The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_thread.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
    3  *  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice(s), this list of conditions and the following disclaimer as
   10  *    the first lines of this file unmodified other than the possible
   11  *    addition of one or more copyright notices.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice(s), this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
   17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
   20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
   22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
   23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
   26  * DAMAGE.
   27  */
   28 
   29 #include "opt_hwpmc_hooks.h"
   30 
   31 #include <sys/cdefs.h>
   32 __FBSDID("$FreeBSD$");
   33 
   34 #include <sys/param.h>
   35 #include <sys/systm.h>
   36 #include <sys/kernel.h>
   37 #include <sys/lock.h>
   38 #include <sys/mutex.h>
   39 #include <sys/proc.h>
   40 #include <sys/resourcevar.h>
   41 #include <sys/smp.h>
   42 #include <sys/sysctl.h>
   43 #include <sys/sched.h>
   44 #include <sys/sleepqueue.h>
   45 #include <sys/turnstile.h>
   46 #include <sys/ktr.h>
   47 #include <sys/umtx.h>
   48 #include <sys/cpuset.h>
   49 #ifdef  HWPMC_HOOKS
   50 #include <sys/pmckern.h>
   51 #endif
   52 
   53 #include <security/audit/audit.h>
   54 
   55 #include <vm/vm.h>
   56 #include <vm/vm_extern.h>
   57 #include <vm/uma.h>
   58 #include <sys/eventhandler.h>
   59 
   60 /*
   61  * thread related storage.
   62  */
   63 static uma_zone_t thread_zone;
   64 
   65 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
   66 
   67 int max_threads_per_proc = 1500;
   68 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
   69         &max_threads_per_proc, 0, "Limit on threads per proc");
   70 
   71 int max_threads_hits;
   72 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
   73         &max_threads_hits, 0, "");
   74 
   75 #ifdef KSE
   76 int virtual_cpu;
   77 
   78 #endif
   79 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
   80 static struct mtx zombie_lock;
   81 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
   82 
   83 static void thread_zombie(struct thread *);
   84 
   85 #ifdef KSE
   86 static int
   87 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
   88 {
   89         int error, new_val;
   90         int def_val;
   91 
   92         def_val = mp_ncpus;
   93         if (virtual_cpu == 0)
   94                 new_val = def_val;
   95         else
   96                 new_val = virtual_cpu;
   97         error = sysctl_handle_int(oidp, &new_val, 0, req);
   98         if (error != 0 || req->newptr == NULL)
   99                 return (error);
  100         if (new_val < 0)
  101                 return (EINVAL);
  102         virtual_cpu = new_val;
  103         return (0);
  104 }
  105 
  106 /* DEBUG ONLY */
  107 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
  108         0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
  109         "debug virtual cpus");
  110 #endif
  111 
  112 struct mtx tid_lock;
  113 static struct unrhdr *tid_unrhdr;
  114 
  115 /*
  116  * Prepare a thread for use.
  117  */
  118 static int
  119 thread_ctor(void *mem, int size, void *arg, int flags)
  120 {
  121         struct thread   *td;
  122 
  123         td = (struct thread *)mem;
  124         td->td_state = TDS_INACTIVE;
  125         td->td_oncpu = NOCPU;
  126 
  127         td->td_tid = alloc_unr(tid_unrhdr);
  128         td->td_syscalls = 0;
  129         td->td_incruntime = 0;
  130 
  131         /*
  132          * Note that td_critnest begins life as 1 because the thread is not
  133          * running and is thereby implicitly waiting to be on the receiving
  134          * end of a context switch.
  135          */
  136         td->td_critnest = 1;
  137         EVENTHANDLER_INVOKE(thread_ctor, td);
  138 #ifdef AUDIT
  139         audit_thread_alloc(td);
  140 #endif
  141         /* Free all OSD associated to this thread. */
  142         osd_thread_exit(td);
  143 
  144         umtx_thread_alloc(td);
  145         return (0);
  146 }
  147 
  148 /*
  149  * Reclaim a thread after use.
  150  */
  151 static void
  152 thread_dtor(void *mem, int size, void *arg)
  153 {
  154         struct thread *td;
  155 
  156         td = (struct thread *)mem;
  157 
  158 #ifdef INVARIANTS
  159         /* Verify that this thread is in a safe state to free. */
  160         switch (td->td_state) {
  161         case TDS_INHIBITED:
  162         case TDS_RUNNING:
  163         case TDS_CAN_RUN:
  164         case TDS_RUNQ:
  165                 /*
  166                  * We must never unlink a thread that is in one of
  167                  * these states, because it is currently active.
  168                  */
  169                 panic("bad state for thread unlinking");
  170                 /* NOTREACHED */
  171         case TDS_INACTIVE:
  172                 break;
  173         default:
  174                 panic("bad thread state");
  175                 /* NOTREACHED */
  176         }
  177 #endif
  178 #ifdef AUDIT
  179         audit_thread_free(td);
  180 #endif
  181         EVENTHANDLER_INVOKE(thread_dtor, td);
  182         free_unr(tid_unrhdr, td->td_tid);
  183         sched_newthread(td);
  184 }
  185 
  186 /*
  187  * Initialize type-stable parts of a thread (when newly created).
  188  */
  189 static int
  190 thread_init(void *mem, int size, int flags)
  191 {
  192         struct thread *td;
  193 
  194         td = (struct thread *)mem;
  195 
  196         td->td_sleepqueue = sleepq_alloc();
  197         td->td_turnstile = turnstile_alloc();
  198         EVENTHANDLER_INVOKE(thread_init, td);
  199         td->td_sched = (struct td_sched *)&td[1];
  200         sched_newthread(td);
  201         umtx_thread_init(td);
  202         td->td_kstack = 0;
  203         td->td_fpop = NULL;
  204         return (0);
  205 }
  206 
  207 /*
  208  * Tear down type-stable parts of a thread (just before being discarded).
  209  */
  210 static void
  211 thread_fini(void *mem, int size)
  212 {
  213         struct thread *td;
  214 
  215         td = (struct thread *)mem;
  216         EVENTHANDLER_INVOKE(thread_fini, td);
  217         turnstile_free(td->td_turnstile);
  218         sleepq_free(td->td_sleepqueue);
  219         umtx_thread_fini(td);
  220 }
  221 
  222 /*
  223  * For a newly created process,
  224  * link up all the structures and its initial threads etc.
  225  * called from:
  226  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
  227  * proc_dtor() (should go away)
  228  * proc_init()
  229  */
  230 void
  231 proc_linkup0(struct proc *p, struct thread *td)
  232 {
  233         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  234         proc_linkup(p, td);
  235 }
  236 
  237 void
  238 proc_linkup(struct proc *p, struct thread *td)
  239 {
  240 
  241 #ifdef KSE
  242         TAILQ_INIT(&p->p_upcalls);           /* upcall list */
  243 #endif
  244         sigqueue_init(&p->p_sigqueue, p);
  245         p->p_ksi = ksiginfo_alloc(1);
  246         if (p->p_ksi != NULL) {
  247                 /* XXX p_ksi may be null if ksiginfo zone is not ready */
  248                 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
  249         }
  250         LIST_INIT(&p->p_mqnotifier);
  251         p->p_numthreads = 0;
  252         thread_link(td, p);
  253 }
  254 
  255 /*
  256  * Initialize global thread allocation resources.
  257  */
  258 void
  259 threadinit(void)
  260 {
  261 
  262         mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
  263         /* leave one number for thread0 */
  264         tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
  265 
  266         thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
  267             thread_ctor, thread_dtor, thread_init, thread_fini,
  268             16 - 1, 0);
  269 #ifdef KSE
  270         kseinit();      /* set up kse specific stuff  e.g. upcall zone*/
  271 #endif
  272 }
  273 
  274 /*
  275  * Place an unused thread on the zombie list.
  276  * Use the slpq as that must be unused by now.
  277  */
  278 void
  279 thread_zombie(struct thread *td)
  280 {
  281         mtx_lock_spin(&zombie_lock);
  282         TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
  283         mtx_unlock_spin(&zombie_lock);
  284 }
  285 
  286 /*
  287  * Release a thread that has exited after cpu_throw().
  288  */
  289 void
  290 thread_stash(struct thread *td)
  291 {
  292         atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
  293         thread_zombie(td);
  294 }
  295 
  296 /*
  297  * Reap zombie kse resource.
  298  */
  299 void
  300 thread_reap(void)
  301 {
  302         struct thread *td_first, *td_next;
  303 
  304         /*
  305          * Don't even bother to lock if none at this instant,
  306          * we really don't care about the next instant..
  307          */
  308         if (!TAILQ_EMPTY(&zombie_threads)) {
  309                 mtx_lock_spin(&zombie_lock);
  310                 td_first = TAILQ_FIRST(&zombie_threads);
  311                 if (td_first)
  312                         TAILQ_INIT(&zombie_threads);
  313                 mtx_unlock_spin(&zombie_lock);
  314                 while (td_first) {
  315                         td_next = TAILQ_NEXT(td_first, td_slpq);
  316                         if (td_first->td_ucred)
  317                                 crfree(td_first->td_ucred);
  318                         thread_free(td_first);
  319                         td_first = td_next;
  320                 }
  321         }
  322 #ifdef KSE
  323         upcall_reap();
  324 #endif
  325 }
  326 
  327 /*
  328  * Allocate a thread.
  329  */
  330 struct thread *
  331 thread_alloc(void)
  332 {
  333         struct thread *td;
  334 
  335         thread_reap(); /* check if any zombies to get */
  336 
  337         td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
  338         KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
  339         if (!vm_thread_new(td, 0)) {
  340                 uma_zfree(thread_zone, td);
  341                 return (NULL);
  342         }
  343         cpu_thread_alloc(td);
  344         return (td);
  345 }
  346 
  347 
  348 /*
  349  * Deallocate a thread.
  350  */
  351 void
  352 thread_free(struct thread *td)
  353 {
  354         if (td->td_cpuset)
  355                 cpuset_rel(td->td_cpuset);
  356         td->td_cpuset = NULL;
  357         cpu_thread_free(td);
  358         if (td->td_altkstack != 0)
  359                 vm_thread_dispose_altkstack(td);
  360         if (td->td_kstack != 0)
  361                 vm_thread_dispose(td);
  362         uma_zfree(thread_zone, td);
  363 }
  364 
  365 /*
  366  * Discard the current thread and exit from its context.
  367  * Always called with scheduler locked.
  368  *
  369  * Because we can't free a thread while we're operating under its context,
  370  * push the current thread into our CPU's deadthread holder. This means
  371  * we needn't worry about someone else grabbing our context before we
  372  * do a cpu_throw().  This may not be needed now as we are under schedlock.
  373  * Maybe we can just do a thread_stash() as thr_exit1 does.
  374  */
  375 /*  XXX
  376  * libthr expects its thread exit to return for the last
  377  * thread, meaning that the program is back to non-threaded
  378  * mode I guess. Because we do this (cpu_throw) unconditionally
  379  * here, they have their own version of it. (thr_exit1()) 
  380  * that doesn't do it all if this was the last thread.
  381  * It is also called from thread_suspend_check().
  382  * Of course in the end, they end up coming here through exit1
  383  * anyhow..  After fixing 'thr' to play by the rules we should be able 
  384  * to merge these two functions together.
  385  *
  386  * called from:
  387  * exit1()
  388  * kse_exit()
  389  * thr_exit()
  390  * ifdef KSE
  391  * thread_user_enter()
  392  * thread_userret()
  393  * endif
  394  * thread_suspend_check()
  395  */
  396 void
  397 thread_exit(void)
  398 {
  399         uint64_t new_switchtime;
  400         struct thread *td;
  401         struct thread *td2;
  402         struct proc *p;
  403         int wakeup_swapper;
  404 
  405         td = curthread;
  406         p = td->td_proc;
  407 
  408         PROC_SLOCK_ASSERT(p, MA_OWNED);
  409         mtx_assert(&Giant, MA_NOTOWNED);
  410 
  411         PROC_LOCK_ASSERT(p, MA_OWNED);
  412         KASSERT(p != NULL, ("thread exiting without a process"));
  413         CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
  414             (long)p->p_pid, p->p_comm);
  415         KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
  416 
  417 #ifdef AUDIT
  418         AUDIT_SYSCALL_EXIT(0, td);
  419 #endif
  420 
  421 #ifdef KSE
  422         if (td->td_standin != NULL) {
  423                 /*
  424                  * Note that we don't need to free the cred here as it
  425                  * is done in thread_reap().
  426                  */
  427                 thread_zombie(td->td_standin);
  428                 td->td_standin = NULL;
  429         }
  430 #endif
  431 
  432         umtx_thread_exit(td);
  433 
  434         /*
  435          * drop FPU & debug register state storage, or any other
  436          * architecture specific resources that
  437          * would not be on a new untouched process.
  438          */
  439         cpu_thread_exit(td);    /* XXXSMP */
  440 
  441         /* Do the same timestamp bookkeeping that mi_switch() would do. */
  442         new_switchtime = cpu_ticks();
  443         p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
  444         PCPU_SET(switchtime, new_switchtime);
  445         PCPU_SET(switchticks, ticks);
  446         PCPU_INC(cnt.v_swtch);
  447         /* Save our resource usage in our process. */
  448         td->td_ru.ru_nvcsw++;
  449         rucollect(&p->p_ru, &td->td_ru);
  450         /*
  451          * The last thread is left attached to the process
  452          * So that the whole bundle gets recycled. Skip
  453          * all this stuff if we never had threads.
  454          * EXIT clears all sign of other threads when
  455          * it goes to single threading, so the last thread always
  456          * takes the short path.
  457          */
  458         if (p->p_flag & P_HADTHREADS) {
  459                 if (p->p_numthreads > 1) {
  460                         thread_lock(td);
  461 #ifdef KSE
  462                         kse_unlink(td);
  463 #else
  464                         thread_unlink(td);
  465 #endif
  466                         thread_unlock(td);
  467                         td2 = FIRST_THREAD_IN_PROC(p);
  468                         sched_exit_thread(td2, td);
  469 
  470                         /*
  471                          * The test below is NOT true if we are the
  472                          * sole exiting thread. P_STOPPED_SINGLE is unset
  473                          * in exit1() after it is the only survivor.
  474                          */
  475                         if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  476                                 if (p->p_numthreads == p->p_suspcount) {
  477                                         thread_lock(p->p_singlethread);
  478                                         wakeup_swapper = thread_unsuspend_one(
  479                                                 p->p_singlethread);
  480                                         thread_unlock(p->p_singlethread);
  481                                         if (wakeup_swapper)
  482                                                 kick_proc0();
  483                                 }
  484                         }
  485 
  486                         atomic_add_int(&td->td_proc->p_exitthreads, 1);
  487                         PCPU_SET(deadthread, td);
  488                 } else {
  489                         /*
  490                          * The last thread is exiting.. but not through exit()
  491                          * what should we do?
  492                          * Theoretically this can't happen
  493                          * exit1() - clears threading flags before coming here
  494                          * kse_exit() - treats last thread specially
  495                          * thr_exit() - treats last thread specially
  496                          * ifdef KSE
  497                          * thread_user_enter() - only if more exist
  498                          * thread_userret() - only if more exist
  499                          * endif
  500                          * thread_suspend_check() - only if more exist
  501                          */
  502                         panic ("thread_exit: Last thread exiting on its own");
  503                 }
  504         } 
  505 #ifdef  HWPMC_HOOKS
  506         /*
  507          * If this thread is part of a process that is being tracked by hwpmc(4),
  508          * inform the module of the thread's impending exit.
  509          */
  510         if (PMC_PROC_IS_USING_PMCS(td->td_proc))
  511                 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
  512 #endif
  513         PROC_UNLOCK(p);
  514         thread_lock(td);
  515         /* Save our tick information with both the thread and proc locked */
  516         ruxagg(&p->p_rux, td);
  517         PROC_SUNLOCK(p);
  518         td->td_state = TDS_INACTIVE;
  519         CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
  520         sched_throw(td);
  521         panic("I'm a teapot!");
  522         /* NOTREACHED */
  523 }
  524 
  525 /*
  526  * Do any thread specific cleanups that may be needed in wait()
  527  * called with Giant, proc and schedlock not held.
  528  */
  529 void
  530 thread_wait(struct proc *p)
  531 {
  532         struct thread *td;
  533 
  534         mtx_assert(&Giant, MA_NOTOWNED);
  535         KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
  536         td = FIRST_THREAD_IN_PROC(p);
  537 #ifdef KSE
  538         if (td->td_standin != NULL) {
  539                 if (td->td_standin->td_ucred != NULL) {
  540                         crfree(td->td_standin->td_ucred);
  541                         td->td_standin->td_ucred = NULL;
  542                 }
  543                 thread_free(td->td_standin);
  544                 td->td_standin = NULL;
  545         }
  546 #endif
  547         /* Lock the last thread so we spin until it exits cpu_throw(). */
  548         thread_lock(td);
  549         thread_unlock(td);
  550         /* Wait for any remaining threads to exit cpu_throw(). */
  551         while (p->p_exitthreads)
  552                 sched_relinquish(curthread);
  553         cpuset_rel(td->td_cpuset);
  554         td->td_cpuset = NULL;
  555         cpu_thread_clean(td);
  556         crfree(td->td_ucred);
  557         thread_reap();  /* check for zombie threads etc. */
  558 }
  559 
  560 /*
  561  * Link a thread to a process.
  562  * set up anything that needs to be initialized for it to
  563  * be used by the process.
  564  *
  565  * Note that we do not link to the proc's ucred here.
  566  * The thread is linked as if running but no KSE assigned.
  567  * Called from:
  568  *  proc_linkup()
  569  *  thread_schedule_upcall()
  570  *  thr_create()
  571  */
  572 void
  573 thread_link(struct thread *td, struct proc *p)
  574 {
  575 
  576         /*
  577          * XXX This can't be enabled because it's called for proc0 before
  578          * it's spinlock has been created.
  579          * PROC_SLOCK_ASSERT(p, MA_OWNED);
  580          */
  581         td->td_state    = TDS_INACTIVE;
  582         td->td_proc     = p;
  583         td->td_flags    = TDF_INMEM;
  584 
  585         LIST_INIT(&td->td_contested);
  586         sigqueue_init(&td->td_sigqueue, p);
  587         callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
  588         TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
  589         p->p_numthreads++;
  590 }
  591 
  592 /*
  593  * Convert a process with one thread to an unthreaded process.
  594  * Called from:
  595  *  thread_single(exit)  (called from execve and exit)
  596  *  kse_exit()          XXX may need cleaning up wrt KSE stuff
  597  */
  598 void
  599 thread_unthread(struct thread *td)
  600 {
  601         struct proc *p = td->td_proc;
  602 
  603         KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
  604 #ifdef KSE
  605         thread_lock(td);
  606         upcall_remove(td);
  607         thread_unlock(td);
  608         p->p_flag &= ~(P_SA|P_HADTHREADS);
  609         td->td_mailbox = NULL;
  610         td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND);
  611         if (td->td_standin != NULL) {
  612                 thread_zombie(td->td_standin);
  613                 td->td_standin = NULL;
  614         }
  615 #else
  616         p->p_flag &= ~P_HADTHREADS;
  617 #endif
  618 }
  619 
  620 /*
  621  * Called from:
  622  *  thread_exit()
  623  */
  624 void
  625 thread_unlink(struct thread *td)
  626 {
  627         struct proc *p = td->td_proc;
  628 
  629         PROC_SLOCK_ASSERT(p, MA_OWNED);
  630         TAILQ_REMOVE(&p->p_threads, td, td_plist);
  631         p->p_numthreads--;
  632         /* could clear a few other things here */
  633         /* Must  NOT clear links to proc! */
  634 }
  635 
  636 /*
  637  * Enforce single-threading.
  638  *
  639  * Returns 1 if the caller must abort (another thread is waiting to
  640  * exit the process or similar). Process is locked!
  641  * Returns 0 when you are successfully the only thread running.
  642  * A process has successfully single threaded in the suspend mode when
  643  * There are no threads in user mode. Threads in the kernel must be
  644  * allowed to continue until they get to the user boundary. They may even
  645  * copy out their return values and data before suspending. They may however be
  646  * accelerated in reaching the user boundary as we will wake up
  647  * any sleeping threads that are interruptable. (PCATCH).
  648  */
  649 int
  650 thread_single(int mode)
  651 {
  652         struct thread *td;
  653         struct thread *td2;
  654         struct proc *p;
  655         int remaining, wakeup_swapper;
  656 
  657         td = curthread;
  658         p = td->td_proc;
  659         mtx_assert(&Giant, MA_NOTOWNED);
  660         PROC_LOCK_ASSERT(p, MA_OWNED);
  661         KASSERT((td != NULL), ("curthread is NULL"));
  662 
  663         if ((p->p_flag & P_HADTHREADS) == 0)
  664                 return (0);
  665 
  666         /* Is someone already single threading? */
  667         if (p->p_singlethread != NULL && p->p_singlethread != td)
  668                 return (1);
  669 
  670         if (mode == SINGLE_EXIT) {
  671                 p->p_flag |= P_SINGLE_EXIT;
  672                 p->p_flag &= ~P_SINGLE_BOUNDARY;
  673         } else {
  674                 p->p_flag &= ~P_SINGLE_EXIT;
  675                 if (mode == SINGLE_BOUNDARY)
  676                         p->p_flag |= P_SINGLE_BOUNDARY;
  677                 else
  678                         p->p_flag &= ~P_SINGLE_BOUNDARY;
  679         }
  680         p->p_flag |= P_STOPPED_SINGLE;
  681         PROC_SLOCK(p);
  682         p->p_singlethread = td;
  683         if (mode == SINGLE_EXIT)
  684                 remaining = p->p_numthreads;
  685         else if (mode == SINGLE_BOUNDARY)
  686                 remaining = p->p_numthreads - p->p_boundary_count;
  687         else
  688                 remaining = p->p_numthreads - p->p_suspcount;
  689         while (remaining != 1) {
  690                 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
  691                         goto stopme;
  692                 wakeup_swapper = 0;
  693                 FOREACH_THREAD_IN_PROC(p, td2) {
  694                         if (td2 == td)
  695                                 continue;
  696                         thread_lock(td2);
  697                         td2->td_flags |= TDF_ASTPENDING;
  698                         if (TD_IS_INHIBITED(td2)) {
  699                                 switch (mode) {
  700                                 case SINGLE_EXIT:
  701                                         if (td->td_flags & TDF_DBSUSPEND)
  702                                                 td->td_flags &= ~TDF_DBSUSPEND;
  703                                         if (TD_IS_SUSPENDED(td2))
  704                                                 wakeup_swapper |=
  705                                                     thread_unsuspend_one(td2);
  706                                         if (TD_ON_SLEEPQ(td2) &&
  707                                             (td2->td_flags & TDF_SINTR))
  708                                                 wakeup_swapper |=
  709                                                     sleepq_abort(td2, EINTR);
  710                                         break;
  711                                 case SINGLE_BOUNDARY:
  712                                         if (TD_IS_SUSPENDED(td2) &&
  713                                             !(td2->td_flags & TDF_BOUNDARY))
  714                                                 wakeup_swapper |=
  715                                                     thread_unsuspend_one(td2);
  716                                         if (TD_ON_SLEEPQ(td2) &&
  717                                             (td2->td_flags & TDF_SINTR))
  718                                                 wakeup_swapper |=
  719                                                     sleepq_abort(td2, ERESTART);
  720                                         break;
  721                                 default:        
  722                                         if (TD_IS_SUSPENDED(td2)) {
  723                                                 thread_unlock(td2);
  724                                                 continue;
  725                                         }
  726                                         /*
  727                                          * maybe other inhibited states too?
  728                                          */
  729                                         if ((td2->td_flags & TDF_SINTR) &&
  730                                             (td2->td_inhibitors &
  731                                             (TDI_SLEEPING | TDI_SWAPPED)))
  732                                                 thread_suspend_one(td2);
  733                                         break;
  734                                 }
  735                         }
  736 #ifdef SMP
  737                         else if (TD_IS_RUNNING(td2) && td != td2) {
  738                                 forward_signal(td2);
  739                         }
  740 #endif
  741                         thread_unlock(td2);
  742                 }
  743                 if (wakeup_swapper)
  744                         kick_proc0();
  745                 if (mode == SINGLE_EXIT)
  746                         remaining = p->p_numthreads;
  747                 else if (mode == SINGLE_BOUNDARY)
  748                         remaining = p->p_numthreads - p->p_boundary_count;
  749                 else
  750                         remaining = p->p_numthreads - p->p_suspcount;
  751 
  752                 /*
  753                  * Maybe we suspended some threads.. was it enough?
  754                  */
  755                 if (remaining == 1)
  756                         break;
  757 
  758 stopme:
  759                 /*
  760                  * Wake us up when everyone else has suspended.
  761                  * In the mean time we suspend as well.
  762                  */
  763                 thread_suspend_switch(td);
  764                 if (mode == SINGLE_EXIT)
  765                         remaining = p->p_numthreads;
  766                 else if (mode == SINGLE_BOUNDARY)
  767                         remaining = p->p_numthreads - p->p_boundary_count;
  768                 else
  769                         remaining = p->p_numthreads - p->p_suspcount;
  770         }
  771         if (mode == SINGLE_EXIT) {
  772                 /*
  773                  * We have gotten rid of all the other threads and we
  774                  * are about to either exit or exec. In either case,
  775                  * we try our utmost  to revert to being a non-threaded
  776                  * process.
  777                  */
  778                 p->p_singlethread = NULL;
  779                 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
  780                 thread_unthread(td);
  781         }
  782         PROC_SUNLOCK(p);
  783         return (0);
  784 }
  785 
  786 /*
  787  * Called in from locations that can safely check to see
  788  * whether we have to suspend or at least throttle for a
  789  * single-thread event (e.g. fork).
  790  *
  791  * Such locations include userret().
  792  * If the "return_instead" argument is non zero, the thread must be able to
  793  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
  794  *
  795  * The 'return_instead' argument tells the function if it may do a
  796  * thread_exit() or suspend, or whether the caller must abort and back
  797  * out instead.
  798  *
  799  * If the thread that set the single_threading request has set the
  800  * P_SINGLE_EXIT bit in the process flags then this call will never return
  801  * if 'return_instead' is false, but will exit.
  802  *
  803  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
  804  *---------------+--------------------+---------------------
  805  *       0       | returns 0          |   returns 0 or 1
  806  *               | when ST ends       |   immediatly
  807  *---------------+--------------------+---------------------
  808  *       1       | thread exits       |   returns 1
  809  *               |                    |  immediatly
  810  * 0 = thread_exit() or suspension ok,
  811  * other = return error instead of stopping the thread.
  812  *
  813  * While a full suspension is under effect, even a single threading
  814  * thread would be suspended if it made this call (but it shouldn't).
  815  * This call should only be made from places where
  816  * thread_exit() would be safe as that may be the outcome unless
  817  * return_instead is set.
  818  */
  819 int
  820 thread_suspend_check(int return_instead)
  821 {
  822         struct thread *td;
  823         struct proc *p;
  824         int wakeup_swapper;
  825 
  826         td = curthread;
  827         p = td->td_proc;
  828         mtx_assert(&Giant, MA_NOTOWNED);
  829         PROC_LOCK_ASSERT(p, MA_OWNED);
  830         while (P_SHOULDSTOP(p) ||
  831               ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
  832                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  833                         KASSERT(p->p_singlethread != NULL,
  834                             ("singlethread not set"));
  835                         /*
  836                          * The only suspension in action is a
  837                          * single-threading. Single threader need not stop.
  838                          * XXX Should be safe to access unlocked
  839                          * as it can only be set to be true by us.
  840                          */
  841                         if (p->p_singlethread == td)
  842                                 return (0);     /* Exempt from stopping. */
  843                 }
  844                 if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
  845                         return (EINTR);
  846 
  847                 /* Should we goto user boundary if we didn't come from there? */
  848                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
  849                     (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
  850                         return (ERESTART);
  851 
  852                 /* If thread will exit, flush its pending signals */
  853                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
  854                         sigqueue_flush(&td->td_sigqueue);
  855 
  856                 PROC_SLOCK(p);
  857                 thread_stopped(p);
  858                 /*
  859                  * If the process is waiting for us to exit,
  860                  * this thread should just suicide.
  861                  * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
  862                  */
  863                 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
  864                         thread_exit();
  865                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
  866                         if (p->p_numthreads == p->p_suspcount + 1) {
  867                                 thread_lock(p->p_singlethread);
  868                                 wakeup_swapper =
  869                                     thread_unsuspend_one(p->p_singlethread);
  870                                 thread_unlock(p->p_singlethread);
  871                                 if (wakeup_swapper)
  872                                         kick_proc0();
  873                         }
  874                 }
  875                 PROC_UNLOCK(p);
  876                 thread_lock(td);
  877                 /*
  878                  * When a thread suspends, it just
  879                  * gets taken off all queues.
  880                  */
  881                 thread_suspend_one(td);
  882                 if (return_instead == 0) {
  883                         p->p_boundary_count++;
  884                         td->td_flags |= TDF_BOUNDARY;
  885                 }
  886                 PROC_SUNLOCK(p);
  887                 mi_switch(SW_INVOL, NULL);
  888                 if (return_instead == 0)
  889                         td->td_flags &= ~TDF_BOUNDARY;
  890                 thread_unlock(td);
  891                 PROC_LOCK(p);
  892                 if (return_instead == 0)
  893                         p->p_boundary_count--;
  894         }
  895         return (0);
  896 }
  897 
  898 void
  899 thread_suspend_switch(struct thread *td)
  900 {
  901         struct proc *p;
  902 
  903         p = td->td_proc;
  904         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
  905         PROC_LOCK_ASSERT(p, MA_OWNED);
  906         PROC_SLOCK_ASSERT(p, MA_OWNED);
  907         /*
  908          * We implement thread_suspend_one in stages here to avoid
  909          * dropping the proc lock while the thread lock is owned.
  910          */
  911         thread_stopped(p);
  912         p->p_suspcount++;
  913         PROC_UNLOCK(p);
  914         thread_lock(td);
  915         sched_sleep(td);
  916         TD_SET_SUSPENDED(td);
  917         PROC_SUNLOCK(p);
  918         DROP_GIANT();
  919         mi_switch(SW_VOL, NULL);
  920         thread_unlock(td);
  921         PICKUP_GIANT();
  922         PROC_LOCK(p);
  923         PROC_SLOCK(p);
  924 }
  925 
  926 void
  927 thread_suspend_one(struct thread *td)
  928 {
  929         struct proc *p = td->td_proc;
  930 
  931         PROC_SLOCK_ASSERT(p, MA_OWNED);
  932         THREAD_LOCK_ASSERT(td, MA_OWNED);
  933         KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
  934         p->p_suspcount++;
  935         sched_sleep(td);
  936         TD_SET_SUSPENDED(td);
  937 }
  938 
  939 int
  940 thread_unsuspend_one(struct thread *td)
  941 {
  942         struct proc *p = td->td_proc;
  943 
  944         PROC_SLOCK_ASSERT(p, MA_OWNED);
  945         THREAD_LOCK_ASSERT(td, MA_OWNED);
  946         KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
  947         TD_CLR_SUSPENDED(td);
  948         p->p_suspcount--;
  949         return (setrunnable(td));
  950 }
  951 
  952 /*
  953  * Allow all threads blocked by single threading to continue running.
  954  */
  955 void
  956 thread_unsuspend(struct proc *p)
  957 {
  958         struct thread *td;
  959         int wakeup_swapper;
  960 
  961         PROC_LOCK_ASSERT(p, MA_OWNED);
  962         PROC_SLOCK_ASSERT(p, MA_OWNED);
  963         wakeup_swapper = 0;
  964         if (!P_SHOULDSTOP(p)) {
  965                 FOREACH_THREAD_IN_PROC(p, td) {
  966                         thread_lock(td);
  967                         if (TD_IS_SUSPENDED(td)) {
  968                                 wakeup_swapper |= thread_unsuspend_one(td);
  969                         }
  970                         thread_unlock(td);
  971                 }
  972         } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
  973             (p->p_numthreads == p->p_suspcount)) {
  974                 /*
  975                  * Stopping everything also did the job for the single
  976                  * threading request. Now we've downgraded to single-threaded,
  977                  * let it continue.
  978                  */
  979                 thread_lock(p->p_singlethread);
  980                 wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
  981                 thread_unlock(p->p_singlethread);
  982         }
  983         if (wakeup_swapper)
  984                 kick_proc0();
  985 }
  986 
  987 /*
  988  * End the single threading mode..
  989  */
  990 void
  991 thread_single_end(void)
  992 {
  993         struct thread *td;
  994         struct proc *p;
  995         int wakeup_swapper;
  996 
  997         td = curthread;
  998         p = td->td_proc;
  999         PROC_LOCK_ASSERT(p, MA_OWNED);
 1000         p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
 1001         PROC_SLOCK(p);
 1002         p->p_singlethread = NULL;
 1003         wakeup_swapper = 0;
 1004         /*
 1005          * If there are other threads they may now run,
 1006          * unless of course there is a blanket 'stop order'
 1007          * on the process. The single threader must be allowed
 1008          * to continue however as this is a bad place to stop.
 1009          */
 1010         if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
 1011                 FOREACH_THREAD_IN_PROC(p, td) {
 1012                         thread_lock(td);
 1013                         if (TD_IS_SUSPENDED(td)) {
 1014                                 wakeup_swapper |= thread_unsuspend_one(td);
 1015                         }
 1016                         thread_unlock(td);
 1017                 }
 1018         }
 1019         PROC_SUNLOCK(p);
 1020         if (wakeup_swapper)
 1021                 kick_proc0();
 1022 }
 1023 
 1024 struct thread *
 1025 thread_find(struct proc *p, lwpid_t tid)
 1026 {
 1027         struct thread *td;
 1028 
 1029         PROC_LOCK_ASSERT(p, MA_OWNED);
 1030         PROC_SLOCK(p);
 1031         FOREACH_THREAD_IN_PROC(p, td) {
 1032                 if (td->td_tid == tid)
 1033                         break;
 1034         }
 1035         PROC_SUNLOCK(p);
 1036         return (td);
 1037 }

Cache object: 9e3964ebd462169fbd016c7876bc5503


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.