The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_time.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_time.c 8.1 (Berkeley) 6/10/93
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/10.0/sys/kern/kern_time.c 253530 2013-07-21 19:43:52Z kib $");
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h>
   37 #include <sys/limits.h>
   38 #include <sys/clock.h>
   39 #include <sys/lock.h>
   40 #include <sys/mutex.h>
   41 #include <sys/sysproto.h>
   42 #include <sys/eventhandler.h>
   43 #include <sys/resourcevar.h>
   44 #include <sys/signalvar.h>
   45 #include <sys/kernel.h>
   46 #include <sys/sleepqueue.h>
   47 #include <sys/syscallsubr.h>
   48 #include <sys/sysctl.h>
   49 #include <sys/sysent.h>
   50 #include <sys/priv.h>
   51 #include <sys/proc.h>
   52 #include <sys/posix4.h>
   53 #include <sys/time.h>
   54 #include <sys/timers.h>
   55 #include <sys/timetc.h>
   56 #include <sys/vnode.h>
   57 
   58 #include <vm/vm.h>
   59 #include <vm/vm_extern.h>
   60 
   61 #define MAX_CLOCKS      (CLOCK_MONOTONIC+1)
   62 #define CPUCLOCK_BIT            0x80000000
   63 #define CPUCLOCK_PROCESS_BIT    0x40000000
   64 #define CPUCLOCK_ID_MASK        (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
   65 #define MAKE_THREAD_CPUCLOCK(tid)       (CPUCLOCK_BIT|(tid))
   66 #define MAKE_PROCESS_CPUCLOCK(pid)      \
   67         (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
   68 
   69 static struct kclock    posix_clocks[MAX_CLOCKS];
   70 static uma_zone_t       itimer_zone = NULL;
   71 
   72 /*
   73  * Time of day and interval timer support.
   74  *
   75  * These routines provide the kernel entry points to get and set
   76  * the time-of-day and per-process interval timers.  Subroutines
   77  * here provide support for adding and subtracting timeval structures
   78  * and decrementing interval timers, optionally reloading the interval
   79  * timers when they expire.
   80  */
   81 
   82 static int      settime(struct thread *, struct timeval *);
   83 static void     timevalfix(struct timeval *);
   84 
   85 static void     itimer_start(void);
   86 static int      itimer_init(void *, int, int);
   87 static void     itimer_fini(void *, int);
   88 static void     itimer_enter(struct itimer *);
   89 static void     itimer_leave(struct itimer *);
   90 static struct itimer *itimer_find(struct proc *, int);
   91 static void     itimers_alloc(struct proc *);
   92 static void     itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
   93 static void     itimers_event_hook_exit(void *arg, struct proc *p);
   94 static int      realtimer_create(struct itimer *);
   95 static int      realtimer_gettime(struct itimer *, struct itimerspec *);
   96 static int      realtimer_settime(struct itimer *, int,
   97                         struct itimerspec *, struct itimerspec *);
   98 static int      realtimer_delete(struct itimer *);
   99 static void     realtimer_clocktime(clockid_t, struct timespec *);
  100 static void     realtimer_expire(void *);
  101 
  102 int             register_posix_clock(int, struct kclock *);
  103 void            itimer_fire(struct itimer *it);
  104 int             itimespecfix(struct timespec *ts);
  105 
  106 #define CLOCK_CALL(clock, call, arglist)                \
  107         ((*posix_clocks[clock].call) arglist)
  108 
  109 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
  110 
  111 
  112 static int
  113 settime(struct thread *td, struct timeval *tv)
  114 {
  115         struct timeval delta, tv1, tv2;
  116         static struct timeval maxtime, laststep;
  117         struct timespec ts;
  118         int s;
  119 
  120         s = splclock();
  121         microtime(&tv1);
  122         delta = *tv;
  123         timevalsub(&delta, &tv1);
  124 
  125         /*
  126          * If the system is secure, we do not allow the time to be 
  127          * set to a value earlier than 1 second less than the highest
  128          * time we have yet seen. The worst a miscreant can do in
  129          * this circumstance is "freeze" time. He couldn't go
  130          * back to the past.
  131          *
  132          * We similarly do not allow the clock to be stepped more
  133          * than one second, nor more than once per second. This allows
  134          * a miscreant to make the clock march double-time, but no worse.
  135          */
  136         if (securelevel_gt(td->td_ucred, 1) != 0) {
  137                 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
  138                         /*
  139                          * Update maxtime to latest time we've seen.
  140                          */
  141                         if (tv1.tv_sec > maxtime.tv_sec)
  142                                 maxtime = tv1;
  143                         tv2 = *tv;
  144                         timevalsub(&tv2, &maxtime);
  145                         if (tv2.tv_sec < -1) {
  146                                 tv->tv_sec = maxtime.tv_sec - 1;
  147                                 printf("Time adjustment clamped to -1 second\n");
  148                         }
  149                 } else {
  150                         if (tv1.tv_sec == laststep.tv_sec) {
  151                                 splx(s);
  152                                 return (EPERM);
  153                         }
  154                         if (delta.tv_sec > 1) {
  155                                 tv->tv_sec = tv1.tv_sec + 1;
  156                                 printf("Time adjustment clamped to +1 second\n");
  157                         }
  158                         laststep = *tv;
  159                 }
  160         }
  161 
  162         ts.tv_sec = tv->tv_sec;
  163         ts.tv_nsec = tv->tv_usec * 1000;
  164         mtx_lock(&Giant);
  165         tc_setclock(&ts);
  166         resettodr();
  167         mtx_unlock(&Giant);
  168         return (0);
  169 }
  170 
  171 #ifndef _SYS_SYSPROTO_H_
  172 struct clock_getcpuclockid2_args {
  173         id_t id;
  174         int which,
  175         clockid_t *clock_id;
  176 };
  177 #endif
  178 /* ARGSUSED */
  179 int
  180 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
  181 {
  182         clockid_t clk_id;
  183         int error;
  184 
  185         error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
  186         if (error == 0)
  187                 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
  188         return (error);
  189 }
  190 
  191 int
  192 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
  193     clockid_t *clk_id)
  194 {
  195         struct proc *p;
  196         pid_t pid;
  197         lwpid_t tid;
  198         int error;
  199 
  200         switch (which) {
  201         case CPUCLOCK_WHICH_PID:
  202                 if (id != 0) {
  203                         p = pfind(id);
  204                         if (p == NULL)
  205                                 return (ESRCH);
  206                         error = p_cansee(td, p);
  207                         PROC_UNLOCK(p);
  208                         if (error != 0)
  209                                 return (error);
  210                         pid = id;
  211                 } else {
  212                         pid = td->td_proc->p_pid;
  213                 }
  214                 *clk_id = MAKE_PROCESS_CPUCLOCK(pid);
  215                 return (0);
  216         case CPUCLOCK_WHICH_TID:
  217                 tid = id == 0 ? td->td_tid : id;
  218                 *clk_id = MAKE_THREAD_CPUCLOCK(tid);
  219                 return (0);
  220         default:
  221                 return (EINVAL);
  222         }
  223 }
  224 
  225 #ifndef _SYS_SYSPROTO_H_
  226 struct clock_gettime_args {
  227         clockid_t clock_id;
  228         struct  timespec *tp;
  229 };
  230 #endif
  231 /* ARGSUSED */
  232 int
  233 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
  234 {
  235         struct timespec ats;
  236         int error;
  237 
  238         error = kern_clock_gettime(td, uap->clock_id, &ats);
  239         if (error == 0)
  240                 error = copyout(&ats, uap->tp, sizeof(ats));
  241 
  242         return (error);
  243 }
  244 
  245 static inline void 
  246 cputick2timespec(uint64_t runtime, struct timespec *ats)
  247 {
  248         runtime = cputick2usec(runtime);
  249         ats->tv_sec = runtime / 1000000;
  250         ats->tv_nsec = runtime % 1000000 * 1000;
  251 }
  252 
  253 static void
  254 get_thread_cputime(struct thread *targettd, struct timespec *ats)
  255 {
  256         uint64_t runtime, curtime, switchtime;
  257 
  258         if (targettd == NULL) { /* current thread */
  259                 critical_enter();
  260                 switchtime = PCPU_GET(switchtime);
  261                 curtime = cpu_ticks();
  262                 runtime = curthread->td_runtime;
  263                 critical_exit();
  264                 runtime += curtime - switchtime;
  265         } else {
  266                 thread_lock(targettd);
  267                 runtime = targettd->td_runtime;
  268                 thread_unlock(targettd);
  269         }
  270         cputick2timespec(runtime, ats);
  271 }
  272 
  273 static void
  274 get_process_cputime(struct proc *targetp, struct timespec *ats)
  275 {
  276         uint64_t runtime;
  277         struct rusage ru;
  278 
  279         PROC_SLOCK(targetp);
  280         rufetch(targetp, &ru);
  281         runtime = targetp->p_rux.rux_runtime;
  282         PROC_SUNLOCK(targetp);
  283         cputick2timespec(runtime, ats);
  284 }
  285 
  286 static int
  287 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  288 {
  289         struct proc *p, *p2;
  290         struct thread *td2;
  291         lwpid_t tid;
  292         pid_t pid;
  293         int error;
  294 
  295         p = td->td_proc;
  296         if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
  297                 tid = clock_id & CPUCLOCK_ID_MASK;
  298                 td2 = tdfind(tid, p->p_pid);
  299                 if (td2 == NULL)
  300                         return (EINVAL);
  301                 get_thread_cputime(td2, ats);
  302                 PROC_UNLOCK(td2->td_proc);
  303         } else {
  304                 pid = clock_id & CPUCLOCK_ID_MASK;
  305                 error = pget(pid, PGET_CANSEE, &p2);
  306                 if (error != 0)
  307                         return (EINVAL);
  308                 get_process_cputime(p2, ats);
  309                 PROC_UNLOCK(p2);
  310         }
  311         return (0);
  312 }
  313 
  314 int
  315 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  316 {
  317         struct timeval sys, user;
  318         struct proc *p;
  319 
  320         p = td->td_proc;
  321         switch (clock_id) {
  322         case CLOCK_REALTIME:            /* Default to precise. */
  323         case CLOCK_REALTIME_PRECISE:
  324                 nanotime(ats);
  325                 break;
  326         case CLOCK_REALTIME_FAST:
  327                 getnanotime(ats);
  328                 break;
  329         case CLOCK_VIRTUAL:
  330                 PROC_LOCK(p);
  331                 PROC_SLOCK(p);
  332                 calcru(p, &user, &sys);
  333                 PROC_SUNLOCK(p);
  334                 PROC_UNLOCK(p);
  335                 TIMEVAL_TO_TIMESPEC(&user, ats);
  336                 break;
  337         case CLOCK_PROF:
  338                 PROC_LOCK(p);
  339                 PROC_SLOCK(p);
  340                 calcru(p, &user, &sys);
  341                 PROC_SUNLOCK(p);
  342                 PROC_UNLOCK(p);
  343                 timevaladd(&user, &sys);
  344                 TIMEVAL_TO_TIMESPEC(&user, ats);
  345                 break;
  346         case CLOCK_MONOTONIC:           /* Default to precise. */
  347         case CLOCK_MONOTONIC_PRECISE:
  348         case CLOCK_UPTIME:
  349         case CLOCK_UPTIME_PRECISE:
  350                 nanouptime(ats);
  351                 break;
  352         case CLOCK_UPTIME_FAST:
  353         case CLOCK_MONOTONIC_FAST:
  354                 getnanouptime(ats);
  355                 break;
  356         case CLOCK_SECOND:
  357                 ats->tv_sec = time_second;
  358                 ats->tv_nsec = 0;
  359                 break;
  360         case CLOCK_THREAD_CPUTIME_ID:
  361                 get_thread_cputime(NULL, ats);
  362                 break;
  363         case CLOCK_PROCESS_CPUTIME_ID:
  364                 PROC_LOCK(p);
  365                 get_process_cputime(p, ats);
  366                 PROC_UNLOCK(p);
  367                 break;
  368         default:
  369                 if ((int)clock_id >= 0)
  370                         return (EINVAL);
  371                 return (get_cputime(td, clock_id, ats));
  372         }
  373         return (0);
  374 }
  375 
  376 #ifndef _SYS_SYSPROTO_H_
  377 struct clock_settime_args {
  378         clockid_t clock_id;
  379         const struct    timespec *tp;
  380 };
  381 #endif
  382 /* ARGSUSED */
  383 int
  384 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
  385 {
  386         struct timespec ats;
  387         int error;
  388 
  389         if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
  390                 return (error);
  391         return (kern_clock_settime(td, uap->clock_id, &ats));
  392 }
  393 
  394 int
  395 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
  396 {
  397         struct timeval atv;
  398         int error;
  399 
  400         if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
  401                 return (error);
  402         if (clock_id != CLOCK_REALTIME)
  403                 return (EINVAL);
  404         if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
  405                 return (EINVAL);
  406         /* XXX Don't convert nsec->usec and back */
  407         TIMESPEC_TO_TIMEVAL(&atv, ats);
  408         error = settime(td, &atv);
  409         return (error);
  410 }
  411 
  412 #ifndef _SYS_SYSPROTO_H_
  413 struct clock_getres_args {
  414         clockid_t clock_id;
  415         struct  timespec *tp;
  416 };
  417 #endif
  418 int
  419 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
  420 {
  421         struct timespec ts;
  422         int error;
  423 
  424         if (uap->tp == NULL)
  425                 return (0);
  426 
  427         error = kern_clock_getres(td, uap->clock_id, &ts);
  428         if (error == 0)
  429                 error = copyout(&ts, uap->tp, sizeof(ts));
  430         return (error);
  431 }
  432 
  433 int
  434 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
  435 {
  436 
  437         ts->tv_sec = 0;
  438         switch (clock_id) {
  439         case CLOCK_REALTIME:
  440         case CLOCK_REALTIME_FAST:
  441         case CLOCK_REALTIME_PRECISE:
  442         case CLOCK_MONOTONIC:
  443         case CLOCK_MONOTONIC_FAST:
  444         case CLOCK_MONOTONIC_PRECISE:
  445         case CLOCK_UPTIME:
  446         case CLOCK_UPTIME_FAST:
  447         case CLOCK_UPTIME_PRECISE:
  448                 /*
  449                  * Round up the result of the division cheaply by adding 1.
  450                  * Rounding up is especially important if rounding down
  451                  * would give 0.  Perfect rounding is unimportant.
  452                  */
  453                 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
  454                 break;
  455         case CLOCK_VIRTUAL:
  456         case CLOCK_PROF:
  457                 /* Accurately round up here because we can do so cheaply. */
  458                 ts->tv_nsec = (1000000000 + hz - 1) / hz;
  459                 break;
  460         case CLOCK_SECOND:
  461                 ts->tv_sec = 1;
  462                 ts->tv_nsec = 0;
  463                 break;
  464         case CLOCK_THREAD_CPUTIME_ID:
  465         case CLOCK_PROCESS_CPUTIME_ID:
  466         cputime:
  467                 /* sync with cputick2usec */
  468                 ts->tv_nsec = 1000000 / cpu_tickrate();
  469                 if (ts->tv_nsec == 0)
  470                         ts->tv_nsec = 1000;
  471                 break;
  472         default:
  473                 if ((int)clock_id < 0)
  474                         goto cputime;
  475                 return (EINVAL);
  476         }
  477         return (0);
  478 }
  479 
  480 static uint8_t nanowait[MAXCPU];
  481 
  482 int
  483 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
  484 {
  485         struct timespec ts;
  486         sbintime_t sbt, sbtt, prec, tmp;
  487         time_t over;
  488         int error;
  489 
  490         if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
  491                 return (EINVAL);
  492         if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
  493                 return (0);
  494         ts = *rqt;
  495         if (ts.tv_sec > INT32_MAX / 2) {
  496                 over = ts.tv_sec - INT32_MAX / 2;
  497                 ts.tv_sec -= over;
  498         } else
  499                 over = 0;
  500         tmp = tstosbt(ts);
  501         prec = tmp;
  502         prec >>= tc_precexp;
  503         if (TIMESEL(&sbt, tmp))
  504                 sbt += tc_tick_sbt;
  505         sbt += tmp;
  506         error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
  507             sbt, prec, C_ABSOLUTE);
  508         if (error != EWOULDBLOCK) {
  509                 if (error == ERESTART)
  510                         error = EINTR;
  511                 TIMESEL(&sbtt, tmp);
  512                 if (rmt != NULL) {
  513                         ts = sbttots(sbt - sbtt);
  514                         ts.tv_sec += over;
  515                         if (ts.tv_sec < 0)
  516                                 timespecclear(&ts);
  517                         *rmt = ts;
  518                 }
  519                 if (sbtt >= sbt)
  520                         return (0);
  521                 return (error);
  522         }
  523         return (0);
  524 }
  525 
  526 #ifndef _SYS_SYSPROTO_H_
  527 struct nanosleep_args {
  528         struct  timespec *rqtp;
  529         struct  timespec *rmtp;
  530 };
  531 #endif
  532 /* ARGSUSED */
  533 int
  534 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
  535 {
  536         struct timespec rmt, rqt;
  537         int error;
  538 
  539         error = copyin(uap->rqtp, &rqt, sizeof(rqt));
  540         if (error)
  541                 return (error);
  542 
  543         if (uap->rmtp &&
  544             !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
  545                         return (EFAULT);
  546         error = kern_nanosleep(td, &rqt, &rmt);
  547         if (error && uap->rmtp) {
  548                 int error2;
  549 
  550                 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
  551                 if (error2)
  552                         error = error2;
  553         }
  554         return (error);
  555 }
  556 
  557 #ifndef _SYS_SYSPROTO_H_
  558 struct gettimeofday_args {
  559         struct  timeval *tp;
  560         struct  timezone *tzp;
  561 };
  562 #endif
  563 /* ARGSUSED */
  564 int
  565 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
  566 {
  567         struct timeval atv;
  568         struct timezone rtz;
  569         int error = 0;
  570 
  571         if (uap->tp) {
  572                 microtime(&atv);
  573                 error = copyout(&atv, uap->tp, sizeof (atv));
  574         }
  575         if (error == 0 && uap->tzp != NULL) {
  576                 rtz.tz_minuteswest = tz_minuteswest;
  577                 rtz.tz_dsttime = tz_dsttime;
  578                 error = copyout(&rtz, uap->tzp, sizeof (rtz));
  579         }
  580         return (error);
  581 }
  582 
  583 #ifndef _SYS_SYSPROTO_H_
  584 struct settimeofday_args {
  585         struct  timeval *tv;
  586         struct  timezone *tzp;
  587 };
  588 #endif
  589 /* ARGSUSED */
  590 int
  591 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
  592 {
  593         struct timeval atv, *tvp;
  594         struct timezone atz, *tzp;
  595         int error;
  596 
  597         if (uap->tv) {
  598                 error = copyin(uap->tv, &atv, sizeof(atv));
  599                 if (error)
  600                         return (error);
  601                 tvp = &atv;
  602         } else
  603                 tvp = NULL;
  604         if (uap->tzp) {
  605                 error = copyin(uap->tzp, &atz, sizeof(atz));
  606                 if (error)
  607                         return (error);
  608                 tzp = &atz;
  609         } else
  610                 tzp = NULL;
  611         return (kern_settimeofday(td, tvp, tzp));
  612 }
  613 
  614 int
  615 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
  616 {
  617         int error;
  618 
  619         error = priv_check(td, PRIV_SETTIMEOFDAY);
  620         if (error)
  621                 return (error);
  622         /* Verify all parameters before changing time. */
  623         if (tv) {
  624                 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  625                         return (EINVAL);
  626                 error = settime(td, tv);
  627         }
  628         if (tzp && error == 0) {
  629                 tz_minuteswest = tzp->tz_minuteswest;
  630                 tz_dsttime = tzp->tz_dsttime;
  631         }
  632         return (error);
  633 }
  634 
  635 /*
  636  * Get value of an interval timer.  The process virtual and profiling virtual
  637  * time timers are kept in the p_stats area, since they can be swapped out.
  638  * These are kept internally in the way they are specified externally: in
  639  * time until they expire.
  640  *
  641  * The real time interval timer is kept in the process table slot for the
  642  * process, and its value (it_value) is kept as an absolute time rather than
  643  * as a delta, so that it is easy to keep periodic real-time signals from
  644  * drifting.
  645  *
  646  * Virtual time timers are processed in the hardclock() routine of
  647  * kern_clock.c.  The real time timer is processed by a timeout routine,
  648  * called from the softclock() routine.  Since a callout may be delayed in
  649  * real time due to interrupt processing in the system, it is possible for
  650  * the real time timeout routine (realitexpire, given below), to be delayed
  651  * in real time past when it is supposed to occur.  It does not suffice,
  652  * therefore, to reload the real timer .it_value from the real time timers
  653  * .it_interval.  Rather, we compute the next time in absolute time the timer
  654  * should go off.
  655  */
  656 #ifndef _SYS_SYSPROTO_H_
  657 struct getitimer_args {
  658         u_int   which;
  659         struct  itimerval *itv;
  660 };
  661 #endif
  662 int
  663 sys_getitimer(struct thread *td, struct getitimer_args *uap)
  664 {
  665         struct itimerval aitv;
  666         int error;
  667 
  668         error = kern_getitimer(td, uap->which, &aitv);
  669         if (error != 0)
  670                 return (error);
  671         return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
  672 }
  673 
  674 int
  675 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
  676 {
  677         struct proc *p = td->td_proc;
  678         struct timeval ctv;
  679 
  680         if (which > ITIMER_PROF)
  681                 return (EINVAL);
  682 
  683         if (which == ITIMER_REAL) {
  684                 /*
  685                  * Convert from absolute to relative time in .it_value
  686                  * part of real time timer.  If time for real time timer
  687                  * has passed return 0, else return difference between
  688                  * current time and time for the timer to go off.
  689                  */
  690                 PROC_LOCK(p);
  691                 *aitv = p->p_realtimer;
  692                 PROC_UNLOCK(p);
  693                 if (timevalisset(&aitv->it_value)) {
  694                         microuptime(&ctv);
  695                         if (timevalcmp(&aitv->it_value, &ctv, <))
  696                                 timevalclear(&aitv->it_value);
  697                         else
  698                                 timevalsub(&aitv->it_value, &ctv);
  699                 }
  700         } else {
  701                 PROC_SLOCK(p);
  702                 *aitv = p->p_stats->p_timer[which];
  703                 PROC_SUNLOCK(p);
  704         }
  705         return (0);
  706 }
  707 
  708 #ifndef _SYS_SYSPROTO_H_
  709 struct setitimer_args {
  710         u_int   which;
  711         struct  itimerval *itv, *oitv;
  712 };
  713 #endif
  714 int
  715 sys_setitimer(struct thread *td, struct setitimer_args *uap)
  716 {
  717         struct itimerval aitv, oitv;
  718         int error;
  719 
  720         if (uap->itv == NULL) {
  721                 uap->itv = uap->oitv;
  722                 return (sys_getitimer(td, (struct getitimer_args *)uap));
  723         }
  724 
  725         if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
  726                 return (error);
  727         error = kern_setitimer(td, uap->which, &aitv, &oitv);
  728         if (error != 0 || uap->oitv == NULL)
  729                 return (error);
  730         return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
  731 }
  732 
  733 int
  734 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
  735     struct itimerval *oitv)
  736 {
  737         struct proc *p = td->td_proc;
  738         struct timeval ctv;
  739         sbintime_t sbt, pr;
  740 
  741         if (aitv == NULL)
  742                 return (kern_getitimer(td, which, oitv));
  743 
  744         if (which > ITIMER_PROF)
  745                 return (EINVAL);
  746         if (itimerfix(&aitv->it_value) ||
  747             aitv->it_value.tv_sec > INT32_MAX / 2)
  748                 return (EINVAL);
  749         if (!timevalisset(&aitv->it_value))
  750                 timevalclear(&aitv->it_interval);
  751         else if (itimerfix(&aitv->it_interval) ||
  752             aitv->it_interval.tv_sec > INT32_MAX / 2)
  753                 return (EINVAL);
  754 
  755         if (which == ITIMER_REAL) {
  756                 PROC_LOCK(p);
  757                 if (timevalisset(&p->p_realtimer.it_value))
  758                         callout_stop(&p->p_itcallout);
  759                 microuptime(&ctv);
  760                 if (timevalisset(&aitv->it_value)) {
  761                         pr = tvtosbt(aitv->it_value) >> tc_precexp;
  762                         timevaladd(&aitv->it_value, &ctv);
  763                         sbt = tvtosbt(aitv->it_value);
  764                         callout_reset_sbt(&p->p_itcallout, sbt, pr,
  765                             realitexpire, p, C_ABSOLUTE);
  766                 }
  767                 *oitv = p->p_realtimer;
  768                 p->p_realtimer = *aitv;
  769                 PROC_UNLOCK(p);
  770                 if (timevalisset(&oitv->it_value)) {
  771                         if (timevalcmp(&oitv->it_value, &ctv, <))
  772                                 timevalclear(&oitv->it_value);
  773                         else
  774                                 timevalsub(&oitv->it_value, &ctv);
  775                 }
  776         } else {
  777                 PROC_SLOCK(p);
  778                 *oitv = p->p_stats->p_timer[which];
  779                 p->p_stats->p_timer[which] = *aitv;
  780                 PROC_SUNLOCK(p);
  781         }
  782         return (0);
  783 }
  784 
  785 /*
  786  * Real interval timer expired:
  787  * send process whose timer expired an alarm signal.
  788  * If time is not set up to reload, then just return.
  789  * Else compute next time timer should go off which is > current time.
  790  * This is where delay in processing this timeout causes multiple
  791  * SIGALRM calls to be compressed into one.
  792  * tvtohz() always adds 1 to allow for the time until the next clock
  793  * interrupt being strictly less than 1 clock tick, but we don't want
  794  * that here since we want to appear to be in sync with the clock
  795  * interrupt even when we're delayed.
  796  */
  797 void
  798 realitexpire(void *arg)
  799 {
  800         struct proc *p;
  801         struct timeval ctv;
  802         sbintime_t isbt;
  803 
  804         p = (struct proc *)arg;
  805         kern_psignal(p, SIGALRM);
  806         if (!timevalisset(&p->p_realtimer.it_interval)) {
  807                 timevalclear(&p->p_realtimer.it_value);
  808                 if (p->p_flag & P_WEXIT)
  809                         wakeup(&p->p_itcallout);
  810                 return;
  811         }
  812         isbt = tvtosbt(p->p_realtimer.it_interval);
  813         if (isbt >= sbt_timethreshold)
  814                 getmicrouptime(&ctv);
  815         else
  816                 microuptime(&ctv);
  817         do {
  818                 timevaladd(&p->p_realtimer.it_value,
  819                     &p->p_realtimer.it_interval);
  820         } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
  821         callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
  822             isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE);
  823 }
  824 
  825 /*
  826  * Check that a proposed value to load into the .it_value or
  827  * .it_interval part of an interval timer is acceptable, and
  828  * fix it to have at least minimal value (i.e. if it is less
  829  * than the resolution of the clock, round it up.)
  830  */
  831 int
  832 itimerfix(struct timeval *tv)
  833 {
  834 
  835         if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
  836                 return (EINVAL);
  837         if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
  838             tv->tv_usec < (u_int)tick / 16)
  839                 tv->tv_usec = (u_int)tick / 16;
  840         return (0);
  841 }
  842 
  843 /*
  844  * Decrement an interval timer by a specified number
  845  * of microseconds, which must be less than a second,
  846  * i.e. < 1000000.  If the timer expires, then reload
  847  * it.  In this case, carry over (usec - old value) to
  848  * reduce the value reloaded into the timer so that
  849  * the timer does not drift.  This routine assumes
  850  * that it is called in a context where the timers
  851  * on which it is operating cannot change in value.
  852  */
  853 int
  854 itimerdecr(struct itimerval *itp, int usec)
  855 {
  856 
  857         if (itp->it_value.tv_usec < usec) {
  858                 if (itp->it_value.tv_sec == 0) {
  859                         /* expired, and already in next interval */
  860                         usec -= itp->it_value.tv_usec;
  861                         goto expire;
  862                 }
  863                 itp->it_value.tv_usec += 1000000;
  864                 itp->it_value.tv_sec--;
  865         }
  866         itp->it_value.tv_usec -= usec;
  867         usec = 0;
  868         if (timevalisset(&itp->it_value))
  869                 return (1);
  870         /* expired, exactly at end of interval */
  871 expire:
  872         if (timevalisset(&itp->it_interval)) {
  873                 itp->it_value = itp->it_interval;
  874                 itp->it_value.tv_usec -= usec;
  875                 if (itp->it_value.tv_usec < 0) {
  876                         itp->it_value.tv_usec += 1000000;
  877                         itp->it_value.tv_sec--;
  878                 }
  879         } else
  880                 itp->it_value.tv_usec = 0;              /* sec is already 0 */
  881         return (0);
  882 }
  883 
  884 /*
  885  * Add and subtract routines for timevals.
  886  * N.B.: subtract routine doesn't deal with
  887  * results which are before the beginning,
  888  * it just gets very confused in this case.
  889  * Caveat emptor.
  890  */
  891 void
  892 timevaladd(struct timeval *t1, const struct timeval *t2)
  893 {
  894 
  895         t1->tv_sec += t2->tv_sec;
  896         t1->tv_usec += t2->tv_usec;
  897         timevalfix(t1);
  898 }
  899 
  900 void
  901 timevalsub(struct timeval *t1, const struct timeval *t2)
  902 {
  903 
  904         t1->tv_sec -= t2->tv_sec;
  905         t1->tv_usec -= t2->tv_usec;
  906         timevalfix(t1);
  907 }
  908 
  909 static void
  910 timevalfix(struct timeval *t1)
  911 {
  912 
  913         if (t1->tv_usec < 0) {
  914                 t1->tv_sec--;
  915                 t1->tv_usec += 1000000;
  916         }
  917         if (t1->tv_usec >= 1000000) {
  918                 t1->tv_sec++;
  919                 t1->tv_usec -= 1000000;
  920         }
  921 }
  922 
  923 /*
  924  * ratecheck(): simple time-based rate-limit checking.
  925  */
  926 int
  927 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
  928 {
  929         struct timeval tv, delta;
  930         int rv = 0;
  931 
  932         getmicrouptime(&tv);            /* NB: 10ms precision */
  933         delta = tv;
  934         timevalsub(&delta, lasttime);
  935 
  936         /*
  937          * check for 0,0 is so that the message will be seen at least once,
  938          * even if interval is huge.
  939          */
  940         if (timevalcmp(&delta, mininterval, >=) ||
  941             (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
  942                 *lasttime = tv;
  943                 rv = 1;
  944         }
  945 
  946         return (rv);
  947 }
  948 
  949 /*
  950  * ppsratecheck(): packets (or events) per second limitation.
  951  *
  952  * Return 0 if the limit is to be enforced (e.g. the caller
  953  * should drop a packet because of the rate limitation).
  954  *
  955  * maxpps of 0 always causes zero to be returned.  maxpps of -1
  956  * always causes 1 to be returned; this effectively defeats rate
  957  * limiting.
  958  *
  959  * Note that we maintain the struct timeval for compatibility
  960  * with other bsd systems.  We reuse the storage and just monitor
  961  * clock ticks for minimal overhead.  
  962  */
  963 int
  964 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
  965 {
  966         int now;
  967 
  968         /*
  969          * Reset the last time and counter if this is the first call
  970          * or more than a second has passed since the last update of
  971          * lasttime.
  972          */
  973         now = ticks;
  974         if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
  975                 lasttime->tv_sec = now;
  976                 *curpps = 1;
  977                 return (maxpps != 0);
  978         } else {
  979                 (*curpps)++;            /* NB: ignore potential overflow */
  980                 return (maxpps < 0 || *curpps < maxpps);
  981         }
  982 }
  983 
  984 static void
  985 itimer_start(void)
  986 {
  987         struct kclock rt_clock = {
  988                 .timer_create  = realtimer_create,
  989                 .timer_delete  = realtimer_delete,
  990                 .timer_settime = realtimer_settime,
  991                 .timer_gettime = realtimer_gettime,
  992                 .event_hook    = NULL
  993         };
  994 
  995         itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
  996                 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
  997         register_posix_clock(CLOCK_REALTIME,  &rt_clock);
  998         register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
  999         p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
 1000         p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
 1001         p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
 1002         EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
 1003                 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
 1004         EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
 1005                 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
 1006 }
 1007 
 1008 int
 1009 register_posix_clock(int clockid, struct kclock *clk)
 1010 {
 1011         if ((unsigned)clockid >= MAX_CLOCKS) {
 1012                 printf("%s: invalid clockid\n", __func__);
 1013                 return (0);
 1014         }
 1015         posix_clocks[clockid] = *clk;
 1016         return (1);
 1017 }
 1018 
 1019 static int
 1020 itimer_init(void *mem, int size, int flags)
 1021 {
 1022         struct itimer *it;
 1023 
 1024         it = (struct itimer *)mem;
 1025         mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
 1026         return (0);
 1027 }
 1028 
 1029 static void
 1030 itimer_fini(void *mem, int size)
 1031 {
 1032         struct itimer *it;
 1033 
 1034         it = (struct itimer *)mem;
 1035         mtx_destroy(&it->it_mtx);
 1036 }
 1037 
 1038 static void
 1039 itimer_enter(struct itimer *it)
 1040 {
 1041 
 1042         mtx_assert(&it->it_mtx, MA_OWNED);
 1043         it->it_usecount++;
 1044 }
 1045 
 1046 static void
 1047 itimer_leave(struct itimer *it)
 1048 {
 1049 
 1050         mtx_assert(&it->it_mtx, MA_OWNED);
 1051         KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
 1052 
 1053         if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
 1054                 wakeup(it);
 1055 }
 1056 
 1057 #ifndef _SYS_SYSPROTO_H_
 1058 struct ktimer_create_args {
 1059         clockid_t clock_id;
 1060         struct sigevent * evp;
 1061         int * timerid;
 1062 };
 1063 #endif
 1064 int
 1065 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
 1066 {
 1067         struct sigevent *evp, ev;
 1068         int id;
 1069         int error;
 1070 
 1071         if (uap->evp == NULL) {
 1072                 evp = NULL;
 1073         } else {
 1074                 error = copyin(uap->evp, &ev, sizeof(ev));
 1075                 if (error != 0)
 1076                         return (error);
 1077                 evp = &ev;
 1078         }
 1079         error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
 1080         if (error == 0) {
 1081                 error = copyout(&id, uap->timerid, sizeof(int));
 1082                 if (error != 0)
 1083                         kern_ktimer_delete(td, id);
 1084         }
 1085         return (error);
 1086 }
 1087 
 1088 int
 1089 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
 1090     int *timerid, int preset_id)
 1091 {
 1092         struct proc *p = td->td_proc;
 1093         struct itimer *it;
 1094         int id;
 1095         int error;
 1096 
 1097         if (clock_id < 0 || clock_id >= MAX_CLOCKS)
 1098                 return (EINVAL);
 1099 
 1100         if (posix_clocks[clock_id].timer_create == NULL)
 1101                 return (EINVAL);
 1102 
 1103         if (evp != NULL) {
 1104                 if (evp->sigev_notify != SIGEV_NONE &&
 1105                     evp->sigev_notify != SIGEV_SIGNAL &&
 1106                     evp->sigev_notify != SIGEV_THREAD_ID)
 1107                         return (EINVAL);
 1108                 if ((evp->sigev_notify == SIGEV_SIGNAL ||
 1109                      evp->sigev_notify == SIGEV_THREAD_ID) &&
 1110                         !_SIG_VALID(evp->sigev_signo))
 1111                         return (EINVAL);
 1112         }
 1113         
 1114         if (p->p_itimers == NULL)
 1115                 itimers_alloc(p);
 1116         
 1117         it = uma_zalloc(itimer_zone, M_WAITOK);
 1118         it->it_flags = 0;
 1119         it->it_usecount = 0;
 1120         it->it_active = 0;
 1121         timespecclear(&it->it_time.it_value);
 1122         timespecclear(&it->it_time.it_interval);
 1123         it->it_overrun = 0;
 1124         it->it_overrun_last = 0;
 1125         it->it_clockid = clock_id;
 1126         it->it_timerid = -1;
 1127         it->it_proc = p;
 1128         ksiginfo_init(&it->it_ksi);
 1129         it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
 1130         error = CLOCK_CALL(clock_id, timer_create, (it));
 1131         if (error != 0)
 1132                 goto out;
 1133 
 1134         PROC_LOCK(p);
 1135         if (preset_id != -1) {
 1136                 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
 1137                 id = preset_id;
 1138                 if (p->p_itimers->its_timers[id] != NULL) {
 1139                         PROC_UNLOCK(p);
 1140                         error = 0;
 1141                         goto out;
 1142                 }
 1143         } else {
 1144                 /*
 1145                  * Find a free timer slot, skipping those reserved
 1146                  * for setitimer().
 1147                  */
 1148                 for (id = 3; id < TIMER_MAX; id++)
 1149                         if (p->p_itimers->its_timers[id] == NULL)
 1150                                 break;
 1151                 if (id == TIMER_MAX) {
 1152                         PROC_UNLOCK(p);
 1153                         error = EAGAIN;
 1154                         goto out;
 1155                 }
 1156         }
 1157         it->it_timerid = id;
 1158         p->p_itimers->its_timers[id] = it;
 1159         if (evp != NULL)
 1160                 it->it_sigev = *evp;
 1161         else {
 1162                 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
 1163                 switch (clock_id) {
 1164                 default:
 1165                 case CLOCK_REALTIME:
 1166                         it->it_sigev.sigev_signo = SIGALRM;
 1167                         break;
 1168                 case CLOCK_VIRTUAL:
 1169                         it->it_sigev.sigev_signo = SIGVTALRM;
 1170                         break;
 1171                 case CLOCK_PROF:
 1172                         it->it_sigev.sigev_signo = SIGPROF;
 1173                         break;
 1174                 }
 1175                 it->it_sigev.sigev_value.sival_int = id;
 1176         }
 1177 
 1178         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1179             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1180                 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
 1181                 it->it_ksi.ksi_code = SI_TIMER;
 1182                 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
 1183                 it->it_ksi.ksi_timerid = id;
 1184         }
 1185         PROC_UNLOCK(p);
 1186         *timerid = id;
 1187         return (0);
 1188 
 1189 out:
 1190         ITIMER_LOCK(it);
 1191         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1192         ITIMER_UNLOCK(it);
 1193         uma_zfree(itimer_zone, it);
 1194         return (error);
 1195 }
 1196 
 1197 #ifndef _SYS_SYSPROTO_H_
 1198 struct ktimer_delete_args {
 1199         int timerid;
 1200 };
 1201 #endif
 1202 int
 1203 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
 1204 {
 1205 
 1206         return (kern_ktimer_delete(td, uap->timerid));
 1207 }
 1208 
 1209 static struct itimer *
 1210 itimer_find(struct proc *p, int timerid)
 1211 {
 1212         struct itimer *it;
 1213 
 1214         PROC_LOCK_ASSERT(p, MA_OWNED);
 1215         if ((p->p_itimers == NULL) ||
 1216             (timerid < 0) || (timerid >= TIMER_MAX) ||
 1217             (it = p->p_itimers->its_timers[timerid]) == NULL) {
 1218                 return (NULL);
 1219         }
 1220         ITIMER_LOCK(it);
 1221         if ((it->it_flags & ITF_DELETING) != 0) {
 1222                 ITIMER_UNLOCK(it);
 1223                 it = NULL;
 1224         }
 1225         return (it);
 1226 }
 1227 
 1228 int
 1229 kern_ktimer_delete(struct thread *td, int timerid)
 1230 {
 1231         struct proc *p = td->td_proc;
 1232         struct itimer *it;
 1233 
 1234         PROC_LOCK(p);
 1235         it = itimer_find(p, timerid);
 1236         if (it == NULL) {
 1237                 PROC_UNLOCK(p);
 1238                 return (EINVAL);
 1239         }
 1240         PROC_UNLOCK(p);
 1241 
 1242         it->it_flags |= ITF_DELETING;
 1243         while (it->it_usecount > 0) {
 1244                 it->it_flags |= ITF_WANTED;
 1245                 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
 1246         }
 1247         it->it_flags &= ~ITF_WANTED;
 1248         CLOCK_CALL(it->it_clockid, timer_delete, (it));
 1249         ITIMER_UNLOCK(it);
 1250 
 1251         PROC_LOCK(p);
 1252         if (KSI_ONQ(&it->it_ksi))
 1253                 sigqueue_take(&it->it_ksi);
 1254         p->p_itimers->its_timers[timerid] = NULL;
 1255         PROC_UNLOCK(p);
 1256         uma_zfree(itimer_zone, it);
 1257         return (0);
 1258 }
 1259 
 1260 #ifndef _SYS_SYSPROTO_H_
 1261 struct ktimer_settime_args {
 1262         int timerid;
 1263         int flags;
 1264         const struct itimerspec * value;
 1265         struct itimerspec * ovalue;
 1266 };
 1267 #endif
 1268 int
 1269 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
 1270 {
 1271         struct itimerspec val, oval, *ovalp;
 1272         int error;
 1273 
 1274         error = copyin(uap->value, &val, sizeof(val));
 1275         if (error != 0)
 1276                 return (error);
 1277         ovalp = uap->ovalue != NULL ? &oval : NULL;
 1278         error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
 1279         if (error == 0 && uap->ovalue != NULL)
 1280                 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
 1281         return (error);
 1282 }
 1283 
 1284 int
 1285 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
 1286     struct itimerspec *val, struct itimerspec *oval)
 1287 {
 1288         struct proc *p;
 1289         struct itimer *it;
 1290         int error;
 1291 
 1292         p = td->td_proc;
 1293         PROC_LOCK(p);
 1294         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1295                 PROC_UNLOCK(p);
 1296                 error = EINVAL;
 1297         } else {
 1298                 PROC_UNLOCK(p);
 1299                 itimer_enter(it);
 1300                 error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
 1301                     flags, val, oval));
 1302                 itimer_leave(it);
 1303                 ITIMER_UNLOCK(it);
 1304         }
 1305         return (error);
 1306 }
 1307 
 1308 #ifndef _SYS_SYSPROTO_H_
 1309 struct ktimer_gettime_args {
 1310         int timerid;
 1311         struct itimerspec * value;
 1312 };
 1313 #endif
 1314 int
 1315 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
 1316 {
 1317         struct itimerspec val;
 1318         int error;
 1319 
 1320         error = kern_ktimer_gettime(td, uap->timerid, &val);
 1321         if (error == 0)
 1322                 error = copyout(&val, uap->value, sizeof(val));
 1323         return (error);
 1324 }
 1325 
 1326 int
 1327 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
 1328 {
 1329         struct proc *p;
 1330         struct itimer *it;
 1331         int error;
 1332 
 1333         p = td->td_proc;
 1334         PROC_LOCK(p);
 1335         if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
 1336                 PROC_UNLOCK(p);
 1337                 error = EINVAL;
 1338         } else {
 1339                 PROC_UNLOCK(p);
 1340                 itimer_enter(it);
 1341                 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
 1342                 itimer_leave(it);
 1343                 ITIMER_UNLOCK(it);
 1344         }
 1345         return (error);
 1346 }
 1347 
 1348 #ifndef _SYS_SYSPROTO_H_
 1349 struct timer_getoverrun_args {
 1350         int timerid;
 1351 };
 1352 #endif
 1353 int
 1354 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
 1355 {
 1356         struct proc *p = td->td_proc;
 1357         struct itimer *it;
 1358         int error ;
 1359 
 1360         PROC_LOCK(p);
 1361         if (uap->timerid < 3 ||
 1362             (it = itimer_find(p, uap->timerid)) == NULL) {
 1363                 PROC_UNLOCK(p);
 1364                 error = EINVAL;
 1365         } else {
 1366                 td->td_retval[0] = it->it_overrun_last;
 1367                 ITIMER_UNLOCK(it);
 1368                 PROC_UNLOCK(p);
 1369                 error = 0;
 1370         }
 1371         return (error);
 1372 }
 1373 
 1374 static int
 1375 realtimer_create(struct itimer *it)
 1376 {
 1377         callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
 1378         return (0);
 1379 }
 1380 
 1381 static int
 1382 realtimer_delete(struct itimer *it)
 1383 {
 1384         mtx_assert(&it->it_mtx, MA_OWNED);
 1385         
 1386         /*
 1387          * clear timer's value and interval to tell realtimer_expire
 1388          * to not rearm the timer.
 1389          */
 1390         timespecclear(&it->it_time.it_value);
 1391         timespecclear(&it->it_time.it_interval);
 1392         ITIMER_UNLOCK(it);
 1393         callout_drain(&it->it_callout);
 1394         ITIMER_LOCK(it);
 1395         return (0);
 1396 }
 1397 
 1398 static int
 1399 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
 1400 {
 1401         struct timespec cts;
 1402 
 1403         mtx_assert(&it->it_mtx, MA_OWNED);
 1404 
 1405         realtimer_clocktime(it->it_clockid, &cts);
 1406         *ovalue = it->it_time;
 1407         if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
 1408                 timespecsub(&ovalue->it_value, &cts);
 1409                 if (ovalue->it_value.tv_sec < 0 ||
 1410                     (ovalue->it_value.tv_sec == 0 &&
 1411                      ovalue->it_value.tv_nsec == 0)) {
 1412                         ovalue->it_value.tv_sec  = 0;
 1413                         ovalue->it_value.tv_nsec = 1;
 1414                 }
 1415         }
 1416         return (0);
 1417 }
 1418 
 1419 static int
 1420 realtimer_settime(struct itimer *it, int flags,
 1421         struct itimerspec *value, struct itimerspec *ovalue)
 1422 {
 1423         struct timespec cts, ts;
 1424         struct timeval tv;
 1425         struct itimerspec val;
 1426 
 1427         mtx_assert(&it->it_mtx, MA_OWNED);
 1428 
 1429         val = *value;
 1430         if (itimespecfix(&val.it_value))
 1431                 return (EINVAL);
 1432 
 1433         if (timespecisset(&val.it_value)) {
 1434                 if (itimespecfix(&val.it_interval))
 1435                         return (EINVAL);
 1436         } else {
 1437                 timespecclear(&val.it_interval);
 1438         }
 1439         
 1440         if (ovalue != NULL)
 1441                 realtimer_gettime(it, ovalue);
 1442 
 1443         it->it_time = val;
 1444         if (timespecisset(&val.it_value)) {
 1445                 realtimer_clocktime(it->it_clockid, &cts);
 1446                 ts = val.it_value;
 1447                 if ((flags & TIMER_ABSTIME) == 0) {
 1448                         /* Convert to absolute time. */
 1449                         timespecadd(&it->it_time.it_value, &cts);
 1450                 } else {
 1451                         timespecsub(&ts, &cts);
 1452                         /*
 1453                          * We don't care if ts is negative, tztohz will
 1454                          * fix it.
 1455                          */
 1456                 }
 1457                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1458                 callout_reset(&it->it_callout, tvtohz(&tv),
 1459                         realtimer_expire, it);
 1460         } else {
 1461                 callout_stop(&it->it_callout);
 1462         }
 1463 
 1464         return (0);
 1465 }
 1466 
 1467 static void
 1468 realtimer_clocktime(clockid_t id, struct timespec *ts)
 1469 {
 1470         if (id == CLOCK_REALTIME)
 1471                 getnanotime(ts);
 1472         else    /* CLOCK_MONOTONIC */
 1473                 getnanouptime(ts);
 1474 }
 1475 
 1476 int
 1477 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
 1478 {
 1479         struct itimer *it;
 1480 
 1481         PROC_LOCK_ASSERT(p, MA_OWNED);
 1482         it = itimer_find(p, timerid);
 1483         if (it != NULL) {
 1484                 ksi->ksi_overrun = it->it_overrun;
 1485                 it->it_overrun_last = it->it_overrun;
 1486                 it->it_overrun = 0;
 1487                 ITIMER_UNLOCK(it);
 1488                 return (0);
 1489         }
 1490         return (EINVAL);
 1491 }
 1492 
 1493 int
 1494 itimespecfix(struct timespec *ts)
 1495 {
 1496 
 1497         if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1498                 return (EINVAL);
 1499         if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
 1500                 ts->tv_nsec = tick * 1000;
 1501         return (0);
 1502 }
 1503 
 1504 /* Timeout callback for realtime timer */
 1505 static void
 1506 realtimer_expire(void *arg)
 1507 {
 1508         struct timespec cts, ts;
 1509         struct timeval tv;
 1510         struct itimer *it;
 1511 
 1512         it = (struct itimer *)arg;
 1513 
 1514         realtimer_clocktime(it->it_clockid, &cts);
 1515         /* Only fire if time is reached. */
 1516         if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1517                 if (timespecisset(&it->it_time.it_interval)) {
 1518                         timespecadd(&it->it_time.it_value,
 1519                                     &it->it_time.it_interval);
 1520                         while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
 1521                                 if (it->it_overrun < INT_MAX)
 1522                                         it->it_overrun++;
 1523                                 else
 1524                                         it->it_ksi.ksi_errno = ERANGE;
 1525                                 timespecadd(&it->it_time.it_value,
 1526                                             &it->it_time.it_interval);
 1527                         }
 1528                 } else {
 1529                         /* single shot timer ? */
 1530                         timespecclear(&it->it_time.it_value);
 1531                 }
 1532                 if (timespecisset(&it->it_time.it_value)) {
 1533                         ts = it->it_time.it_value;
 1534                         timespecsub(&ts, &cts);
 1535                         TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1536                         callout_reset(&it->it_callout, tvtohz(&tv),
 1537                                  realtimer_expire, it);
 1538                 }
 1539                 itimer_enter(it);
 1540                 ITIMER_UNLOCK(it);
 1541                 itimer_fire(it);
 1542                 ITIMER_LOCK(it);
 1543                 itimer_leave(it);
 1544         } else if (timespecisset(&it->it_time.it_value)) {
 1545                 ts = it->it_time.it_value;
 1546                 timespecsub(&ts, &cts);
 1547                 TIMESPEC_TO_TIMEVAL(&tv, &ts);
 1548                 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
 1549                         it);
 1550         }
 1551 }
 1552 
 1553 void
 1554 itimer_fire(struct itimer *it)
 1555 {
 1556         struct proc *p = it->it_proc;
 1557         struct thread *td;
 1558 
 1559         if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
 1560             it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
 1561                 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
 1562                         ITIMER_LOCK(it);
 1563                         timespecclear(&it->it_time.it_value);
 1564                         timespecclear(&it->it_time.it_interval);
 1565                         callout_stop(&it->it_callout);
 1566                         ITIMER_UNLOCK(it);
 1567                         return;
 1568                 }
 1569                 if (!KSI_ONQ(&it->it_ksi)) {
 1570                         it->it_ksi.ksi_errno = 0;
 1571                         ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
 1572                         tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
 1573                 } else {
 1574                         if (it->it_overrun < INT_MAX)
 1575                                 it->it_overrun++;
 1576                         else
 1577                                 it->it_ksi.ksi_errno = ERANGE;
 1578                 }
 1579                 PROC_UNLOCK(p);
 1580         }
 1581 }
 1582 
 1583 static void
 1584 itimers_alloc(struct proc *p)
 1585 {
 1586         struct itimers *its;
 1587         int i;
 1588 
 1589         its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
 1590         LIST_INIT(&its->its_virtual);
 1591         LIST_INIT(&its->its_prof);
 1592         TAILQ_INIT(&its->its_worklist);
 1593         for (i = 0; i < TIMER_MAX; i++)
 1594                 its->its_timers[i] = NULL;
 1595         PROC_LOCK(p);
 1596         if (p->p_itimers == NULL) {
 1597                 p->p_itimers = its;
 1598                 PROC_UNLOCK(p);
 1599         }
 1600         else {
 1601                 PROC_UNLOCK(p);
 1602                 free(its, M_SUBPROC);
 1603         }
 1604 }
 1605 
 1606 static void
 1607 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
 1608 {
 1609         itimers_event_hook_exit(arg, p);
 1610 }
 1611 
 1612 /* Clean up timers when some process events are being triggered. */
 1613 static void
 1614 itimers_event_hook_exit(void *arg, struct proc *p)
 1615 {
 1616         struct itimers *its;
 1617         struct itimer *it;
 1618         int event = (int)(intptr_t)arg;
 1619         int i;
 1620 
 1621         if (p->p_itimers != NULL) {
 1622                 its = p->p_itimers;
 1623                 for (i = 0; i < MAX_CLOCKS; ++i) {
 1624                         if (posix_clocks[i].event_hook != NULL)
 1625                                 CLOCK_CALL(i, event_hook, (p, i, event));
 1626                 }
 1627                 /*
 1628                  * According to susv3, XSI interval timers should be inherited
 1629                  * by new image.
 1630                  */
 1631                 if (event == ITIMER_EV_EXEC)
 1632                         i = 3;
 1633                 else if (event == ITIMER_EV_EXIT)
 1634                         i = 0;
 1635                 else
 1636                         panic("unhandled event");
 1637                 for (; i < TIMER_MAX; ++i) {
 1638                         if ((it = its->its_timers[i]) != NULL)
 1639                                 kern_ktimer_delete(curthread, i);
 1640                 }
 1641                 if (its->its_timers[0] == NULL &&
 1642                     its->its_timers[1] == NULL &&
 1643                     its->its_timers[2] == NULL) {
 1644                         free(its, M_SUBPROC);
 1645                         p->p_itimers = NULL;
 1646                 }
 1647         }
 1648 }

Cache object: 9d8c8a144d5dc3d87dd8914deef70d74


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.