_LOCK_ASSERT(p, MA_OWNED);
  916         return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
  917             (td->td_dbgflags & TDB_SUSPEND) != 0));
  918 }
  919 
  920 /*
  921  * Called in from locations that can safely check to see
  922  * whether we have to suspend or at least throttle for a
  923  * single-thread event (e.g. fork).
  924  *
  925  * Such locations include userret().
  926  * If the "return_instead" argument is non zero, the thread must be able to
  927  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
  928  *
  929  * The 'return_instead' argument tells the function if it may do a
  930  * thread_exit() or suspend, or whether the caller must abort and back
  931  * out instead.
  932  *
  933  * If the thread that set the single_threading request has set the
  934  * P_SINGLE_EXIT bit in the process flags then this call will never return
  935  * if 'return_instead' is false, but will exit.
  936  *
  937  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
  938  *---------------+--------------------+---------------------
  939  *       0       | returns 0          |   returns 0 or 1
  940  *               | when ST ends       |   immediately
  941  *---------------+--------------------+---------------------
  942  *       1       | thread exits       |   returns 1
  943  *               |                    |  immediately
  944  * 0 = thread_exit() or suspension ok,
  945  * other = return error instead of stopping the thread.
  946  *
  947  * While a full suspension is under effect, even a single threading
  948  * thread would be suspended if it made this call (but it shouldn't).
  949  * This call should only be made from places where
  950  * thread_exit() would be safe as that may be the outcome unless
  951  * return_instead is set.
  952  */
  953 int
  954 thread_suspend_check(int return_instead)
  955 {
  956         struct thread *td;
  957         struct proc *p;
  958         int wakeup_swapper;
  959 
  960         td = curthread;
  961         p = td->td_proc;
  962         mtx_assert(&Giant, MA_NOTOWNED);
  963         PROC_LOCK_ASSERT(p, MA_OWNED);
  964         while (thread_suspend_check_needed()) {
  965                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  966                         KASSERT(p->p_singlethread != NULL,
  967                             ("singlethread not set"));
  968                         /*
  969                          * The only suspension in action is a
  970                          * single-threading. Single threader need not stop.
  971                          * It is safe to access p->p_singlethread unlocked
  972                          * because it can only be set to our address by us.
  973                          */
  974                         if (p->p_singlethread == td)
  975                                 return (0);     /* Exempt from stopping. */
  976                 }
  977                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
  978                         return (EINTR);
  979 
  980                 /* Should we goto user boundary if we didn't come from there? */
  981                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
  982                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
  983                         return (ERESTART);
  984 
  985                 /*
  986                  * Ignore suspend requests if they are deferred.
  987                  */
  988                 if ((td->td_flags & TDF_SBDRY) != 0) {
  989                         KASSERT(return_instead,
  990                             ("TDF_SBDRY set for unsafe thread_suspend_check"));
  991                         KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
  992                             (TDF_SEINTR | TDF_SERESTART),
  993                             ("both TDF_SEINTR and TDF_SERESTART"));
  994                         return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
  995                 }
  996 
  997                 /*
  998                  * If the process is waiting for us to exit,
  999                  * this thread should just suicide.
 1000                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
 1001                  */
 1002                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
 1003                         PROC_UNLOCK(p);
 1004 
 1005                         /*
 1006                          * Allow Linux emulation layer to do some work
 1007                          * before thread suicide.
 1008                          */
 1009                         if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
 1010                                 (p->p_sysent->sv_thread_detach)(td);
 1011                         umtx_thread_exit(td);
 1012                         kern_thr_exit(td);
 1013                         panic("stopped thread did not exit");
 1014                 }
 1015 
 1016                 PROC_SLOCK(p);
 1017                 thread_stopped(p);
 1018                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
 1019                         if (p->p_numthreads == p->p_suspcount + 1) {
 1020                                 thread_lock(p->p_singlethread);
 1021                                 wakeup_swapper = thread_unsuspend_one(
 1022                                     p->p_singlethread, p, false);
 1023                                 thread_unlock(p->p_singlethread);
 1024                                 if (wakeup_swapper)
 1025                                         kick_proc0();
 1026                         }
 1027                 }
 1028                 PROC_UNLOCK(p);
 1029                 thread_lock(td);
 1030                 /*
 1031                  * When a thread suspends, it just
 1032                  * gets taken off all queues.
 1033                  */
 1034                 thread_suspend_one(td);
 1035                 if (return_instead == 0) {
 1036                         p->p_boundary_count++;
 1037                         td->td_flags |= TDF_BOUNDARY;
 1038                 }
 1039                 PROC_SUNLOCK(p);
 1040                 mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
 1041                 thread_unlock(td);
 1042                 PROC_LOCK(p);
 1043         }
 1044         return (0);
 1045 }
 1046 
 1047 void
 1048 thread_suspend_switch(struct thread *td, struct proc *p)
 1049 {
 1050 
 1051         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
 1052         PROC_LOCK_ASSERT(p, MA_OWNED);
 1053         PROC_SLOCK_ASSERT(p, MA_OWNED);
 1054         /*
 1055          * We implement thread_suspend_one in stages here to avoid
 1056          * dropping the proc lock while the thread lock is owned.
 1057          */
 1058         if (p == td->td_proc) {
 1059                 thread_stopped(p);
 1060                 p->p_suspcount++;
 1061         }
 1062         PROC_UNLOCK(p);
 1063         thread_lock(td);
 1064         td->td_flags &= ~TDF_NEEDSUSPCHK;
 1065         TD_SET_SUSPENDED(td);
 1066         sched_sleep(td, 0);
 1067         PROC_SUNLOCK(p);
 1068         DROP_GIANT();
 1069         mi_switch(SW_VOL | SWT_SUSPEND, NULL);
 1070         thread_unlock(td);
 1071         PICKUP_GIANT();
 1072         PROC_LOCK(p);
 1073         PROC_SLOCK(p);
 1074 }
 1075 
 1076 void
 1077 thread_suspend_one(struct thread *td)
 1078 {
 1079         struct proc *p;
 1080 
 1081         p = td->td_proc;
 1082         PROC_SLOCK_ASSERT(p, MA_OWNED);
 1083         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1084         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
 1085         p->p_suspcount++;
 1086         td->td_flags &= ~TDF_NEEDSUSPCHK;
 1087         TD_SET_SUSPENDED(td);
 1088         sched_sleep(td, 0);
 1089 }
 1090 
 1091 static int
 1092 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
 1093 {
 1094 
 1095         THREAD_LOCK_ASSERT(td, MA_OWNED);
 1096         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
 1097         TD_CLR_SUSPENDED(td);
 1098         td->td_flags &= ~TDF_ALLPROCSUSP;
 1099         if (td->td_proc == p) {
 1100                 PROC_SLOCK_ASSERT(p, MA_OWNED);
 1101                 p->p_suspcount--;
 1102                 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
 1103                         td->td_flags &= ~TDF_BOUNDARY;
 1104                         p->p_boundary_count--;
 1105                 }
 1106         }
 1107         return (setrunnable(td));
 1108 }
 1109 
 1110 /*
 1111  * Allow all threads blocked by single threading to continue running.
 1112  */
 1113 void
 1114 thread_unsuspend(struct proc *p)
 1115 {
 1116         struct thread *td;
 1117         int wakeup_swapper;
 1118 
 1119         PROC_LOCK_ASSERT(p, MA_OWNED);
 1120         PROC_SLOCK_ASSERT(p, MA_OWNED);
 1121         wakeup_swapper = 0;
 1122         if (!P_SHOULDSTOP(p)) {
 1123                 FOREACH_THREAD_IN_PROC(p, td) {
 1124                         thread_lock(td);
 1125                         if (TD_IS_SUSPENDED(td)) {
 1126                                 wakeup_swapper |= thread_unsuspend_one(td, p,
 1127                                     true);
 1128                         }
 1129                         thread_unlock(td);
 1130                 }
 1131         } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
 1132             p->p_numthreads == p->p_suspcount) {
 1133                 /*
 1134                  * Stopping everything also did the job for the single
 1135                  * threading request. Now we've downgraded to single-threaded,
 1136                  * let it continue.
 1137                  */
 1138                 if (p->p_singlethread->td_proc == p) {
 1139                         thread_lock(p->p_singlethread);
 1140                         wakeup_swapper = thread_unsuspend_one(
 1141                             p->p_singlethread, p, false);
 1142                         thread_unlock(p->p_singlethread);
 1143                 }
 1144         }
 1145         if (wakeup_swapper)
 1146                 kick_proc0();
 1147 }
 1148 
 1149 /*
 1150  * End the single threading mode..
 1151  */
 1152 void
 1153 thread_single_end(struct proc *p, int mode)
 1154 {
 1155         struct thread *td;
 1156         int wakeup_swapper;
 1157 
 1158         KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
 1159             mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
 1160             ("invalid mode %d", mode));
 1161         PROC_LOCK_ASSERT(p, MA_OWNED);
 1162         KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
 1163             (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
 1164             ("mode %d does not match P_TOTAL_STOP", mode));
 1165         KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
 1166             ("thread_single_end from other thread %p %p",
 1167             curthread, p->p_singlethread));
 1168         KASSERT(mode != SINGLE_BOUNDARY ||
 1169             (p->p_flag & P_SINGLE_BOUNDARY) != 0,
 1170             ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
 1171         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
 1172             P_TOTAL_STOP);
 1173         PROC_SLOCK(p);
 1174         p->p_singlethread = NULL;
 1175         wakeup_swapper = 0;
 1176         /*
 1177          * If there are other threads they may now run,
 1178          * unless of course there is a blanket 'stop order'
 1179          * on the process. The single threader must be allowed
 1180          * to continue however as this is a bad place to stop.
 1181          */
 1182         if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
 1183                 FOREACH_THREAD_IN_PROC(p, td) {
 1184                         thread_lock(td);
 1185                         if (TD_IS_SUSPENDED(td)) {
 1186                                 wakeup_swapper |= thread_unsuspend_one(td, p,
 1187                                     mode == SINGLE_BOUNDARY);
 1188                         }
 1189                         thread_unlock(td);
 1190                 }
 1191         }
 1192         KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
 1193             ("inconsistent boundary count %d", p->p_boundary_count));
 1194         PROC_SUNLOCK(p);
 1195         if (wakeup_swapper)
 1196                 kick_proc0();
 1197 }
 1198 
 1199 struct thread *
 1200 thread_find(struct proc *p, lwpid_t tid)
 1201 {
 1202         struct thread *td;
 1203 
 1204         PROC_LOCK_ASSERT(p, MA_OWNED);
 1205         FOREACH_THREAD_IN_PROC(p, td) {
 1206                 if (td->td_tid == tid)
 1207                         break;
 1208         }
 1209         return (td);
 1210 }
 1211 
 1212 /* Locate a thread by number; return with proc lock held. */
 1213 struct thread *
 1214 tdfind(lwpid_t tid, pid_t pid)
 1215 {
 1216 #define RUN_THRESH      16
 1217         struct thread *td;
 1218         int run = 0;
 1219 
 1220         rw_rlock(&tidhash_lock);
 1221         LIST_FOREACH(td, TIDHASH(tid), td_hash) {
 1222                 if (td->td_tid == tid) {
 1223                         if (pid != -1 && td->td_proc->p_pid != pid) {
 1224                                 td = NULL;
 1225                                 break;
 1226                         }
 1227                         PROC_LOCK(td->td_proc);
 1228                         if (td->td_proc->p_state == PRS_NEW) {
 1229                                 PROC_UNLOCK(td->td_proc);
 1230                                 td = NULL;
 1231                                 break;
 1232                         }
 1233                         if (run > RUN_THRESH) {
 1234                                 if (rw_try_upgrade(&tidhash_lock)) {
 1235                                         LIST_REMOVE(td, td_hash);
 1236                                         LIST_INSERT_HEAD(TIDHASH(td->td_tid),
 1237                                                 td, td_hash);
 1238                                         rw_wunlock(&tidhash_lock);
 1239                                         return (td);
 1240                                 }
 1241                         }
 1242                         break;
 1243                 }
 1244                 run++;
 1245         }
 1246         rw_runlock(&tidhash_lock);
 1247         return (td);
 1248 }
 1249 
 1250 void
 1251 tidhash_add(struct thread *td)
 1252 {
 1253         rw_wlock(&tidhash_lock);
 1254         LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
 1255         rw_wunlock(&tidhash_lock);
 1256 }
 1257 
 1258 void
 1259 tidhash_remove(struct thread *td)
 1260 {
 1261         rw_wlock(&tidhash_lock);
 1262         LIST_REMOVE(td, td_hash);
 1263         rw_wunlock(&tidhash_lock);
 1264 }

Cache object: c13e00d5d5d66f9415bee1f4695eaba7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.